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Abstract: Whole Exome Sequencing (WES) is a powerful approach for detecting sequence variations
in the human genome. The aim of this study was to investigate the genetic defects in Jordanian
patients with inherited retinal dystrophies (IRDs) using WES. WES was performed on proband
patients’ DNA samples from 55 Jordanian families. Sanger sequencing was used for validation and
segregation analysis of the detected, potential disease-causing variants (DCVs). Thirty-five putatively
causative variants (6 novel and 29 known) in 21 IRD-associated genes were identified in 71% of
probands (39 of the 55 families). Three families showed phenotypes different from the typically
reported clinical findings associated with the causative genes. To our knowledge, this is the largest
genetic analysis of IRDs in the Jordanian population to date. Our study also confirms that WES is a
powerful tool for the molecular diagnosis of IRDs in large patient cohorts.

Keywords: inherited retinal dystrophy (IRD); retinitis pigmentosa (RP); whole exome sequencing;
retinal genetic testing; unique phenotypes

1. Introduction

Inherited retinal dystrophies (IRDs) are a group of diverse hereditary disorders collec-
tively characterized by progressive retinal deterioration [1,2]. IRDs are a primary cause of
vision impairment and blindness at different ages, affecting more than two million people
worldwide [3]. IRDs exhibit varied clinical presentations and are often classified into
two categories: non-syndromic IRDs, such as retinitis pigmentosa (RP), cone or cone-rod
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dystrophy (CD-CRD) and Leber congenital amaurosis (LCA), and syndromic IRDs, includ-
ing Bardet–Biedl (BBS), Joubert, Senior-Loken and Usher syndromes [1,4]. IRDs are also
characterized by pronounced genetic heterogeneity, with more than 250 genes attributed
to the disease (Retina Information Network https://sph.uth.edu/retnet/, accessed on 15
April 2021)

Different variants in a single IRD gene may lead to distinct clinical presentations,
including those identified in intra-familial cases [5,6]. The clinical picture of IRDs is largely
dependent on the pathogenetic processes leading to retinal damage. For example, RP,
the most widespread IRD with a worldwide prevalence of 1 in 3500 to 5000 [7], initially
presents with night blindness, typically manifesting in childhood/adolescence, which later
deteriorates into loss of peripheral vision. Conversely, CD-CRD degeneration develops
initially in the cones followed by the rods [8–10], and therefore, its primary presenting
symptom is reduced visual acuity and loss of sensitivity in the central visual field, followed
by night blindness and loss of peripheral vision [11,12]. However, there is a considerable
clinical overlap between RP and CRD, such that in advanced cases, it is not feasible to
generate a definitive clinical diagnosis of each disorder. This diagnostic challenge has
invited for the liberal utilization of genetic diagnostic approaches [13,14]. Fortunately, the
identification of disease-causing variants (DCVs) in familial and sporadic cases of IRDs has
been remarkably enhanced by the implementation of next-generation sequencing (NGS)
technologies in the genetic diagnostic settings [13,15].

The population of Jordan has remarkably increased from less than a million inhab-
itants in the 1950s [16] to more than 10 million people in 2021, according to Jordan’s
Department of Statistics latest estimations (http://dosweb.dos.gov.jo/, accessed on 15
April 2021). Furthermore, the indigenous population of Jordan consisted historically of
Bedouin pastoralists and ancient urbanites [16,17]; however, currently, Jordan is a habitat
for diverse ethnic backgrounds, predominantly consisting of Arabs in addition to other
ethnic minorities such as Armenians, Circassians and Chechens [18]. Furthermore, consan-
guineous marriage rates are higher among Jordanians, which has been linked to higher
rates of recessive genetic disorders [16]. Unfortunately, neither the prevalence rate of IRDs
nor a comprehensive, cohort-wide variant analysis of IRDs have been previously reported
in Jordan. In this study, we employed whole exome sequencing (WES) in 55 recruited
families suffering from IRDs throughout Jordan, to further delineate the genetic etiologies
of IRDs and to further contribute to understanding the variant spectrum for this group
of disorders.

2. Materials and Methods
2.1. Study Subjects

A group of 87 Jordanian patients from 55 unrelated families suffering from IRD were
enrolled in this study, who were recruited from different geographical regions across
the country. Patients underwent a standard ophthalmological examination, including
BCVA using standard Snellen charts, slit-lamp biomicroscopy (Haag-Streit BM 900, Koeniz,
Switzerland) and Optical Coherence Tomography (OCT) (Optovue RTVue, Fremont, CA,
USA). IRD diagnosis was made by specialized ophthalmologists. This study was approved
by the Institutional Review Board committee of the Cell Therapy Center, Amman, Jordan
(protocol code 1/2014, 19 August 2014). Peripheral blood samples were collected from
patients as well as their available informative relatives for DNA extraction. Written in-
formed consent that adhered to the tenets of the declaration of Helsinki was obtained from
all participants or from a parent and/or legal guardian for participants under the age of
18 years old. All methods were carried out in accordance with the approved guidelines.

2.2. Exome Sequencing and Data Analysis

WES was performed on DNA samples of 55 proband patients by the laboratory for
molecular medicine (LMM), Partners HealthCare Personalized Medicine (Cambridge, MA,
USA) as previously described [19]. Briefly, DNA from the selected individuals were an-
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alyzed for candidate causative variants via WES. WES was performed using the Agilent
SureSelect Clinical Research Exome capture kit (#G9496A 5190-7344), which captures cod-
ing regions (exons) and canonical splice sites of all annotated genes, followed by sequencing
on the Illumina HiSeq 2500. Reads were aligned to the GRCh37 reference sequence using
the Burrows-Wheeler Aligner (BWA 0.7.17, (http://bio-bwa.sourceforge.net, accessed on
15 April 2021)), and variant calls were made using the Genomic Analysis Tool Kit (GATK
v4.0.3.0 (Broad Institute, MA, USA)). The bioinformatics analysis pipeline has been previ-
ously described in [19–21]. Alignment evaluations were made using SAMtools stats; the
overall percentage of the properly paired reads was 98% ± 1, indicating that the proper
alignment was achieved (Table S1). Additionally, the evaluations of the called variants
were conducted utilizing BCFtools stats (Table S2). Both SAMtools stats and BCFtools
stats analyses were made using the Galaxy platform [22]. The average coverage of the
variants at >10× was 87.6% ±3.6 (a summary of the exome coverage is shown in Table S3).
Noteworthy, large copy number variants (CNVs) were not analyzed in our bioinformatics
pipeline. Variant prioritization and filtration were performed using the Illumina BaseSpace
variant interpreter tool (https://variantinterpreter.informatics.illumina.com/, accessed
on 15 April 2021). We focused our filtration approach on IRD-associated genes, which are
reported in the RetNet database (https://sph.uth.edu/retnet/, accessed on 15 April 2021),
the OMIM database (https://omim.org, accessed on 15 April 2021) and in the literature
(the full gene list has been previously described [19]).

All the sequence variants were filtered for quality assurance (minimum coverage ≥ 10×,
and QD ≥ 4) and location (placed within the exome and/or the flanking intronic re-
gions). Variants with a minor allele frequency of≤1% in large population databases (ExAC,
1000 genomes project, NHLBI exome sequencing project, gnomAD, the Haplotype Ref-
erence Consortium (HRC), KaViar, greater Middle East (GME) variome project and our
in-house database of 100 exomes), in addition to loss-of-function variants as well as other
variant types that have been previously described in the literature and the Human Gene
Mutation Database (HGMD), were prioritized and further analyzed. For the missense
variants reported in this study, potential deleterious effects of each variant on the protein
structure/function were evaluated using multiple in silico tools, including: Polymorphism
Phenotyping v2 (PolyPhen-2), Sorting Intolerant from Tolerant (SIFT), Mutation Taster,
Mutation Assessor and Provean.

2.3. Sanger Validation and Co-Segregation Analysis

For WES validation, Sanger sequencing was performed for the identified DCVs.
Co-segregation analysis was performed for confirmation of the candidate pathogenic
variants identified by WES as previously described [19]. Primers sequences are presented
in Table S4. Sanger traces were analyzed by Chromas Pro software (Technolysium Ltd.,
South Brisbane, Australia).

3. Results
3.1. Patients and Clinical Information

A total of 55 families diagnosed with an IRD (primarily RP and CRD) were recruited
for this study; family pedigrees are as shown in Figure S1. Overall, 39 of the participating
families (71%) were from consanguineous marriages (Table 1). In 35 families (64%), the
inheritance pattern was autosomal-recessive, whereas the probands in 20 families (35%)
were from sporadic cases. Among autosomal-recessive IRD families, 11 were previously
reported and described [19,23,24]. Age of patients ranged from 4 to 64 years with a mean
of 31 years. Best-Corrected Visual Acuity (BCVA) ranged from No Light Perception (NLP)
to 0.7, with about 90% (78/87) of patients having a BCVA less than 0.3 in their worst eye.
The observed clinical phenotypes following ophthalmic examination are summarized in
Table S5. OCT images demonstrated retinal atrophy.

http://bio-bwa.sourceforge.net
https://variantinterpreter.informatics.illumina.com/
https://sph.uth.edu/retnet/
https://omim.org
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Table 1. Distribution and detection rates in patients with inherited retinal dystrophy.

Families AR Sporadic Total Consanguineous

Solved (n) 26 13 39 31

Unsolved (n) 9 7 16 8

Total, n (%) 35 (64%) 20 (36%) 55 (100%) 39 (71%)

Detection rate of potential
DCVs (%) 74.3% 65% 71% 79.5%

3.2. Identification of Potential Pathogenic Variants in the IRD Cohort

Next, we performed a WES analysis to identify candidate Disease-Causing Vari-
ants (DCVs) among the study population. Potential DCVs were found in 39/55 families
(71%) (26 autosomal-recessive and 13 sporadic cases) (Tables 1 and 2). In total, we iden-
tified 35 unique potential DCVs in 21 IRD-related genes, of which 24 (68.6%) were likely
pathogenic (LP)/pathogenic (P) (Table 2 and Figure 1a). Among the identified variants,
18 (51.4%) are missense variants, 7 (20%) are nonsense variants, 5 (14.3%) are frameshift
deletions and 5 (14.3%) are predicted to affect splicing (Figure 1b). Interestingly, of these,
17% (6/35) were novel and included one nonsense, two splicing and three missense vari-
ants (Table 2 and Figure 2). The remaining 29 variants have either been previously reported
in the literature and/or in the ClinVar database (https://www.ncbi.nlm.nih.gov/clinvar/,
accessed on 15 April 2021).

Potential DCVs were identified in 31 (79.5%) of the 39 consanguineous families,
(Table 1). Amongst the 35 families with an autosomal-recessive inheritance pattern, po-
tential DCVs were identified in 26 families with 74.3% detection rate (Table 1). For the
sporadic cases, potential DCVs were identified in 65% of the probands (13/20), in which,
only one of them (7.7%) harbored a heterozygous variant in a gene implicated in autosomal-
dominant form, while the remaining 12 cases (92.3%) harbored homozygous or compound
heterozygous variants in genes implicated in autosomal-recessive forms of retinal disease
(Table 1). A de novo variant was suspected for one of the sporadic cases with an identified
heterozygous variant (IRD38)(Figure 2); particularly when no other candidate homozygous
variants were detected in the filtered IRD-associated genes. For further assessment, in
family IRD38, both parents and one healthy sibling were available for testing, which all of
them were clinically unaffected and did not carry the novel variant (IMPDH1, het c.835T>G;
p.(Leu279Val)) that was detected in the affected proband, confirming it is de novo.
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Figure 2. Pedigrees of families with identified novel potential disease-causing variants. Arrows
indicate probands. Affected individuals are indicated with filled symbols, unaffected relatives are
indicated by open symbols, consanguinity is marked by double lines and pink connected symbols
signify the same person. M: mutation; +: wild type allele.

Lastly, our genetic investigation was incapable of detecting any candidate DCVs in the
relevant IRD-associated genes that could be implicated in the disease phenotype in 16 of the
participating families. Our preliminary analysis for 10 of those families filtered candidate variants,
however, these variants did not co-segregate with the disease phenotype in the participating
family members, which reduces the likelihood of the pathogenicity of these variants (Table S6).

3.3. Variant Spectrum in Jordanian Patients with IRD

The characteristics of the DCVs identified in our cohort are shown in Figure 1. In
our variants’ pool, the most frequently mutated gene was the CRB1 (18%, 7/39 families,
representing 4 missense variants) (Table 2 and Figure 1a). Interestingly, one of the CRB1
variants was present in three unrelated families; c.1733T > A; p.(Val578Glu) (Table 2).
Additionally, 19 loss-of function variants were identified in our cohort in TULP1, CERKL,
CLRN1, RP1, RLBP1, C8orf37 ABCA4, USH2A, EYS, CDHR1, RP1L1, RDH12 and CEP290, of
which three were novel: a splice-donor variant in C8orf37, a splice-donor variant in CERKL
and a nonsense variant in RP1L1. The splice donor variant in C8orf37 (c.155 + 1G > A) was
identified in two unrelated families (IRD26 and IRD41). This variant is predicted to affect
splicing, potentially leading to abnormal or absent proteins.
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Table 2. Candidate disease variants identified in the Jordanian inherited retinal dystrophies cohort.

Family ID Gene Variant
Coordinate hg19 HGVS Variant Nomenclature dbSNP ID

gnomAD v3.1.1
Frequency Zygo. Segregation ClinVar * In silico Predictions

SIFT, PP, MT
ACMG

Classification References
Highest SAS ME $

IRD03 CRB1 Chr1:197404300 NM_201253.2:c.3307G > A;
p.(Gly1103Arg) rs62636275 2.1 × 10−4 2.1 × 10−4 NA Hom Not done P D, D, A LP [25–29]

IRD47 CRB1 Chr1:197404300 NM_201253.2:c.3307G > A;
p.(Gly1103Arg) rs62636275 2.1 × 10−4 2.1 × 10−4 NA Hom Not done P D, D, A LP [25–29]

IRD14 CRB1 Chr1:197390691 NM_201253.2:c.1733T > A;
p.(Val578Glu) rs1266363944 NA NA NA Hom Not done LP D, D, DC VUS [25,30]

IRD19 CRB1 Chr1:197390691 NM_201253.2:c.1733T > A;
p.(Val578Glu) rs1266363944 NA NA NA Hom Not done LP D, D, DC VUS [25,30]

IRD28 CRB1 Chr1:197390691 NM_201253.2:c.1733T > A;
p.(Val578Glu) rs1266363944 NA NA NA Hom Yes LP D, D, DC VUS [25,30]

IRD33 CRB1 Chr1:197396763 NM_201253.2:c.2308G > A;
p.(Gly770Ser) rs767648174 6.6 × 10−5 NA NA Hom Not done D, D, DC LP [31–33]

IRD39 CRB1 Chr1:197390802 NM_201253.2:c.1844G > T;
p.(Gly615Val) 1.5 × 10−5 NA NA Hom Yes D, D, DC LP [25]

IRD09 TULP1 Chr6:35473549 NM_003322.3:c.1081C > T;
p.(Arg361 *) 2.4 × 10−5 NA NA Hom Yes P [34–36]

IRD12 TULP1 Chr6:35467755 NM_003322.3: c.1495 + 2dupT rs1581735836 NA NA NA Hom Yes P [37]

IRD31 TULP1 Chr6:35473543 NM_003322.3:c.1087G > A;
p.(Gly363Arg) 4.8 × 10−4 NA NA Hom Not done D, D, DC VUS [38]

IRD11 CERKL Chr2:182468594 NM_001030311.2: c.450_451delAT;
p.(Ile150Metfs * 3) NA NA NA Hom Yes P [19]

IRD18 CERKL Chr2:182413318 NM_001030311.2:
c.1164_1165delTG; p.(Cys388 *) rs776727320 1.1 × 10−3 NA NA Hom Yes P [19,39]

IRD35 CERKL Chr2:182423344 NM_001030311.2: c.847C > T;
p.(Arg283 *) rs121909398 9.6 × 10−4 NA NA Com. het Yes P P [32,40–52]

IRD35 CERKL Chr2:182468563 NM_001030311.2: c.481 + 1G > A NA NA NA Com.het Yes P Novel

IRD02 CLRN1 Chr3:150659368 NM_001195794.1: c.433 + 1G > A rs201205811 NA NA NA Hom Yes P [23]

IRD36 CLRN1 Chr3:150659479 NM_001195794.1:c.323T > C;
p.(Leu108Pro) 4.6 × 10−4 NA NA Hom Yes D, D, DC VUS [23]

IRD05 RP1 Chr8:55537568 NM_006269.1: c.1126C > T;
p.(Arg376*) rs760689800 NA NA NA Hom Yes P [24]

IRD08 RP1 Chr8:55534133 NM_006269.1: c.607G > A;
p.(Gly203Arg) rs786205589 NA NA NA Hom Yes LP D, D, DC LP [24]

IRD22 RP1 Chr8:55534133 NM_006269.1: c.607G > A;
p.(Gly203Arg) rs786205589 NA NA NA Hom Yes LP D, D, DC LP [24]

IRD10 RLBP1 Chr15:89761858 NM_000326.4: c.79delA;
p.(Thr27Profs * 26) rs1567124404 NA NA NA Hom Yes P P [24]

IRD17 RLBP1 Chr15:89758418 NM_000326.4: c.398delC;
p.(Pro133Glnfs * 126) NA NA NA NA Hom Yes P [24]

IRD26 C8orf37 Chr8:96281262 NM_177965.3: c.155 + 1G > A 6.5 × 10−5 NA NA Hom Yes P Novel

IRD41 C8orf37 Chr8:96281262 NM_177965.3: c.155 + 1G > A 6.5 × 10−5 NA NA Hom Yes P Novel
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Table 2. Cont.

Family ID Gene Variant
Coordinate hg19 HGVS Variant Nomenclature dbSNP ID

gnomAD v3.1.1
Frequency Zygo. Segregation ClinVar * In silico Predictions

SIFT, PP, MT
ACMG

Classification References
Highest SAS ME $

IRD02 ABCA4 Chr1:94480098 NM_000350.2: c.5460 + 1G > A rs61753030 2.4 × 10−5 NA NA Hom Yes P [23]

IRD24 ABCA4 Chr1:94528780 NM_000350.2: c.1648G > A;
p.(Gly550Arg) rs61748558 1.4 × 10−5 NA NA Hom Yes LP D, D, DC LP [23]

IRD48 ABCA4 Chr1:94480098 NM_000350.2: c.5460 + 1G > A rs61753030 2.4 × 10−5 NA NA Hom Yes P [23]

IRD37 USH2A Chr1:216019303 NM_206933.2: c.8917_8918del;
p.(Leu2973Lysfs * 79) NA NA NA Hom Not done P [53]

IRD04 MAK Chr6:10804098 NM_001242957.1: c.518G > T;
p.(Arg173Ile) NA NA NA Hom Yes D, D, DC VUS Novel

IRD07 EYS Chr6:65655759 NM_001142800.1: c.2308C > T;
p.(Gln770 *) NA NA NA Hom Not done P [54,55]

IRD16 CLN3 Chr16:28493482 NM_001042432.1: c.1000C > T;
p.(Arg334Cys) rs386833694 NA NA NA Hom Not done LP D, D, DC VUS [56,57]

IRD20 BBS2 Chr16:56536365 NM_031885.3:c.944G > A;
p.(Arg315Gln) rs544773389 NA NA NA Hom Not done VUS D, D, DC VUS [58,59]

IRD27 CDHR1 Chr10:85957581 NM_033100.3:c.338delG;
p.(Gly113Alafs * 2) rs747425652 NA NA NA Hom Yes P [60]

IRD38 IMPDH1 Chr7:128040188 NM_000883.3:c.835T > G;
p.(Leu279Val) NA NA NA Het Yes D, D, DC LP Novel

IRD46 MERTK Chr2:112779847 NM_006343.2:c.2362G > A;
p.(Val788Met) rs769691218 6.5 × 10−5 NA NA Hom Not done D, D, DC VUS ClinVar

IRD56 CNGB1 Chr16:57937858 NM_001297.4:c.2662G > A;
p.(Ala888Thr) rs368328328 8.3 x10−4 8.3 × 10−4 NA Hom Yes D, D, DC VUS ClinVar

IRD06 RP1L1 Chr8:10469520 NM_178857.5:c.2088C > A;
p.(Cys696 *) NA NA NA Hom Yes P Novel

IRD21 RDH12 Chr14:68192803 NM_152443.2:c.379G > T;
p.(Gly127 *) rs104894474 NA NA NA Hom Not done P P [47,61,62]

IRD55 RDH12 Chr14:68196070 NM_152443.2:c.821T > C;
p.(Leu274Pro) NA NA NA Hom Yes D, D, DC VUS [63,64]

IRD25 RDH12 Chr14:68196070 NM_152443.2:c.821T > C;
p.(Leu274Pro) NA NA NA Hom Yes D, D, DC VUS [63,64]

IRD49 AHI1 Chr6:135752384 NM_017651.4:c.2335G > A;
p.(Asp779Asn) 3.2 × 10−3 NA 3.2 × 10−3 Hom Yes VUS T, D, N VUS ClinVar

IRD50 CEP290 Chr12:88479860 NM_025114.3:c.4393C > T;
p.(Arg1465 *) rs539400286 2.1 × 10−4 2.1 × 10−4 NA Com. het Yes P P [46,47,65–68]

IRD50 CEP290 Chr12:88447469 NM_025114.3:c.7089A > T;
p.(Glu2363Asp) NA NA NA Com. het Yes T, B, N VUS Novel

* At least one star status. $ All the identified DCVs were not reported in the GME variome database. PP: PolyPhen, MT: MutationTaster, DC: Disease Causing, A: Disease causing Automatic, D: damaging, N:
neutral, B: benign, T: tolerated, NA: not available, VUS: variant of unknown significance; P: pathogenic; LP: likely pathogenic, Het: heterozygous, Hom: homozygous, Zygo.: zygosity; Com. het: compound
heterozygous; SAS: South Asia, ME: Middle East.



Genes 2021, 12, 593 8 of 15

3.4. Phenotypic and Genotypic Information

To investigate the relationship between variants identified in IRD genes and the
clinical features observed in our cohort, we performed genotype–phenotype analyses of
all IRD patients in whom a potential DCV was detected. Clinical data for all patients,
including the most recent BCVA and age at examination, are shown in a scatterplot across
the 21 IRD-associated genes harboring the identified variants (Figure 3). We classified
the visual acuity into five groups depending on the phenotypic severity, each severity
is represented by different color code (Figure 3). In this cohort, although the BCVA on
average was less than 0.3 in most patients (Figure 3), we found no obvious correlation
between BCVA severity, age at examination and genotype in any specific gene.
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3.5. Investigating the Less Commonly Studied Genotype–Phenotype Correlations

Several IRD genes have been commonly associated with a specific retinal phenotype
in the literature [3]. We performed detailed clinical phenotyping on our patients and found
that, in some cases, certain genes are responsible for an IRD phenotype that is less typically
associated with that gene. These less-established genotype–phenotype correlations for
several genes with DCVs identified in our cohort are described below.

MAK. Variants in MAK have been mainly associated with RP (OMIM: 614181) and
less commonly implicated with CRD [15]. In our cohort, the family IRD04 carried a novel
missense variant (c.518G > T; p.Arg173Ile) in MAK. This variant is predicted in silico to have
a damaging effect and it is conserved across different species (Table 2). A co-segregation
analysis confirmed that the variant segregated with the disease phenotype in 2 affected
siblings (Figure 2). Interestingly, the clinical diagnosis for this family was more consistent
with CRD (rather than RP), in which bull’s eye maculopathy was also evident (Figure 4a).
These results are suggestive of an association between this MAK variant with bull’s eye
maculopathy and CRD.

CLN3. A sporadic case of an early adolescent RP female patient in family IRD16 was
found to have a previously described missense variant (c.1000C > T; p.(Arg334Cys)) in
CLN3. This variant is predicted in silico to have a damaging effect and it is conserved
across different species (Table 2). On examination, BCVA was hand motion (HM) for her
worst eye. Fundoscopy showed minimal bone spicule pigmentation, while OCT images
showed loss of foveal reflex with generalized macular thinning; no cystoid macular edema
or vitreoretinal interface abnormalities or epiretinal membrane were identified (Figure 4b).
CLN3 is classically associated with juvenile neuronal ceroid lipofuscinosis (JNCL) 3 disease
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(OMIM: 607042), which primarily affects the nervous system and is characterized by vision
impairment, cognitive disability, movement problems, speech difficulties and seizures that
develop during childhood [69]. The involvement of CLN3 in nonsyndromic RP has been
emerging recently [70–75]. The identified variant was previously reported in a patient with
clinical features meeting the diagnostic criteria for JNCL [57]. Interestingly, the proband
from family IRD16 showed only a typical RP phenotype without systemic manifestation,
at least for this age as an adolescent.

AHI1. AHI1 is originally known to cause Joubert syndrome 3 (OMIM: 608894); a
congenital multi-organ disease involving the retina, kidneys, bones and liver [76]. Non-
syndromic RP association has been recently, and less frequently, associated with AHI [75].
A missense variant (c.2335G > A; p.(Asp779Asn)) in the AHI1 gene was identified in the
homozygous state in an early adolescent male patient (sporadic case, IRD49) who had
isolated RP. Co-segregation analysis revealed that both parents were heterozygous carriers
for the variant and his unaffected sibling is homozygous for the wild-type allele. The
patient’s BCVA was 0.2 and 0.05 for his right and left eye, respectively. The classic RP triad,
i.e., attenuated blood vessels, bony spicules and macular degeneration, were observed
upon fundus examination. OCT showed severe thinning and atrophy (Figure 4c). The
variant has only been reported by another clinical laboratory in ClinVar and has been
interpreted in the context of Joubert Syndrome, whereas the proband from family IRD49
had nonsyndromic RP (Table 2).
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Figure 4. Optical Coherence Tomography (OCT) or fundus photography of both eyes for identified
families with interesting genotype-phenotype correlations: (a) fundus photography for patient IRD04:
III-6, arrow points to bull’s eye maculopathy; (b) patient IRD16: II-1 OCT showing loss of foveal reflex
with generalized macular thinning, no cystoid macular edema or vitreoretinal interface abnormalities
or epiretinal membrane; (c) patient IRD049: IV-6 OCT showing severe thinning and atrophy.

4. Discussion

Molecular diagnosis of IRDs remains challenging given the high genetic heterogeneity
of this group of disorders. In this study, we described the variant spectrum detected in a
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total of 55 Jordanian families with IRDs, which, to our knowledge, is the largest Jordanian
IRD cohort studied to date. Potential pathogenic variants were detected in 39 (out of 55)
of the analyzed families (71% detection rate). The worldwide reported detection rates in
other IRD cohorts ranged between 41% and 76% and as follows: Saudi-Arabia (54%) [77],
Israel (49%, 56%) [78,79], China (41.4%) [80], Switzerland (64%) [81], England (56%) [40],
Ireland (68%) [82], Germany (70.8%) [83] and the USA (76%) [32]. These cohort studies,
as well as our own, have demonstrated that NGS is a reliable approach in detecting the
underlying molecular etiology of IRDs. The variation of detection rates could be explained
by several factors including the utilized genetic platforms, panel design, inclusion criteria,
the genetic heterogeneity of the investigated phenotype and the number of participating
family members of the affected probands. The detection rate is also dependent on the
level of consanguinity between the study subjects. We were able to identify the DCVs in
79.5% of the consanguineous families. Similarly, other studies also investigated the genetic
basis of IRDs in consanguineous families, for instance, in Pakistani [84] and Iranian [85]
in-breeding kindreds, they were able to identify the genetic etiology in around 72% and
90% of the cases, respectively.

Among the 21 IRD-associated genes found to contain potential pathogenic variants
in our cohort, variants were most prevalent in CRB1, TULP1, CERKL, RDH12, ABCA4
and RP1, which collectively represent 40% of variants identified in the entire cohort and
more than 56% of cases where a potential DCV was identified. These findings suggest that
these genes should be considered upon designing gene panel-based tests for the diagnosis
of IRD in Jordan, which might serve as a more economical alternative to utilizing WES.
Interestingly, variants in CRB1 account for the majority of autosomal-recessive early-onset
retinal degeneration cases in Israeli and Palestinian populations, as well as LCA cases
in a Japanese population [25,86]. CERKL was the most common gene implicated in a
Tunisian population with retinal dystrophy [87], while RDH12 was also common in the
Israeli population with inherited retinopathies [78].

Our analysis has also identified novel variants (17%) that are not previously reported,
suggesting their uniqueness to Jordanian, or potentially, Middle Eastern populations. Thus,
there may be several yet-to-be-identified clinically relevant variants in the context of IRD
in this population. In an attempt to describe less commonly reported genotype-phenotype
correlations, we assessed the relationships between the severity of visual acuity as well as
age at examination, and specific genotypes across various IRD-associated genes. However,
no clear correlations were observed (Figure 3). These results reinforce the fact that IRDs
show clinical and genetic heterogeneity. Nevertheless, an examination of a larger cohort
and the identification of more variants causing IRD are warranted to further elucidate any
genetic associations in our findings.

Interestingly, in three families (IRD04, IRD16 and IRD49), potential DCVs were de-
tected in genes for which an association with the observed IRD phenotype in the family
was different than the commonly reported phenotype. Our results suggest a candidate
variant in MAK to be implicated in CRD. To date, all 23 pathogenic variants that have been
reported in MAK gene have been mainly associated with RP, and are rarely implicated
with CRD. Interestingly, one patient from family IRD04 showed symptoms consistent with
CRD, where bull’s eye maculopathy was present. In families IRD16 and IRD49, a potential
DCV was detected in CLN3 and AHI1, respectively. CLN3 and AHI1 typically cause JNCL 3
and Joubert syndrome 3, respectively; however, probands of families IRD16 and IRD49
showed typical RP phenotypes, without any additional syndromic manifestations of either
disease, at least for their current age. Although the identified variants in CLN3 and AHI1
genes were previously reported, in this study, an association with less commonly reported
phenotypes can be inferred. In 16 of our IRD families, we were unable to identify a variant
that could potentially explain the observed phenotypes. This highlights the genetic com-
plexity of retinal degenerative diseases and the limitations of WES, in that certain variants
in current disease-associated genes can be missed by WES (e.g., deep intronic changes
that could affect mRNA splicing, 5′ and 3′ UTR changes affecting mRNA production and
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stability, structural variants (SV) and CNVs, which can include large deletions/insertions
of one or more full exons) or cannot be clinically interpreted due to lack of case-level and
functional data. Lastly, it cannot be excluded that additional retinopathy-associated genes
remain to be identified.

5. Conclusions

In summary, this is the largest comprehensive genomic study of IRD patients from the
Jordanian population known to date. In this study, we showed that WES is very useful in
identifying disease-causing variants in a Jordanian IRD cohort that has not undergone prior
genetic analysis. Our NGS-based diagnostic approach successfully identified a putative
variant of clinical significance in 39/55 IRD families. Six of these variants were novel,
without any reported association to disease. The results from this study expand the variant
spectrum of the Jordanian population with IRD and contribute to better understanding
of molecular mechanisms of the disease. Finally, this approach provides an avenue to
facilitate the clinical diagnosis and personalized treatment of patients with IRD.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes12040593/s1, Figure S1: Pedigrees for all the participating families with inherited
retinal dystrophies, Table S1: Alignment evaluation summary for each of the participating families
using SAMtools stats, Table S2: Variant evaluation summary for each of the participating families
using BCFtools stats, Table S3: Exome coverage summary for each of the participating families,
Table S4: Primers used for the validation and segregation analysis of the identified variants, Table S5:
Clinical features of an inherited retinal dystrophy (IRD) cohort, Table S6: Candidate variants with
low evidence of pathogenicity identified in a Jordanian IRD cohort.
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