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Abstract: Forkhead-box C2 (FOXC2) is a transcription factor involved in lymphatic system devel-
opment. FOXC2 mutations cause Lymphedema-distichiasis syndrome (LD). Recently, a natural
antisense was identified, called IncRNA FOXC2-AS1, which increases FOXC2 mRNA stability. No
studies have evaluated FOXC2 and FOXC2-AS1 blood expression in LD and healthy subjects. Here,
we show that FOXC2 and FOXC-AS1 expression levels were similar in both controls and patients,
and a significantly higher amount of both RNAs was observed in females. A positive correlation
between FOXC2 and FOXC2-AS1 expression was found in both controls and patients, excluding
those with frameshift mutations. In these patients, the FOXC2-AS1/FOXC2 ratio was about 1:1,
while it was higher in controls and patients carrying other types of mutations. The overexpression
or silencing of FOXC2-AS1 determined a significant increase or reduction in FOXC2 wild-type and
frameshift mutant proteins, respectively. Moreover, confocal and bioinformatic analysis revealed
that these variations caused the formation of nuclear proteins aggregates also involving DNA. In
conclusion, patients with frameshift mutations presented lower values of the FOXC2-AS1/FOXC2
ratio, due to a decrease in FOXC2-AS1 expression. The imbalance between FOXC2 mRNA and its
IncRNA could represent a molecular mechanism to reduce the amount of FOXC2 misfolded proteins,
protecting cells from damage.

Keywords: Lymphedema-distichiasis syndrome; FOXC2; IncRNA FOXC2-AS1; gene expression;
confocal analysis; nuclear aggregates

1. Introduction

Lymphedema-distichiasis syndrome (LD, OMIM 153400) is an autosomal dominant
rare disorder in which the lymphatic system, responsible for the production and transport
of fluids and immune cells throughout the body, does not develop correctly [1]. LD is
characterized by the swelling of the limbs, in particular the legs and feet, and by the
presence of extra eyelashes (distichiasis) on the inner lining of both the upper and lower
eyelids. Distichiasis can often cause astigmatism or cornea scarring. In addition, swollen
and knotted veins, drooping eyelids (ptosis), cardiac anomalies, and cleft palate can be
observed [2]. The age of clinical symptoms onset is highly variable in LD patients [3].

LD is associated with mutations in the FOXC2 gene (MIM 602402), a member of the
Forkhead-box (FOX) family [4,5]. FOXC2 is located on the long arm of chromosome 16,
positive strand, and consists of a single exon. It encodes a transcription factor (FOXC2),
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composed of 501 amino acids, regulating the development of some systems during em-
bryogenesis, particularly the lymphatic and blood vascular system. FOXC2 has several
functional regions: two transactivation domains, AD-1 and AD-2, located in the N- and
C- terminal parts, respectively; a forkhead DNA binding domain (FHD, residues 71-162),
which contains the first nuclear localization signal (NLS1, residues 78-93); a second NLS
(NLS2, residues 168-176); and an inhibition domain (ID2) located in the C- terminal re-
gion [6]. In addition, there are some phosphorylation and SUMOylation sites in the central
part of the protein (residues 163-394) [7,8].

Almost 110 LD-causing mutations have been identified (www.hgmd.cf.ac.uk accessed
on 15 July 2020). Most of them, being complex rearrangements, deletions, insertions, or
nonsense mutations, should result in a partial or total loss of FOXC2 function. However,
functional studies have shown that some variations, particularly missense mutations,
located outside the FHD domain lead to an increase in transcription factor activity [9,10].
These results seem to indicate that LD onset is associated with both loss and gain of
FOXC2 function [9-11]. To date, the molecular mechanism underlying this pathology is
not understood. Moreover, the biological role of some molecules, which could differently
regulate FOXC2 expression in LD patients compared to healthy subjects, still needs to
be investigated.

Recently, an antisense IncRNA, named IncRNA FOXC2-AS1, was identified [12]. This
IncRNA is transcribed by a gene located on the negative strand of chromosome 16. IncRNA
FOXC2-AS1 overlaps FOXC2 mRNA between nucleotides 280426, establishing a double-
stranded RNA structure (Figure 1A).

This structure allows the stabilization of the FOXC2 transcript. The direct interac-
tion between FOXC2 mRNA and FOXC2-AS1 was demonstrated, for the first time, in
human doxorubicin-resistant osteosarcoma cell lines [12]. Studies performed in different
osteosarcoma cell lines and tissue samples have shown that the expression levels of both
FOXC2 and FOXC2-AS1 were upregulated and that FOXC2-AS1 controlled FOXC2 protein
production, stabilizing its transcript.

In this study, we evaluated the expression levels of FOXC2 and FOXC2-AS1 in blood
samples from some control subjects and LD patients, presenting different FOXC2 mutations.
Moreover, we co-transfected HeLa cells with control and mutant GFP-FOXC2 recombinant
plasmids, as well as with FOXC2-AS1 plasmid or FOXC2-AS1 siRNA, to induce significant
changes in FOXC2 wild-type and mutant protein synthesis. Finally, we made confocal and
bioinformatic analysis to clarify the effect of FOXC2 variations, in particular frameshift
mutations, on cellular localization and three-dimensional structure.


www.hgmd.cf.ac.uk

Genes 2021, 12, 650 30f13
A mRNA transcription
280 426
5 3
3 5
B FOXC2 protein
S219 s232 T247! s281 S$367
FTT T
AD-1 FHD % AD-2 3
3140 8151 8188
$219 S232 T247! s281 8367
R
AD-1 FHD |2  H© AD-2 |3
g |213V S240 S251 S288
S$219 S232 T247! S281 $367
2 o ! I
g AD-1 @ FHD | 3 H E AD-2 3
© i
2 V228M
q" $219 323132‘012:1251 SZMsm $367
@ rltl Tl I
& AD-1 |2 FHD |2 AD-2 3
) A492V
S AD-1 g p.Y109*
T =
&3
o g
O =
25
()
- E AD-1 |2 FHD @ n p.1213Tfs18*
f .
L

) phosphorylation sites
=4 SUMOylation motifs

! extra-long stretch

Figure 1. Representation of FOXC2 mRNA and IncRNA FOXC2-AS1 interaction, and of FOXC2 protein structure. (A) Anti-
sense IncRNA is transcribed from the complementary strand of FOXC2 gene and it forms a double-stranded RNA through
binding with FOXC2 mRNA between nucleotides 280-426. (B) Schematic representation of structural domains of FOXC2
protein: Activation Domains (AD-1, amino acids 1-70, and AD-2, amino acids 395-494); Forkhead Domain, the DNA-
binding region (FHD, amino acids 71-162); Nuclear Signals (NLS1, amino acids 78-93, and NLS2, amino acids 168-176); the
central region (amino acids 163-394) with two SUMOylation motifs and eight phosphorylation sites; Inhibitory Domain 2

(ID-2, amino acids 494-501). Moreover, a schematic representation of FOXC2 mutant proteins is also reported.
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2. Materials and Methods
2.1. Sample Collection

Peripheral blood specimens were collected from 7 LD patients (3 males and 4 females)
and 8 healthy age-matched subjects (4 males and 4 females), using ethylenediaminete-
traacetic acid (EDTA) as anticoagulant. The clinical and genetic information of the LD
patients were reported in previous studies [13,14]. The LD patients carried different FOXC2
mutations, reported in Table 1. All subjects involved in the study signed an informed con-
sent agreement. The analyses were authorized by the local Institutional Review Board and
performed in agreement with the ethical principles outlined in the Declaration of Helsinki.

2.2. Real Time PCR Analysis of FOXC2 and FOXC2-AS1 RNAs Obtained from Blood Cells

Peripheral blood mononuclear cells (PBMCs) were isolated from the EDTA-treated
peripheral blood by density gradient centrifugation using Histopaque, following the man-
ufacturer’s instructions. RNA was extracted with Trizol solution and reverse transcription
was performed after treating 2 pg of RNA with DNAse I [15]. Quantitative real time PCR
(qRT-PCR) was made with 50 ng of cDNA in a 20 pL-reaction volume using SsoAdvanced
Universal SYBR Green Supermix (Biorad) and the primers FOXC2-F: AGTGCAGCATGC-
GAGCGATG; FOXC2-R: CGAGAGGGCCTCGTCCAGG; FOXC2-AS1-F: CGAGAGGGC-
CTCGTCCAGG; FOXC2-AS1-R: TTGCCTTCTAGTCGCCTCC. qRT-PCR protocol was as
follow: 35 cycles at 95 °C for 15 s, 54 °C for 2 min [16]. Analyses were realized in triplicate
and the relative quantification was estimated using the 2~4Ct method, after normalization
with Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) expression. RNA obtained
from HeLa cells was used as positive control.

In addition, semi-quantitative RT-PCR was performed as previously described [17], us-
ing the following primers: FOXC2-2F CGCCCGAGAAGAAGATCAC; FOXC2-2R CGCTCT
TGATCACCACCTTC; FOXC2-AS1-2F CTTGCCGGGCTTCTTGTCGT; FOXC2-AS1-2R
TACATTTTCGTCTTCTGTTCTTTTATTGG. To exclude DNA contamination, FOXC2 ex-
pression analysis was carried out on samples with and without reverse transcriptase
(+RT and —RT). GAPDH level was used to normalize FOXC2 and FOXC-AS1 concentra-
tion in each sample. Finally, amplification products were sequenced (Eurofins Genomics,
DNA sequencing service).

2.3. Localization of Mutant FOXC2 and Evaluation of Protein Expression in HeLa
Transfected Cells

GFP-FOXC2 recombinant plasmids were previously obtained [10,18]. FOXC2-AS1
cDNA was amplified from HeLa cells, then subcloned into pcDNA3.3-TOPO (Life Tech-
nologies) and finally sequenced (Eurofins Genomics, DNA sequencing service). siRNA
FOXC2-AS1 and scramble oligonucleotide (negative control) were purchased from Eurofins
Genomics. FOXC2 and FOXC2-AS1 recombinant plasmids and siRNAs were transfected
into HeLa cells using Lipofectamine 3000 (Thermo Fisher Scientific, Waltham, MA, USA),
following the manufacturer’s instructions.

After 48 h, the cells were lysed using NP40 buffer containing protease inhibitors.
Total proteins were quantified using a Pierce™ Coomassie (Bradford) Protein Assay Kit
(Thermo Fisher Scientific, Waltham, MA, USA) and separated by electrophoresis on 10%
SDS-polyacrylamide gel (Biorad, Hercules, CA, USA). Then, they were transferred to a
polyvinylidene difluoride (PVDF) membrane (Biorad) and, after blocking with 5% nonfat
dry milk, the membrane was incubated with primary antibodies against GFP (1:5000,
ABNOVA, Taipei, Taiwan) and GAPDH (1:5000, ABNOVA). The immune signals were
examined using the SuperSignal West Pico Complete Detection Kit (Pierce) containing
ImmunoPure Peroxidase Conjugated Goat anti-Mouse (dil 1:20,000).

In addition, HeLa cells were simultaneously transfected as described above, then fixed
and analyzed with a LeicaMB5000B microscope and a confocal microscope Leica TCS SPE
equipped with 40x and 63 x oil immersion objectives.
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2.4. Statistical and Bioinformatic Analysis

SPSS v.19 package (SPSS, Chicago, IL, USA) was utilized to carry out all statisti-
cal analysis. qRT-PCR results were tested comparing the values with Student’s t-test
(p-value < 0.05 was statistically significant). Linear correlations were performed using
the Pearson product moment method (significant set at p < 0.05). The ratio of FOXC2-
AS1/FOXC2 expression was compared using the Kruskal-Wallis test (p-value < 0.05 was
considered to indicate significance).

The investigation of the secondary and three-dimensional structure of FOXC2 mutant
proteins was performed using Robetta software (https://robetta.bakerlab.org accessed on
15 July 2020).

3. Results
3.1. FOXC2 and IncRNA FOXC2-AS1 Expression Levels in Peripheral Blood

The patients enrolled in this study presented different FOXC2 variants: three missense
mutations (p.[1213V, p.V228M and p.A492V), a nonsense mutation (p.Y109%), and two
frameshift mutations (p.H199Pfs264* and p.1213T£s18%). These were localized in various
protein domains (Figure 1B), differently effecting FOXC2 function. Missense mutations
caused either a partial loss or a significant gain of FOXC2 activity, while nonsense and
frameshift mutations determined a complete or severe loss of transcriptional function,
respectively (Table 1) [10,18].

Table 1. FOXC2 mutations identified in LD patients enrolled for the study.

Patient Mutation Protein Transcriptional Activity of Mutant Protein *
P1 (M) c.1475C>T p-A492V 182%

P2 (M) c.682G>A p-V228M 70%

P3 (M) c.327C>A p-Y109* 0%

P4 (F) c.637A>G pl213V 103%

P5 (F) ¢.595dupC p-H199Pfs264* 28%

Pé6 (F) c.638delT p1213Tfs18* 30%

P7 (F) c.638delT p1213Tfs18* 30%

* Transcriptional activity percentage of FOXC2 mutant proteins was determined considering FOXC2 wild-type
signal as 100% of activity (Luciferase reporter assay) [10,18].

To evaluate the expression levels of FOXC2 and FOXC2-AS1, total RNA obtained
from peripheral blood of healthy subjects, LD patients and HeLa cells was analyzed
using qRT-PCR assay (Figure 2A). The results showed no significant difference of FOXC2
and FOXC2-AS1 expression between these two groups of subjects. Pearson correlation
analysis showed that FOXC2 and FOXC2-AS1 expression was strongly correlated in healthy
subjects (R = 0.878, p < 0.05), while a moderate correlation was identified in the LD patients
(R=0.577, p < 0.05) (Figure 2B,C). Nevertheless, dividing the LD patients in two groups,
those with frameshift and those with other FOXC2 mutations, a strong positive correlation
between FOXC2 and FOXC2-AS1 RNA amount could also be found in the second group of
subjects (R =0.926, p < 0.001) (Figure 2D). Finally, in patients carrying frameshift mutations,
it was observed that the ratio of FOXC2-AS1/FOXC2 expression tended to 1:1 and it was
significantly lower (p < 0.05) than that detected in control subjects and all the other patients
(Figure 2E).
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Figure 2. FOXC2 and IncRNA FOXC2-AS1 expression in control and LD blood samples. (A) Real time PCR analysis of
FOXC2 and IncRNA FOXC2-AS1 RNA in healthy (C1-C8) and LD (P1-P7) subjects. HeLa cells (H) were used as positive
controls. GAPDH was used as a housekeeping gene to normalize the expression levels. Each bar represents mean of three
independent experiments. (B) Pearson correlation analysis between FOXC2 and FOXC2-AS1 expression levels observed in
control subjects (correlation coefficient R = 0.878, p < 0.05), in all LD patients (C) (correlation coefficient R = 0.577, p < 0.05)
and in LD patients carrying FOXC2 missense and nonsense mutations (D) (correlation coefficient R = 0.926, p < 0.001).
(E) Ratio of IncRNA FOXC2-AS1 and FOXC2 expression levels in controls and LD subjects. Patients carrying frameshift
mutations were indicated by arrows. Statistical analysis was performed using Kruskal-Wallis test. *** p < 0.05.

Further evaluations revealed that FOXC2 and FOXC2-AS1 expression was significantly
higher in the female population compared to male population (Figure 3A). Moreover,
FOXC2 and FOXC2-AS1 RNA amount positively correlated in males (R = 0.767, p < 0.05),
but not in females (R = 0.263, p > 0.05) (Figure 3B), consistently with the fact that all the LD
patients with frameshift mutations were females.
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Figure 3. Evaluation of FOXC2 and IncRNA FOXC2-AS1 expression profile in male and female
blood samples. (A) Box plots of FOXC2 (left) and FOXC2-AS1 (right) expression values in males
(control and LD) and females (control and LD), detected by RT-PCR. Statistical analysis was assessed
using Student’s t-test. p-values of < 0.05 was considered significant. (B) Pearson correlation analysis
between FOXC2 and FOXC2-AS1 expression levels observed in males (control and LD) and females
(control and LD). Male correlation coefficient: R = 0.767 (p < 0.05). Female correlation coefficient:
R =0.263 (p > 0.05).

To definitively ascertain if FOXC2 and FOXC2-AS1 were expressed in blood cells, a
semi-quantitative RT-PCR analysis was carried out in the control and LD patients. FOXC2
and FOXC2-AS1 RT-PCR fragments of 384 and 319 nt, respectively, were obtained. No
FOXC2 amplification products were observed in -RT samples. The sequencing of FOXC2
and FOXC2-AS1 RT-PCR products confirmed the expression of both genes in peripheral
blood (Supplementary file 1).

3.2. Modulation of FOXC2 Protein Synthesis through Up- or Down-Regulation of FOXC2-AS1.

To verify whether the modulation of FOXC2-AS1 expression could influence both
FOXC2 wild-type and mutant protein production, we co-transfected HeLa cells with wild-
type or mutant GFP-FOXC2 plasmids and with FOXC2-AS1 or FOXC2-AS1 siRNA. After
co-transfection, Western blot and immunofluorescence analyses were performed.

Western blot analysis displayed that FOXC2-AS1 overexpression increased FOXC2
wild-type and mutant protein levels (Figure 4A, lanes 4 and 8). In contrast, endogenous
FOXC2-AS1 knockdown dramatically reduced the amount of FOXC2 proteins (Figure 4A,
lanes 5 and 9).
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Figure 4. Analysis of FOXC2 wild-type and mutant proteins after FOXC2-AS1 overexpression or silenc-
ing. (A) Western blot analysis of FOXC2 protein expression in HeLa cells co-transfected with different
expression vectors and siRNAs (GFP-FOXC2wt; GFP-FOXC2wt + siNC; GFP-FOXC2wt + FOXC2-AS1;
GFP-FOXC2wt + siAS1; GFP-FOXC2(H199Pfs264*); GFP-FOXC2(H199Pfs264*) + siNC; GFP-
FOXC2(H199Pfs264*) + FOXC2-AS1; GFP-FOXC2(H199Pfs264*) + siAS1). Lane 1: non-transfected
HeLa cells. (B) Immunofluorescence analysis of HeLa cells after transfection with GFP-
FOXC2wt; GFP-FOXC2wt + FOXC2-AS1; GFP-FOXC2wt + siAS1; GFP-FOXC2(H199Pfs264*); GFP-
FOXC2(H199Pfs264*) + FOXC2-AS1; GFP-FOXC2(H199Pfs264*) + siAS1. After 48 h, the cells were fixed
with 3% paraformaldehyde and FOXC2 recombinant proteins were observed by direct immunofluores-
cence analysis of GFP tag (in green); 20 x magnification. Scale bar: 10 um.

Immunofluorescence investigation supported immunoblot results. Indeed, the co-
transfection of GFP-FOXC2 wild-type or mutant plasmids with FOXC2-AS1 enhanced the
production of recombinant proteins. On the contrary, co-transfection with FOXC2-AS1
siRNA decreased FOXC2 proteins’ expression (Figure 4B).
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3.3. Immunofluorescence and in Silico Evaluation of FOXC2 Frameshift Mutations

We previously showed that all FOXC2 mutations but one (p.Y109*) did not affect
protein nuclear localization [10,18].

Immunofluorescence analysis evidenced that p.Y109* showed a cytoplasmic localiza-
tion, missense mutations (p.1213V, p.V228M and p.A492V) maintained a homogeneous
nuclear distribution, similar to native FOXC2, and frameshift mutations H199Pfs264* and
1213Tfs18* were able to enter the nucleus and induced intranuclear protein aggregates
(Supplementary Figure S1).

To better clarify if these nuclear aggregates could interact with DNA, confocal mi-
croscope analysis was performed. The nuclear images of cells transfected with GFP-
FOXC2(H199Pfs264*) or GFP-FOXC2(I1213Tfs18*) clearly showed an uneven DNA staining
which colocalized with mutant FOXC2 protein aggregates (Figure 5).

GFP-FOXC2 wt

GFP-FOXC2(H199Pfs264%)

N 4
T

Figure 5. Confocal analysis of HeLa cells transiently transfected with GFP-FOXC2 and GFP-
FOXC2(H199Pfs264*) constructs. The evaluation of protein nuclear localization reveals that
p-H199Pfs264* generates protein aggregates which colocalize with an irregular DNA staining. In
green, FOXC2 constructs tagged with GFP. In blue, nuclei stained with DAPI. Magnification: 40x.
Scale bar: 10 pm. Putative regions of colocalization between FOXC2 mutant protein and DNA are
indicated by arrows.

FOXC2 frameshift mutations cause the production of mutant proteins (p.H199Pfs264*
and p.1213Tfs18*) in which a stretch of amino acids can be found that is different from native
FOXC2 sequence. Bioinformatic investigation revealed secondary structure modifications
not only of amino acids localized in the central region but also in some residues of the
FHD domain (Supplementary Figure S2A). In particular, both predicted structures revealed
alterations of N86 (from coiled coil to x-helix), L125-C128 (from coiled coil to a-helix),
P150-D151 (from o-helix to coiled coil), F161 (from coiled coil to «-helix), and L1162 (from
coiled coil to -strand in p.H199Pfs264*and from coiled coil to «-helix in p.1213Tfs18¥).
Three-dimensional models displayed a dramatic modification of both tertiary structures
caused by conformational changes of FHD domain and the loss of more than 50% of the
wild-type sequences (Supplementary Figure S2B).

4. Discussion

In this explorative study, the RNA expression level of FOXC2 and FOXC2-AS1 was
evaluated in healthy subjects and LD patients. First, we demonstrated that both genes
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were expressed in blood cells, although at very low levels. We failed to find a significant
difference between the healthy subjects and LD patients, while the analysis of the two tran-
scripts showed differences between males and females. In particular, higher levels of both
RNAs were detected in females. These data are in agreement with genetic and epigenetic
studies that demonstrated sex-specific regulation of some genes [18-20]. Recently, it was
also shown a diverse expression of some IncRNAs between males and females [21,22]. The
different regulation of genes and IncRNAs expression can protect or predispose males and
females against disease onset in different manners. LD involves equally males and females
but arises in males at an earlier age than females [4,23]. The sex difference of FOXC2 and
FOXC2-AS1 expression levels might explain later lymphedema onset in females. Higher
levels of FOXC2 and FOXC2-AS1 RNA should lead to an increase in the number of FOXC2
proteins in females. Therefore, the presence of a higher amount of FOXC2 molecules might
temporarily compensate for transcriptional activity impairment in females carrying FOXC2
mutations, delaying lymphedema onset.

Pearson’s analysis highlighted that FOXC2 and FOXC2-AS1 RNA levels were strongly
correlated in healthy subjects and in patients, excluding those with frameshift mutations
(Supplementary Figure S3). Indeed, the ratio of FOXC2-AS1/FOXC2 RNA indicated that
there was an imbalance in the expression of the transcription factor and its IncRNA in
patients carrying frameshift mutations. Many studies reported that alteration of IncRNA ex-
pression can lead to a wide variety of disorders. Both upregulation and downregulation of
IncRNAs involved in many physiological processes, such as MALAT1, PLUT, and CARMN,
are associated with the onset of various cancers, as well as metabolic, cardiovascular, and
neurological disorders [24-26]. In LD, the dysregulation of IncRNA expression might
have a different biological meaning. In the presence of specific FOXC2 variations, such
as frameshift mutations, the decrease in FOXC2-AS1 expression might contribute to the
reduction in FOXC2 mutant proteins production. This mechanism might represent a way
by which the cell protects itself.

In our study, we have demonstrated that both overexpression and silencing of FOXC2-
AS1 can modulate the production of wild-type and mutant FOXC2 proteins.

As it was previously reported, p.I1213V, p.V228M, and p.A492V preserved the cor-
rect nuclear localization, while could cause both a loss (p.V228M) and gain (p.1213V and
p-A492V) of FOXC2 activity [10,18]. p.Y109* lost the ability to localize into the nucleus
and, consequently, did not retain transcriptional function [18]. Finally, the frameshift muta-
tions, such as H199Pfs264* and 1213Tfs18*, maintained nuclear localization but generated
abnormal protein aggregates [18]. Moreover, they severely impaired FOXC2 activity and
also prevented cellular proliferation. We provided evidence that cells transfected with
GFP-FOXC2(H199Pfs264*) and GFP-FOXC2(I1213Tfs18*) lost their ability to divide, increas-
ing cell death [18]. It is unknown how FOXC2 frameshift mutations might block mitosis.
However, it might be hypothesized that nuclear protein aggregations play an important
role in the inhibition of cell cycle progression. Here, we demonstrated by confocal anal-
ysis that these aggregates colocalized with DNA, showing a non-uniform staining. As
chromatin assembly is essential to regulate transcription factor-DNA interaction and gene
expression [27], the variation of DNA distribution might have a deleterious impact on cell
viability and proliferation.

In silico investigation showed that nuclear aggregates formation could be associated
with dramatic structural alterations of FOXC2 mutant proteins. In the previous study,
we investigated secondary and tertiary structures of both mutant proteins using i-Tasser
tool [18]. i-Tasser is based on identification of PDB templates through Local Meta-Threading
Server. Data obtained showed a higher number of amino acids involved in an a-helix
structure, particularly in FHD domain, and dramatic alterations of tridimensional con-
formation. To verify the accuracy of i-Tasser prediction, in this study, we used another
bioinformatic tool based on Rosetta macromolecular modelling suite, which provides both
ab initio and comparative models of protein domains. Structural alterations reported by
this software are similar to those highlighted by i-Tasser. Indeed, the analysis predicted
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misfolded protein generation for both p.H199Pfs264* and p.[1213Tfs18*. These data are
in agreement with the observations of Zhang and colleagues who hypothesized that the
modification of FOXC2 C-terminal part might determine a decrease in protein stabilization
causing an abnormal three-dimensional structure [23]. Interestingly, our analysis showed
conformational alterations also of some FHD amino acids, with an increase in residues
presenting an a-helix structure. FHD is the region which regulates DNA-FOXC2 interaction
and the amino acids, which directly participate in DNA binding, are involved in an a-helix
secondary structure [28,29]. Our data indicate that the mutant proteins might be able to
strongly bind DNA, carrying modifications of chromatin conformation.

5. Conclusions

In conclusion, we showed that there were similar expression levels of FOXC2 and
FOXC2-AS]1 in blood samples from control and LD subjects. Conversely, a sex-based
regulation of both genes was identified. Moreover, a strong positive correlation between
both RNAs amount was identified in all participants, except in females carrying FOXC2
frameshift mutations. In these LD patients, FOXC2-AS1 amount was lower than in other
control and LD subjects, determining an imbalance between FOXC2 and FOXC2-AS1 ex-
pression. Confocal and bioinformatic investigations seemed to indicate that frameshift
mutations dramatically modify FOXC2 tertiary structure and DNA binding. Our in vitro
studies showed that ectopic FOXC2-AS1 over or under expression directly regulates FOXC2
protein production. Likewise, endogenous FOXC2-AS1 down-regulation might be a molec-
ular mechanism useful to protect the cell, decreasing misfolded proteins production. Since
a small number of blood samples were analyzed, additional studies should be performed
on larger number of healthy and LD subjects to better clarify the relationship between
FOXC2 and FOXC2-AS1 expression.
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