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Abstract: DNA is subject to epigenetic modification by the molecule N4-methylcytosine (4mC).
N4-methylcytosine plays a crucial role in DNA repair and replication, protects host DNA from
degradation, and regulates DNA expression. However, though current experimental techniques can
identify 4mC sites, such techniques are expensive and laborious. Therefore, computational tools that
can predict 4mC sites would be very useful for understanding the biological mechanism of this vital
type of DNA modification. Conventional machine-learning-based methods rely on hand-crafted
features, but the new method saves time and computational cost by making use of learned features
instead. In this study, we propose i4mC-Deep, an intelligent predictor based on a convolutional
neural network (CNN) that predicts 4mC modification sites in DNA samples. The CNN is capable of
automatically extracting important features from input samples during training. Nucleotide chemical
properties and nucleotide density, which together represent a DNA sequence, act as CNN input
data. The outcome of the proposed method outperforms several state-of-the-art predictors. When
i4mC-Deep was used to analyze G. subterruneus DNA, the accuracy of the results was improved by
3.9% and MCC increased by 10.5% compared to a conventional predictor.

Keywords: DNA methylation; regulate expression; CNN; deep learning

1. Introduction

In DNA modification, methylation is a fundamental epigenetic tag that plays a
major role in biological processes such as genomic imprinting, preservation of chro-
mosomal stability, X-chromosome inactivation, cell cycle progression, and regulation
of gene expression [1,2]. Cytosine methylation has been widely studied in both eukary-
otic and prokaryotic genomes, where it creates bases such as 5-methylcytosine (5mC),
3-methylcytosine, and N4-methylcytosine [3,4]. 5mC is produced by adding a methyl
group via DNA methyltransferase (DNMT) to the C5 position of cytosine, whereas 3-
methylcytosine accrues due to the action of environmental alkylation agents [3,5]. 5mC
is known to play a significant role in various biological functions [6,7] and is associated
with diabetes, cancer, and neurological diseases [8–10]. In bacterial DNA, methylated
DNA nucleobase 4mC is commonly explored, while the exact mechanisms and biological
functions of 4mC modification sites are still limited [10].

The 4mC is relatively less investigated as compared to 5mC, and it has several roles
such as correcting and controlling the DNA replication, gene expression levels, and cell
cycle [2,11]. There are various experimental techniques for the identification of epige-
netic cytosine nucleobases (4mC), which are namely, whole-genome bisulfite sequencing,
reduced-representation bisulfite sequencing, mass spectrometry, transcription-activator-
like effectors (TALEs) and single-molecule real-time sequencing (SMRT) [12–14]. Although
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these experimental techniques are sufficient for the identification of 4mC sites, they are
expensive and laborious. Therefore, an efficient computational algorithm for the prediction
of 4mC modification sites in large-scale genomic sequences would be greatly beneficial to
the field. In the past decade, deep learning methods have achieved a remarkable perfor-
mance in various fields such as image recognition [15–17], speech recognition [18], natural
language processing [19] and bioinformatics [20–24].

Recently, several computational tools have been developed for the identification of 4mc
sites, including iDNA4mC [25], 4mCPred [26], 4mCPred-SVM [27] and SOMM4mC [28].
All of these tools are based on machine learning techniques with hand-crafted features.
iDNA4mC uses a support vector machine (SVM) with nucleotide chemical properties and
nucleotide frequency as a feature vector for the detection of 4mC sites. 4mCPred and
4mCPred-SVM also use an SVM but have different mechanisms of feature representa-
tion. 4mCPred relies on two feature-encoding techniques, position-specific trinucleotide
propensity (PSTNP) and electron–ion interaction pseudopotential EIIPs of trinucleotides,
to encode the DNA sample as discrete value vectors. 4mCPredSVM applies four types of
features for a combinatorial approach to 4mC site prediction, namely, K-mer dinucleotide
frequency, mono-nucleotide binary encoding, dinucleotide binary encoding, and local
position-specific dinucleotide frequency. SOMM4mC applies classical first and second-
order Markov models to predict the 4mC epigenetic modification sites and shows better
performance than the other previously mentioned tools. Furthermore, 4mCCNN [29]
and DeepTorrent [30] are based on deep learning techniques. 4mCCNN utilizes one-hot
encoding for data representation and convolution neural networks. DeepTorrent uses four
type feature extraction techniques with convolution and LSTM layers. The previous deep
learning model used complex architecture, which increases parameter and computational
costs. Therefore, we need to design a more efficient model for 4mC site identification.

In this study, we employ a convolutional neural network (CNN) to develop an ac-
curate and efficient computational tool. The CNN is based on several layers, including
a convolutional layer, batch normalization layer, flatten layer, dropout layer, and dense
layer. The convolutional layer is used to automatically extract important features from
an encoded DNA sequence. We apply the nucleotide chemical properties (NCP) and
nucleotide density (ND) methods to encode the input DNA sequences [25,31,32]. More-
over, we use the batch normalization and dropout layers to control overfitting. Finally,
we utilize the dense layer with sigmoid activation to classify the DNA sequence as ei-
ther a 4mC site or a non-4mC site. We apply the 10-fold cross-validation technique with
standard evaluation metrics in the field of bioinformatics [33–35] to evaluate i4mC-Deep.
The outcomes of i4mC-Deep are superior to those of previous tools. The architecture
of the i4mC-Deep has been illustrated in Figure 1. Finally, we have developed a free
online web server to facilitate research in academia and industry, which is available at
http://nsclbio.jbnu.ac.kr/tools/i4mC-Deep/, accessed on 15 July 2021, and we have pro-
vided the source code at: https://github.com/waleed551/i4mC-Deep, accessed on 15 July
2021 .

http://nsclbio.jbnu.ac.kr/tools/i4mC-Deep/
http://nsclbio.jbnu.ac.kr/tools/i4mC-Deep/
https://github.com/waleed551/i4mC-Deep
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Figure 1. Demonstration of the data-flow and architecture of the proposed model.

2. Materials and Methods

This section includes the benchmark datasets, proposed model and evaluation measures.

2.1. Benchmark Dataset

The dataset plays a very important role in the development of an efficient and reli-
able computational tool. We utilized data from six different species of prokaryotes and
eukaryotes, Caenorhabditis elegans, Drosophila melanogaster, Arabidopsis thaliana, Escherichia
coli, Geoalkalibacter subterraneus, and Geobacter pickeringii. The datasets were constructed
by [25] using the MethSMRT database [36]. The benchmark datasets contain 1554, 1769,
1978, 388, 906, and 569 positive and negative samples, respectively. Each sequence in the
six datasets has a centrally located cytosine (C), with a length of 41 nt. The summary of six
species benchmark datasets is shown in Table 1.

Table 1. The summary of six species benchmark datasets.

Species Sequences Total

C. elegans Positive 1554 3108Negative 1554

D. melanogaster Positive 1769 3538Negative 1769

A. thaliana Positive 1978 3956Negative 1978

E. coli Positive 388 776Negative 388

G. subterraneus Positive 906 1812Negative 906

G. pickeringii Positive 569 1138Negative 569
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2.2. Deep Learning Approach

In this study, we used a convolutional neural network (CNN) to predict 4mC modifi-
cation sites from DNA samples. The CNN is capable of automatically extracting important
features from the input samples during training. The CNN input of DNA sequences
is encoded by nucleotide chemical properties (NCP) and nucleotide density (ND). Each
input DNA sequence has four different chemical properties that are derived from three
groups based on the presence of hydrogen bonds, functional groups, and ring structures.
In detail, during the formation of secondary structures, A and T form weak hydrogen
bonds, whereas C and G form strong bonds; G and T contain a keto group, while A and C
contain an amino group; and C and T have structures with only one ring, whereas A and
G have two ring structures. Accordingly, the chemical properties of the four nucleotides
can be represented in three coordinates (x, y, and z), and each coordinate can be assigned
a value of 0 or 1. Thus, the four nucleotides that make up a DNA sequence can be repre-
sented in the Cartesian coordinate system. The resultant coordinates for A, C, G, and T are
(1, 1, 1), (0, 0, 1), (1, 0, 0) and (0, 1, 0), respectively. The nucleotide density contains infor-
mation on the frequency of each nucleotide in a given DNA sequence. Thus, we integrate
NCP and ND into a 4-channel feature vector. The CNN has steps, or layers, including the
convolution layers, activation layers, normalization layers, flatten layers, dropout layers,
and fully connected layers. Several hyper-parameters are tuned during training, such as
filter size, kernel size, strides, and dropout probability. The best hyper-parameter has been
selected based on the validation loss. The gird search range of hyper-parameters is shown
in Table 2. The optimal hyper-parameters for convolution layers are 2, the filter size is 8 for
both layers, padding is the “same” for both layers, kernel size is 3 for both layers, and the
dropout probability is 0.3. The mathematical representation of these layers is as follows:

Conv(S)ij = ReLU

(
Z−1

∑
s=0

I−1

∑
n=0

Wk
snSj+s,n

)
(1)

f = wd+1

d

∑
k=1

mkwkzk (2)

ReLU(x) =
{

x i f x > 0
0 i f x ≤ 0

(3)

Sigmoid(x) =
1

1 + e−x (4)

We adopted several evaluation measures, namely, sensitivity, specificity, accuracy,
and Mathew correlation coefficient (MCC), to enable a fair evaluation of the proposed tools.
Both convolution layers and one dense layer are followed by a nonlinear function rectified
linear unit (ReLU), while the last dense layer is followed by a sigmoid activation function
that classifies the given DNA sequence as a 4mC or non-4mC site. The sigmoid activation
function scales the output into the range [0, 1]. Moreover, we applied l2 regularization
and dropout regularization to avoid overfitting from the network. The proposed model
has been optimized using Adam with a learning rate of 0.001. The best batch size for the
proposed model is 32, and the ideal number of epochs is 200 with early stopping. This
bioinformatics tool is implemented in Python using the Keras framework.
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Table 2. The ranges of the tuned hyper-parameters.

Hyper-Parameters Range

Filters of Conv1D [8,16,32]
Conv1D kernel size [3,5,7]

Conv1D Strides [2,3]
Dropout [0.2,0.3,0.4,0.5]

Dense layer units [8,16,32]

2.3. Evaluation Measures

In this study, we applied four standard measures that are widely used in binary
classification tasks to evaluate the performance of bioinformatics tools [37–43], namely,
accuracy (ACC), sensitivity (SN), specificity (SP), and Matthew correlation coefficient
(MCC). Mathematically, these measures are expressed as follows:

ACC = 1 − (
N+
− + N−

+

N+ + N− ) (5)

SN = 1 − (
N+
−

N+
) (6)

SP = 1 − (
N−
+

N− ) (7)

MCC =
1 − (

N+
−+N−

+
N++N− )√

(1 + N−
+−N+

−
N+ )(1 + N+

−−N−
+

N− )

(8)

where N+ represents methylcytosine sites, N−represents nonmethylcytosine sites, N−
+ repre-

sents methylcytosine sites that are incorrectly identified as non-methylcytosine sites, and N+
−

shows the number of non-methylcytosine sites that are predicted to be methylcytosine sties.

3. Result and Discussion
3.1. Comparison with Other State-of-the-Art Tools

Here, we compare the performance of the proposed method with other state-of-the-art
tools, including iDNA4mC [25], 4mCPred [26], 4mCPred-SVM ([27]), and SOMM4mC ([28]).
Table 3 and Figure 2 demonstrate the performance according to the four basic evaluation
metrics of the proposed method and existing methods. Figure 3 shows the receiver op-
eration characteristic curve (ROC) of six species along with standard deviation errors in
ten folds. As done in previous studies, we also utilize 10-fold cross-validation and similar
measurement parameters to enable a fair comparative evaluation. The results show that the
accuracy of the proposed method is superior to that of existing state-of-the-art methods for
all benchmark datasets. In detail, 4mC-Deep improved the classification of the C. elegans
benchmark dataset by 1.0% accuracy, 3.5% sensitivity, and 3.1% MCC. In D. melanogaster,
accuracy was improved by 2.1%, specificity by 0.6%, sensitivity by 3.6%, and MCC by 6.7%.
In A. thaliana, accuracy was improved by 2.9%, sensitivity by 7.1%, and MCC by 8.4%. In E.
coli, 4mC-Deep improved accuracy, sensitivity, and MCC by 0.8%, 1.9%, and 0.1% respec-
tively. All measurement parameters were improved in G. subterraneus: 3.9% improvement
in accuracy, 3.8% for specificity, 4.0% for sensitivity, and 10.5% for MCC. In G. pinckeringii,
classification was improved by 2.3%, 2.7%, 2.0%, and 8.3% for accuracy, sensitivity, speci-
ficity, and MCC, respectively. As we notice, the specificity of the previous tools is higher
than the proposed tool. Specificity demonstrates the correct detection of the true-negative
classes, while sensitivity demonstrates the correct detection of the true-positive classes.
Accordingly, the specificity and sensitivity are both highly required for better performance
of the models. If we look at the performance of the previous method, the variance between
the sensitivity and specificity is higher, which decreases the model accuracy and MCC.
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On the other hand, the performance of the proposed tool is much higher as compared with
existing tools because the variance is less between sensitivity and specificity. Therefore,
it is evident that the outcomes of our proposed 4mC-Deep tool outperformed all existing
tools on six species benchmark datasets.

Table 3. The performance comparison between the i4mC-Deep and the existing computational tools for 4mC sites.

Datasets Methods ACC SN SP MCC

C. elegans

iDNA4mC 0.786 0.797 0.775 0.572
4mCPred 0.826 0.825 0.826 0.652

4mCPred-SVM 0.815 0.824 0.807 0.631
4mCCNN 0.842 0.894 0.825 0.694

DeepTorrent 0.858 0.810 0.906 0.719
SOMM4mC 0.876 0.839 0.913 0.743
i4mC-Deep 0.886 0.874 0.898 0.774

D. melanogaster

iDNA4mC 0.812 0.833 0.791 0.625
4mCPred 0.822 0.824 0.821 0.646

4mCPred-SVM 0.830 0.838 0.822 0.661
4mCCNN 0.853 0.864 0.853 0.686

DeepTorrent 0.861 0.834 0.889 0.724
SOMM4mC 0.874 0.862 0.886 0.724
i4mC-Deep 0.895 0.898 0.892 0.791

A. thaliana

iDNA4mC 0.760 0.757 0.762 0.519
4mCPred 0.768 0.755 0.780 0.536

4mCPred-SVM 0.787 0.778 0.796 0.573
4mCCNN 0.797 0.803 0.792 0.621

DeepTorrent 0.803 0.703 0.903 0.620
SOMM4mC 0.836 0.800 0.872 0.647
i4mC-Deep 0.865 0.871 0.861 0.731

E. coli

iDNA4mC 0.799 0.820 0.778 0.598
4mCPred 0.826 0.819 0.832 0.655

4mCPred-SVM 0.833 0.858 0.807 0.666
4mCCNN 0.859 0.881 0.788 0.687

DeepTorrent 0.873 0.891 0.855 0.747
SOMM4mC 0.918 0.903 0.934 0.853
i4mC-Deep 0.926 0.930 0.922 0.854

G. subterraneus

iDNA4mC 0.815 0.822 0.808 0.630
4mCPred 0.828 0.818 0.837 0.662

4mCPred-SVM 0.837 0.840 0.834 0.674
4mCCNN 0.860 0.851 0.843 0.703

DeepTorrent 0.880 0.813 0.948 0.768
SOMM4mC 0.876 0.864 0.888 0.728
i4mC-Deep 0.915 0.904 0.926 0.833

G. pinckeringii

iDNA4mC 0.831 0.824 0.838 0.663
4mCPred 0.830 0.850 0.810 0.668

4mCPred-SVM 0.860 0.863 0.858 0.721
4mCCNN 0.871 0.857 0.893 0.750

DeepTorrent 0.894 0.831 0.957 0.795
SOMM4mC 0.903 0.895 0.911 0.772
i4mC-Deep 0.926 0.915 0.938 0.855

Finally, we compared the proposed model with our previous published tool DNA4mC-
Deep [44], which was proposed for F. vesca and R. chinensis. We trained DNA4mC-Deep
on the six species in this study. We found that the i4mC-Deep model performs better in
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almost all species. The comparison results of i4mC-Deep and the trained DNA4mC-Deep
are given in Figure S8 and Table S1 in Supplementary File. Furthermore, we tested the
pretrained cross-species model DNA4mC-Deep, and the results are given in Table S2 in
Supplementary File.

Figure 2. Shows the performance comparison of the proposed tool and other existing state-of-the-art tools.

Figure 3. Demonstration of the test dataset receiver operation characteristic curve (ROC) of the ten folds and their standard
deviation for six species.
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3.2. Interpretation of the Proposed Tool

The interpretation of the trained models provides the biologist insights for a better
understanding of the task at hand. The developed models for the six species learned
separable features. These separable features made the task of the classifier easier and
helped in outperforming the previous methods. We extracted the learned features from
each trained model of every species in the study from the flatten layer. This layer represents
the learned features by the model during training. Then, we used t-distributed stochastic
neighbor embedding (tsne) to visualize the learned features. For example, Figure 4 shows
the learned features by the G. subterraneus model. It can be seen that the proposed model
was able to learn separable features so the achieved performance is superior compared
with the state-of-the-art models for the same dataset. The same behavior was obtained
from the other models in our study, as shown in Figure S1 in Supplementary File.

Figure 4. The t-SNE visualization of the learned features of the G. subterraneus dataset using the
proposed model. The “0” represents the features of the negative samples and “1” represents the
features of the positive samples.

Furthermore, we studied in silico mutagenesis using the trained models on the six
species in our study. This method was applied in various studies [44–46] to interpret the
effects of mutations using the trained deep learning model.

For every input sequence s = (s0, s2, . . . , s40) we generated a 41× 4 matrix by mutating
each nucleotide at every position into the other nucleobase. For every in-silico mutation,
we calculated the absolute prediction differences between the reference sequence and the
mutated sequence.

The heat map of in silico mutation analysis is shown in Figure 5 for G. subterraneus,
and Figure S2 in Supplementary File for the other species in our study. These heatmaps
show that the mutation in the center of the sequence could have the highest impact on the
prediction performance.

To further analyze the results, Figure 6 shows the effects of mutation on the prediction
result for G. subterraneus and other species in Supplementary file Figures S3–S7. It can be
seen that mutations in the flanking regions, positions 0 to 17 and positions 28 to 40, have a
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small impact on the prediction performance. However, the mutations at positions 18 to
27 alter the prediction by more than 10%. The most noticeable alteration in the prediction
occurs due to the mutation to Guanine (G) at position 21 of more than 20%.

Figure 5. Demonstration of a heatmap visualization of in silico mutation of G. subterraneus.
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Figure 6. The effect of the mutations on the prediction probability in G. subterraneus.
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4. Web-Server

We established a user-friendly and freely accessible web server for the proposed method
to facilitate future studies. The established web server supports the classification of 4mC sites
using either direct sequences in Fasta format, as shown in Figure 7, or direct upload of a Fasta
file, as shown in Figure 8. The web server uses the Python programming language with the
Flask library. It is available at http://nsclbio.jbnu.ac.kr/tools/i4mC-Deep/, accessed on 15
July 2021.

Figure 7. Demonstration of the web-server window where the users can put the DNA sequences in
Fasta format directly for the prediction of 4mC site.

Figure 8. Demonstration of the web-server window where the users can upload the DNA sequence
in the Fasta file.

5. Conclusions

DNA N4-methylcytosine is an important biochemical modification that regulates
gene expression. Therefore, an accurate and efficient computational tool, i4mC-Deep, was
developed to identify 4mC sites in DNA sequences. i4mC-Deep has a layered architecture

http://nsclbio.jbnu.ac.kr/tools/i4mC-Deep/
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with a convolution layer, batch normalization layer, dropout layer, and dense layer. NCP
and DN techniques are used to encode a DNA sequence to discrete values. The convolution
layer automatically extracts features from a given input DNA sequence. Hyper-parameter
searching is applied to identify the optimal parameter. The outcomes of four evaluation
metrics demonstrate that i4mC-Deep is more reliable and efficient than comparable tools.
The i4mCDeep tool will be invaluable for researchers in academia and industry. Finally,
we developed a web server for the proposed method, which is freely accessible online at
http://nsclbio.jbnu.ac.kr/tools/i4mC-Deep, accessed on 15 July 2021.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/genes12081117/s1. Figure S1: The t-SNE visualization of the learned features for C. elegans (a),
A. thaliana (b), D. melanogaster (c), E. coli (d), and G. pickeringii (e); Figure S2: Heatmaps of in silico
mutagenesis analysis for C. elegans (a), A. thaliana (b), D. melanogaster (c), E. coli (d), and G. pickeringii
(e); Figure S3: The effects of mutation on the prediction result in A. thaliana; Figure S4: The effects of
mutation on the prediction result in C. elegans; Figure S5: The effects of mutation on the prediction
result in D. melanogaster; Figure S6: The effects of mutation on the prediction result in E. coli; Figure S7:
The effects of mutation on the prediction result in G. pickeringii; Figure S8: The comparison results
between i4mC-Deep and DNA4mC-Deep after training the DNA4mC-Deep model on the six species
in this study; Table S1: The performance comparison between the i4mC-Deep and the DNA4mC-
Deep after training the DNA4mC-Deep model on six species; Table S2: The performance comparison
between i4mC-Deep and pretrained cross-species model DNA4mC-Deep.
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