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Abstract: Cyclin B (CycB) plays essential roles in cell proliferation and promotes gonad development
in many crustaceans. The goal of this study was to investigate the regulatory roles of this gene in
the reproductive development of male oriental river prawns (Macrobrachium nipponense). A phylo-
genetic tree analysis revealed that the protein sequence of Mn-CycB was most closely related to
those of freshwater prawns, whereas the evolutionary distance from crabs was much longer. A
quantitative PCR analysis showed that the expression of Mn-CycB was highest in the gonad of both
male and female prawns compared to that in other tissues (p < 0.05), indicating that this gene may
play essential roles in the regulation of both testis and ovary development in M. nipponense. In males,
Mn-CycB expression in the testis and androgenic gland was higher during the reproductive season
than during the non-reproductive season (p < 0.05), implying that CycB plays essential roles in the
reproductive development of male M. nipponense. An RNA interference analysis revealed that the
Mn-insulin-like androgenic gland hormone expression decreased as the Mn-CycB expression decreased,
and that few sperm were detected 14 days after the dsCycB treatment, indicating that CycB positively
affects testis development in M. nipponense. The results of this study highlight the functions of CycB
in M. nipponense, and they can be applied to studies of male reproductive development in other
crustacean species.

Keywords: Macrobrachium nipponense; cyclin B; RNAi analysis; insulin-like androgenic gland
hormone; spermatogenesis

1. Introduction

The oriental river prawn (Macrobrachium nipponense) (Crustacea; Decapoda; Palae-
monidae) is an economically important freshwater aquaculture species in China [1], with
an annual production that reached 225,321 tons in 2019 [2]. In this species, gonad maturity
occurs approximately 40 days after hatching in both male and female prawns [3]. This
rapid gonad development leads to inbreeding between young prawns, resulting in mating
and the propagation of multiple generations in the same ponds, which, in turn, negatively
affects the market size of prawns [4,5]. Therefore, an artificial technique to extend the
period of testis development in M. nipponense is urgently needed.

The X-organ–sinus gland complex, which is located in the eyestalk of crustaceans,
is a principal neuroendocrine complex that stores and releases many neurosecretory hor-
mones [6]. These hormones play vital roles in regulating many biological processes in
crustacean species [7–17], and some of them have negative regulatory effects on the devel-
opment of both the testis and ovary in M. nipponense. For example, the RNA interference
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(RNAi) of the gonad-inhibiting hormone expression promoted ovarian development [18],
and the eyestalk ablation of male prawns stimulated the expression of the Mn-insulin-like
androgenic gland hormone (Mn-IAG) and promoted testis development [4,5]. A similar phe-
nomenon was reported for whiteleg shrimp (Litopenaeus vannamei) [17] and Chinese mitten
crabs (Eriocheir sinensis) [19]. Thus, the eyestalk–androgenic gland–testis endocrine axis in
males has important regulatory effects on male sexual differentiation and reproduction in
crustaceans [20,21]. A transcriptome profiling analysis of the androgenic gland after the
eyestalk ablation of male M. nipponense revealed that the cell cycle was the main metabolic
pathway enriched in differentially expressed genes [4]. This suggests that the cell cycle
is involved in the regulation of reproductive development in male M. nipponense [22,23].
Cyclin B (CycB) was enriched in the cell cycle metabolic pathway, suggesting that this gene
may promote the reproductive development of male M. nipponense [4].

Gametogenesis is an important part of gonad development in multi-cellular organ-
isms. Several cell cycle regulators play essential roles in gametogenesis including cyclins,
cyclin-dependent kinase (CDK), and the cyclin-dependent kinase inhibitor [24]. The matu-
ration promotion factor (MPF), a key regulator of cell proliferation in eukaryotic cells, can
stimulate both mitotic and meiotic cell cycles [25].The MPF is a heterodimer composed of
CycB protein and CDK1 [26–28]. CycB protein abundance fluctuates periodically during
cell proliferation, which is required to activate or inhibit MPF activity [29]. This process
is strongly related to the cell cycle and to the activation of CDK1. CycB was reported
to be involved in oogenesis in crustacean species, such as Eriocheir sinensis [30], Penaeus
monodon [31,32], Marsupenaeus japonicus [33], Scylla paramamosain [34,35], and Metapenaeus
affinis [36], and in spermatogenesis in S. paramamosain [34].

The goal of the present study was to analyze the potential functions of CycB in the
male reproductive development of M. nipponense. The results of this study highlight the
regulatory functions of CycB in male M. nipponense and can be used to develop an artificial
technique to regulate the process of testis development in this species.

2. Methods and Materials
2.1. Ethics Statement

We obtained permission from the Institutional Animal Care and Use Ethics Committee
of the Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences (Wuxi,
China) to conduct all experiments involving M. nipponense. All M. nipponense used in the
present study were collected from the Dapu M. nipponense Breeding Base in Wuxi, China
(120◦13′44′′ E, 31◦28′22′′ N). All prawns were maintained in aerated freshwater for 3 days
before the tissue collection. The dissolved oxygen content in the water was maintained at
≥6 mg/L. Prawns were anesthetized using an ice bath prior to sampling.

2.2. Rapid Amplification of cDNA Ends (RACE)

RNA from the testis of M. nipponense was extracted to synthesize the template for
3′cDNA and 5′cDNA cloning. Well-described procedures for RACE cloning and the
identification of sequence characteristics were followed [37,38]. Table 1 lists the specific
primers used for the Mn-CycB cloning, and Table 2 lists the accession numbers of the
protein sequences of Cdc2s from different species. These protein sequences were used to
measure the evolutionary distance of Cdc2 between different species via the construction
of a phylo-genetic tree using MEGA X. The phylo-genetic tree was constructed using the
maximum likelihood method and bootstrap method with 1000 replications.
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Table 1. Universal and specific primers used in this study.

Primer Name Nucleotide Sequence (5′→3′)

CycB-3GSP1 GTGTTTGTTAGAATACTCAATG
CycB-3GSP2 TGTCCTCTGTAGTTGTTAAGAG
CycB-5GSP1 TTCTTGCACATCCATGTCCTCAA
CycB-5GSP2 CCACATCTCCCAAAGCAGCTCT
3′RACE OUT TACCGTCGTTCCACTAGTGATTT

3′RACE IN CGCGGATCCTCCACTAGTGATTTCACTATAGG
5′RACE OUT CATGGCTACATGCTGACAGCCTA

5′RACE IN CGCGGATCCACAGCCTACTGATGATCAGTCGATG
CycB-RTF TGGTAATCCTCAGTTGGTCTCTG
CycB-RTR CAAGGTACCCACTTTTGACCTGA
IAG-RTF CGCCTCCGTCTGCCTGAGATAC
IAG-RTR CCTCCTCCTCCACCTTCAATGC

EIF-F CATGGATGTACCTGTGGTGAAAC
EIF-R CTGTCAGCAGAAGGTCCTCATTA

CycB RNAi-F TAATACGACTCACTATAGGGGATCAACTGGCCCTCTGAAA
CycB RNAi-R TAATACGACTCACTATAGGGCACGGTCCTGTGAATCAATG

Table 2. Protein sequences of Cdc2 from different species used in this study.

Species Accession Number

Macrobrachium nipponense ADB44902.1
Macrobrachium rosenbergii ADP95148.1

Palaemon modestus QDE09442.1
Palaemon carinicauda AKA66439.1

Metapenaeus ensis ADI86225.1
Metapenaeus affinis ADI86226.1
Penaeus monodon ACH72072.1
Penaeus japonicus AAV37462.1

Procambarus clarkii ALD48736.1
Penaeus vannamei XP_027209834.1
Penaeus chinensis XP_047471868.1

Scylla paramamosain ACN54752.1

2.3. Quantitative PCR (qPCR) Analysis

qPCR was used to measure the relative mRNA expression of Mn-CycB in tissue sam-
ples (eyestalk, brain, heart, hepatopancreas, muscle, gonad, and gill) collected as shown in
Figure 1. Each tissue was collected from five different prawns and pooled to form a biologi-
cal replicate; three biological replicates were analyzed for each tissue. All collected tissues
were immediately preserved in liquid nitrogen until they were used for the qPCR analysis.
Previously reported methods for RNA isolation and cDNA synthesis were followed [37,38].
Table 1 lists the primers used for the qPCR analysis. The eukaryotic translation initiation
factor 5A is a stable reference gene for the PCR analysis in M. nipponense, and it was used
to normalize the Mn-CycB expressions in the present study [39]. The relative mRNA ex-
pressions of Mn-CycB were calculated using the 2−∆∆CT comparative CT method [40]. Data
are shown as the mean ± standard deviation (SD) of tissues from three replicates.
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Figure 1. Flowchart showing the sample collection procedure.

2.4. RNAi Analysis

The potential function of CycB in the reproductive development of male M. nipponense
was investigated with RNAi. Snap Dragon (http://www.flyrnai.org/cgibin/RNAifind_
primers.pl, accessed on 12 March 2021) was used to design the specific RNAi primer
with a T7 promoter site based on the open reading frame of Mn-CycB (Table 1). Mn-CycB
dsRNA (dsCycB) and green fluorescent protein dsRNA (dsGFP) were synthesized using
the Transcript Aid™ T7 High Yield Transcription Kit (Fermentas, Waltham, MA, USA)
following the manufacturer’s protocol. dsGFP was used as the negative control [41].

Six hundred male M. nipponense (3.14−4.32 g) were collected approximately 5 months
after hatching and randomly divided into the dsCycB-treated group (RNAi) and dsGFP-
treated group (control). The injected dose of dsCycB or dsGFP was 4 µg/g [42,43]. Seven
days after the first injection, prawns were injected with 4 µg/g of dsCycB or dsGFP. Andro-
genic gland samples were collected from both groups on days 1, 7, and 14 after the first
injection of dsGFP or dsCycB. The tissue collection and qPCR analysis procedures were the
same as those described in Section 2.3. The Mn-CycB and Mn-IAG mRNA expressions were
measured with qPCR using the same cDNA templates to assess the regulatory relationship
between CycB and IAG in M. nipponense.

2.5. Hematoxylin and Eosin (HE) Staining

The morphological differences in the testis between dsGFP-treated and dsCycB-treated
prawns were evaluated using the histological observations of tissue sections stained with
HE following well-described protocols [44,45]. Briefly, the tissues were embedded in
paraffin and sliced into 5 µm thick sections using a microtome (Leica, Wetzlar, Germany).
The sectioned tissues were placed on a slide and stained with HE for 3–8 min. The slides
were observed and photos were taken under an Olympus SZX16 microscope (Tokyo, Japan).

2.6. Statistical Analysis

All statistical analyses were conducted using SPSS Statistics 23.0 (IBM, Armonk, NY,
USA). The Shapiro–Wilk test and Bartlett test were used to measure the normality and

http://www.flyrnai.org/cgibin/RNAifind_primers.pl
http://www.flyrnai.org/cgibin/RNAifind_primers.pl
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homogeneity of variances, respectively. Independent sample t-tests were used to assess
the statistical differences in Mn-CycB and Mn-IAG expression between dsCycB-treated and
dsGFP-treated prawns on the same day, Mn-CycB expressions in the same tissues between
male and female prawns, and Mn-CycB expressions in the testis and androgenic gland
between the reproductive and non-reproductive seasons. Statistical differences in different
mature tissues and different developmental stages were identified with the analysis of
variance (ANOVA), followed by Duncan’s multiple range test. Quantitative data were
expressed as mean ± SD. A p-value < 0.05 was considered to be statistically significant.

3. Results
3.1. Mn-CycB cDNA Sequence Analysis

The full cDNA sequence of Mn-CycB was 1862 base pairs (bp) long with an open read-
ing frame of 1197 bp encoding 398 amino acids. The 5′ and 3′ un-translated regions were
177 bp and 488 bp, respectively (Figure 2). The cDNA sequence of Mn-CycB was submitted
to the NCBI with the accession number OP379746. The theoretical isoelectric point and the
molecular weight of the Mn-CycB protein were 9.17 and 45.172 kDa, respectively.
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Figure 2. Nucleotide and deduced amino acid sequence of Mn-CycB. The nucleotide sequence is
displayed in the 5′–3′ direction and is numbered on the left. The deduced amino acid sequence is
shown as a single capital letter amino acid code. The 3′ and 5′ untranslated regions are shown with
lowercase letters. Codons are numbered on the left, the methionine (ATG) initiation codon is shown,
and an asterisk denotes the termination codon (TGA). Arrows and line indicated the direction of
location of each primer.

A BLASTX analysis in the NCBI revealed that the similarities between the nucleotide
sequence of Mn-CycB and the CycBs in other freshwater prawns were >80%, including
Macrobrachium rosenbergii (95.99%), Palaemon modestus (85.71%), and Palaemon carinicauda
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(84.46%) (Figure 3). The deduced protein sequence of Mn-CycB contained some highly
conserved sites or domains, including the cyclin destruction box (RxALGxIxN), which is
highly conserved among the known B-type cyclins. It is located at amino acids (aa) 35–43
and regulates cyclin destruction via the ubiquitin proteasome pathway in the N-terminal
region. A conserved pkA site (RRxSK) located at 266–270 aa was also found, which is
characteristic of B-type cyclins (Figure 3).
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3.2. Phylo-Genetic Tree Analysis

Well-defined CycB sequences were identified using the BLASTX analysis in the NCBI,
and then a condensed phylo-genetic tree based on the amino acid sequence of Mn-CycB
and these other CycB sequences was generated using MEGA X. The amino acid sequence
of Mn-CycB first clustered with the amino acid sequences of freshwater prawns as a group,
and then it clustered with marine shrimp as a big group. The evolutionary distance from
crabs was much longer. Mn-CycB was most closely related to the CycB of M. rosenbergii
(Figure 4).

3.3. Mn-CycB Expression Analysis

The physiological function of Mn-CycB in M. nipponense was preliminarily assessed by
measuring its expression in various tissues using qPCR. Mn-CycB expression was highest
in the ovary and testis of female and male M. nipponense, respectively. Its expression was
higher in the eyestalk, muscle, gonad, and gill of female prawns compared to male prawns
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(p < 0.05), whereas the opposite expression pattern was found in the brain, heart, and
hepatopancreas (p < 0.05) (Figure 5A).
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Figure 5. Mn-CycB expression in different mature tissues and developmental stages as determined
with qPCR. Lowercase letters on the bars indicate expression differences between different tissue
samples (analysis of variance (AVONA)). Capital letters on the bars indicate expression differences
in the same tissue between male and female prawns (independent sample t-tests). (A) Mn-CycB
expression in different mature tissues. (B) Mn-CycB expression in different developmental stages. E:
eyestalk; Br: brain; H: heart; He: hepatopancreas; M: muscle; G: gonad; Gi: gill; CS: cleavage stage;
BS: blastula stage, GS: gastrula stage; NS: nauplius stage; FS: posterior nauplius stage; PS: protozoa
stage; ZS: zoea stage; L: larval developmental stage; PL: post-larval developmental stage.
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Mn-CycB mRNA was widely expressed during the different developmental stages of
M. nipponense. Its expression was higher during the embryonic developmental stages than
during the larval and post-larval developmental stages. The highest expression of Mn-CycB
mRNA occurred at the cleavage stage, when it was significantly higher than that of the
other tested stages (p < 0.01) (Figure 5B). Additionally, Mn-CycB mRNA expression levels
in the testis and androgenic gland were 2.34-fold and 1.97-fold higher, respectively, during
the reproductive season than during the non-reproductive season (p < 0.01) (Figure 6).
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reproductive and non-reproductive seasons. Lowercase letters (a, b) on the bars indicate expression
differences between different tissue samples (independent sample t-tests). (A) Mn-CycB expression in
the testis. (B) Mn-CycB expression in the androgenic gland.

3.4. RNAi Analysis

An RNAi analysis was employed to reveal the regulatory functions of CycB in the
reproductive development of male M. nipponense. The expression of Mn-CycB on day 1
after the dsGFP injection was lower than the values on days 7 and 14 (p < 0.05), and the
expression did not differ significantly between days 7 and 14 (p > 0.05). However, the
injection with dsCycB significantly decreased Mn-CycB expression by approximately 55%
on day 1 after treatment (p < 0.05), compared with the control group on the same day. The
expression decreased by over 85% and 90% on days 7 and 14 after the dsCycB injection
(p < 0.01), respectively (Figure 7A). The qPCR analysis also revealed that the Mn-IAG
expression decreased by approximately 66%, 77%, and 80% on days 1, 7, and 14 after
treatment with dsCycB (p < 0.01), respectively, compared with the control group on the
same day (Figure 7B).
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Figure 7. Measurement of Mn-CycB and Mn-IAG expression in the androgenic gland on different days
after dsCycB and dsGFP injections. Lowercase letters (a, b) on the bars indicate expression differences
between different days after dsGFP injection, and capital letters (X, Y) on the bars indicate expression
differences between different days after dsCycB injection (analysis of variance (AVONA)). * p < 0.05
and ** p < 0.01 indicate significant expression differences between the dsGFP- and dsCycB-treated
groups on the same day (independent sample t-tests). (A) Mn-CycB expression on different days after
dsGFP and dsCycB injections. (B) Measurement of Mn-IAG expression on different days after dsGFP
and dsCycB injections.

3.5. Histological Observations

Histological observations revealed that sperm cells were the main cell type (>50%)
in the testis of M. nipponense on different days after the dsGFP injection, and they were
much more abundant than spermatogonia and spermatocytes. The percentage of sperm
did not differ significantly on different days in the control group. However, treatment with
dsCycB significantly decreased the number of sperm cells over time, while the percentages
of spermatogonia and spermatocytes increased. Sperm were rarely observed on day 14
after the dsCycB treatment, and the majority of cells were spermatogonia (Figure 8).
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4. Discussion

CycB plays essential roles in the process of cell proliferation through the activation of
CDK1 [29] and in the regulation of testis development in silk moths (Bombyx mori) [46] and
S. paramamosain [34]. A previous transcriptome profiling analysis revealed that Mn-CycB
expression was significantly up-regulated in the androgenic gland after the ablation of
eyestalks from male M. nipponense. This finding and the negative regulatory relationship
between the hormones secreted by eyestalks and male reproductive development in M.
nipponense indicated that CycB may be involved in male development [4,5]. The goal of
the present study was to investigate the potential functions of CycB in the regulation of
reproductive development in male M. nipponense.

The BLASTX analysis showed that the similarity between Mn-CycB and the CycB of
M. rosenbergii reached 95.99%, and Mn-CycB shared >80% identity with the CycBs of other
freshwater prawns. The Mn-CycB amino acid sequence contained some highly conserved
sites or domains of B-type cyclins, including the cyclin destruction box (RxALGxIxN) at
35–43 aa and the pkA site (RRxSK) at 266–270 aa, which was consistent with the results of
previous studies [34,35]. The phylo-genetic tree analysis revealed that Mn-CycB had the
closest evolutionary relationship with CycBs of freshwater prawns, and then with marine
prawns, whereas the evolutionary relationship with crabs was much more distant. More
protein sequences of CycBs from freshwater prawns need to be identified for the better
evolutionary analysis of Mn-CycB.

Previous studies reported that the dominant expression site of CycB was the gonad
in many aquatic animals. In female S. paramamosain, CycB expression was highest in the
ovary [34,35]. In female M. affinis, CycB expression was highest in the ovary, followed by
the muscle, thoracic ganglion, and heart [36]. CycB was predominantly expressed in the
ovary and testis of E. sinensis [30], and in female P. monodon, expression was highest in
the ovary [31]. CycB mRNA was also expressed in the testis, ovary, gill, mantle, muscle,
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and eggs of zebra mussels (Dreissena polymorpha) [47]. Similarly, the highest expression of
Mn-CycB occurred in the testis of males and the ovary of females in the present study. In
addition, the expression of Mn-CycB in the testis and androgenic gland was higher during
the reproductive season than during the non-reproductive season. In S. paramamosain,
CycB expression in the testis developmental stage two was significantly higher than in
stages one and three, suggesting that CycB may play essential roles in the spermatogenesis
of this species [34]. Histological observations revealed that testis and androgenic gland
development during the reproductive season was more vigorous than that during the non-
reproductive season in M. nipponense [48,49]. Furthermore, Mn-CycB mRNA was widely
expressed during the different developmental stages of M. nipponense, but expression during
the embryonic developmental stages, especially at the cleavage stage, was higher than the
expression during larval and post-larval development. Overall, these results indicated that
CycB plays essential roles in the process of the embryogenesis of M. nipponense.

RNAi has been used to investigate the regulatory functions of CycB in many aquatic
species. For example, the knockdown of CycB expression in sea urchins delayed oocyte
meiosis re-initiation [50]. Many RNAi studies have focused on the functions of CycB in
ovarian development, but few have reported on the regulatory roles of CycB in male repro-
ductive development. In the present study, the injection of dsCycB resulted in a significant
decrease in both Mn-CycB and Mn-IAG expression in male M. nipponense, indicating that
CycB has positive regulatory effects on the expression of Mn-IAG. The androgenic gland
is a special organ in male crustaceans. The hormones secreted by the androgenic gland
promote male sexual differentiation and reproduction, especially the development of testis
and male sexual characteristics [51–53]. Male M. rosenbergii undergo sex reversal to become
female when the androgenic gland is ablated [51,54,55]. IAG is the main gene expressed
in the androgenic gland and it was reported to positively regulate male differentiation
and reproductive development. This was illustrated through the knockdown of IAG using
RNAi, which had a significant inhibitory effect on spermatogenesis in M. rosenbergii [56].
Similar functions of IAG have been reported in many other crustacean species [57–61]. In
the current study, the relationship between the expression of CycB and IAG indicated that
CycB was involved in the regulation of male reproductive development in M. nipponense.
In the histological analysis, no significant differences in the testis were observed on differ-
ent days after prawns were injected with dsGFP, and sperm were the dominant cell type
(>50% of cells). However, the number of sperm cells in the testis decreased with time after
the dsCycB treatment, and sperm cells were scarce on day 14 in the RNAi group. These
results showed that CycB regulated testis development in M. nipponense by inhibiting the
expression of Mn-IAG.

In conclusion, the data presented herein indicate that CycB positively regulates testis
development and spermatogenesis by affecting the expression of IAG in M. nipponense.
The results of this study highlight the functions of CycB in M. nipponense, and they can be
applied to studies of male reproductive development in other crustacean species.
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