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Abstract: Several variants of the novel severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) are emerging all over the world. Variant surveillance from genome sequencing has become
crucial to determine if mutations in these variants are rendering the virus more infectious, potent, or
resistant to existing vaccines and therapeutics. Meanwhile, analyzing many raw sequencing data
repeatedly with currently available code-based bioinformatics tools is tremendously challenging
to be implemented in this unprecedented pandemic time due to the fact of limited experts and
computational resources. Therefore, in order to hasten variant surveillance efforts, we developed an
installation-free cloud workflow for robust mutation profiling of SARS-CoV-2 variants from multiple
Illumina sequencing data. Herein, 55 raw sequencing data representing four early SARS-CoV-2
variants of concern (Alpha, Beta, Gamma, and Delta) from an open-access database were used to test
our workflow performance. As a result, our workflow could automatically identify mutated sites of
the variants along with reliable annotation of the protein-coding genes at cost-effective and timely
manner for all by harnessing parallel cloud computing in one execution under resource-limitation
settings. In addition, our workflow can also generate a consensus genome sequence which can be
shared with others in public data repositories to support global variant surveillance efforts.

Keywords: COVID-19; SARS-CoV-2; mutation; variant; lineage; Illumina sequencing; cloud workflow;
Common Workflow Language; parallel computing; genomics surveillance

1. Introduction

A novel coronavirus species caused a previously unidentified human pneumonia-like
disease for the first time in Wuhan, China, on 12 December 2019 [1]. Later, the World Health
Organization (WHO; Geneva, Switzerland) named this disease coronavirus disease 2019
(COVID-19) and the virus that caused it severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) on 11 February 2020 [2] and declared this COVID-19 a pandemic on 11 March
2020 [3] following the rapid increase in infected case numbers outside its place of origin
within a short time. The virus has spread to almost all countries globally with a total of more
than 270 millions cases and over 5 millions of deaths reported in for approximately 2 years
since it was first detected in late 2019 [4]. Meanwhile, due to the nature of the virus itself,
as the virus replicates and produces an error, replicates contain several mutations, and so
the virus has evolved resulting in several variants which may be implicated in high rates of
infection among human population [5]. Since May 2021, the WHO has used a new naming
system for key SARS-CoV-2 variants with letters of the Greek alphabet to label variants
of concern (VOCs) or variants of interest (VOIs) for easier identification by the public [6].
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These correspond to their own official scientific names in the Phylogenetic Assignment
of Named Global Outbreaks (PANGO) lineage nomenclature [7]. As of December 2021,
among more than a thousand variants circulating around the world [8], there are five VOCs
and eight VOIs with this new naming system [9] as shown in Table 1.

Table 1. SARS-CoV-2 variants of concern (VOCs) and variants of interest (VOIs).

Variant. Lineage * Alias Place of Origin Time of Origin Type Designation

α (Alpha) B.1.1.7 - United Kingdom September 2020 VOC 18 December 2020
β (Beta) B.1.351 - South Africa May 2020 VOC 18 December 2020

γ (Gamma) P.1 B.1.1.28.1 Brazil November 2020 VOC 11 January 2021
δ (Delta) B.1.617.2 - India October 2020 VOC 11 May 2021
ε (Epsilon) B.1.427/B.1.429 - United States March 2020 VOI 5 March 2021
ζ (Zeta) P.2 B.1.1.28.2 Brazil April 2020 VOI 17 March 2021
η (Eta) B.1.525 - multiple countries December 2020 VOI 17 March 2021
θ (Theta) P.3 B.1.1.28.3 Philippines January 2021 VOI 24 March 2021
ι (Iota) B.1.526 - United States November 2020 VOI 24 March 2021
κ (Kappa) B.1.617.1 - India October 2020 VOI 4 April 2021
λ (Lambda) C.37 B.1.1.1.37 Peru December 2020 VOI 14 June 2021
µ (Mu) B.1.621 - Colombia January 2021 VOI 30 August 2021

o (Omicron) B.1.1.529 - multiple countries November 2021 VOC 26 November 2021

SARS-CoV-2, severe acute respiratory syndrome coronavirus 2. * Includes all descendent lineages.

Meanwhile, in order to describe variants, it is critical to identify and track mutations
from genome sequencing. The global health effort is shown by deposition of the sequences
of SARS-CoV-2 samples from many countries in FASTA format in public data repositories,
such as the Global Initiative on Sharing All Influenza Data (GISAID) EpiCoV™ [10] and the
National Center for Biotechnology Information (NCBI; Bethesda, MD, USA) GenBank [11],
where they have been made freely accessible since January 2020. Most of these sequences
are coming from Illumina (San Diego, CA, USA) [12], which is considered the worldwide
market leader for next-generation sequencing technology.

The challenge of processing SARS-CoV-2 raw sequencing data in the FASTQ format is
that it is of a greater size compared to the genome sequence in FASTA format which also
persists. Recently, a web-based COVID-19 analysis platform [13] was published that can
process raw sequencing data in FASTQ format. However, this platform is computationally
impractical for public use when dealing with large sample numbers during a pandemic
event like COVID-19, since it can only deal with a single sample in each turn by default. A
scalable workflow could be a solution for processing multiple samples at the same time
by utilizing parallel computation [14]. Some available workflows for analyzing SARS-
CoV-2 genomes are still in limited use for non-variant detection [15] or non-Illumina
sequencing data [16]. Meanwhile, analyzing sequencing data of SARS-CoV-2 also remains
challenging due to an enormous shortage of experts [17]. For example, many available
bioinformatics tools for analyzing the SARS-CoV-2 genome [18] are complex due to the
fact of their code-based utilization which need prior programming knowledge to install
and implement. Therefore, implementing friendly workflows for analyzing abundant
Illumina-based FASTQ raw sequencing data for variant detection purposes has becomes an
urgent need during the pandemic.

In this study, we built a cloud-powered bioinformatics workflow that was optimized
for mutation profiling of SARS-CoV-2 variants to accommodate limitations of both compu-
tational and expert resources. Our installation-free workflow on a specified public cloud
platform can diminish the implementation barrier in resource-poor settings to allow reliable
variant identification from SARS-CoV-2 Illumina raw sequencing data in a high-throughput
manner by utilizing parallel computation. Mutation profiling that consists of mutation
identification and annotation is the central focus of our cloud workflow, and it is comple-
mented by the generation of consensus sequences of the SARS-CoV-2 genome which can
subsequently be deposited in public data repositories to support global health efforts.
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2. Materials and Methods
2.1. Data Selection

We selected sequencing data from four early VOCs (Alpha, Beta, Gamma, and Delta),
which are considered highly transmissible variants in human populations [19]. These four
VOC types also accounted for ~80% of the submitted SARS-CoV-2 sequences available
on GISAID EpiCoV™ as of December 31, 2021, including Pango sub-lineages for each
VOC, Q.1~Q.8 (aliases of B.1.1.7.1~B.1.1.7.8) sub-lineages of Alpha, B.1.351.1~B.1.351.5
sub-lineages of Beta, P.1.1~P.1.17 (aliases of B.1.1.28.1.1~B.1.1.28.1.17) sub-lineages with
their own descendants of Gamma, and AY.1~AY.133 (aliases of B.1.617.2.1~B.1.617.2.133)
sub-lineages with their own descendants of Delta.

In this study, several data sets that collected raw sequencing data of SARS-CoV-2 from
other wet-lab experiments were used to represent VOCs. The registered data sets from
2020~2021 were selected in the NCBI BioProject public repository [20] based on searches
using “B.1.1.7” or “B.1.351” or “P.1” or “B.1.617.2” as keywords. The inclusion criteria were
applied as follows: (1) data set from a virus organism group; (2) data sets from SARS-CoV-2
that infected humans; (3) data sets generated from Illumina sequencer types; (4) data sets
with sequencing data files available in the Sequence Read Archive (SRA) database [21] at
the NCBI; (5) data sets with clear numbers of VOCs; and (6) data sets with viral SARS-
CoV-2 amplicon or whole-genome sequencing (WGS) data. Of 58 total BioProject data
sets, 53 were ultimately excluded, leaving five data sets for further processing, which were
PRJNA704235, PRJNA708134, PRJNA726840, PRJNA726871, and PRJNA733209. The flow
chart diagram that shows the process of selecting these five data sets is shown in Figure 1,
and a summary of each data set that accounts for a total of 55 samples subjected to more
than 22 million raw sequencing reads is given in Table 2 (details of samples for each data
set are available in a Supplementary Excel File, Data sets tab).

2.2. Data Preprocessing

We used the Cancer Genomics Cloud (CGC, https://cgc.sbgenomics.com, accessed on
13 November 2021) platform [22] from Seven Bridges Genomics (SBG; Boston, MA, USA) to
further process our five selected data sets. CGC facilitates the workflow development from
scratch through the Rabix Composer [23] using Common Workflow Language (CWL) [24],
which is emerging as a workflow definition standard to describe analytical pipelines
of bioinformatics tools for portable, scalable, and reproducible analyses. Meanwhile,
the CGC also has hundreds of predefined tools or workflows which can be used for
bioinformatics analytical purposes inside the platform that are publicly accessible through
its web-based interface.

In the beginning, we used a predefined workflow called SRA Download and Set Meta-
data that implements SRA fasterq-dump (v.2.10.8) from the SRA Toolkit [25] to facilitate
the automatic transfer of FASTQ raw sequencing files for all selected VOC data sets from
the SRA database into the CGC platform in one execution turn. We provided the SRA
metadata files in TXT format which contained the SRA accession numbers (the full list is
available in a Supplementary Excel File, SRA Metadata tab) representing the FASTQ raw
sequencing file for each sample of our selected VOC data sets as the input. All output
read files from this workflow were then used as input for another predefined tool in the
CGC called FastQC (v. 0.11.4) which implements the stand-alone FASTQC program [26] to
evaluate the sequencing quality of each file. Only files that had an overall good per-base
sequence quality assessment according to this tool were used for further mutation profiling
purposes by our cloud workflow.

https://cgc.sbgenomics.com
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Figure 1. Flowchart diagram for selecting the data sets.

Table 2. Summary of selected data sets.

Data Set
No. of Samples

No. of Reads
Sequencer

Type
Sequencing

StrategyAlpha Beta Gamma Delta

PRJNA704235 - - 3 - 1,483,054 MiniSeq WGS
PRJNA708134 39 - - - 16,060,411 NovaSeq amplicon
PRJNA726840 3 8 - - 2,801,089 iSeq WGS
PRJNA726871 - - - 1 128,048 MiSeq amplicon
PRJNA733209 - - 1 - 2,415,993 MiniSeq WGS

Total 42 8 4 1 22,888,595 - -

WGS, whole-genome sequencing.

2.3. Mutation Profiling
2.3.1. Cloud Workflow Design

Our own tailored workflow is a series of several well-established bioinformatics tools,
starting from alignment, variant calling, and variant annotation, to genome reconstruc-
tion built in the CGC platform. We used Burrows-Wheeler Alignment Maximal Exact
Matches (BWA-MEM) for alignment [27], HaplotypeCaller from the Genome Analysis
ToolKit (GATK) for variant calling [28], the Ensembl Variant Effect Predictor (VEP) for
annotation [29], and BCFtools for consensus genome reconstruction [30]. Our workflow
can run multiple times in parallel to process each sample per instance from Amazon Web
Services (AWS; Amazon, Seattle, WA, USA) or the Google Cloud Platform (GCP; Google,
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Mountain View, CA, USA) by enabling the batch-mode option based on specified metadata
criteria of input files on the platform. A layout of our cloud workflow is given in Figure 2.

Figure 2. Graphical representation of our cloud workflow.

In general, our workflow can be explained as follows. In the beginning, our workflow
needs three different input files provided by the user: the raw sequencing read files as
FASTQ, a reference genome as FASTA, and species cache information as zipped files. For
this study of SARS-CoV-2 mutation profiling purposes, we used previously preprocessed
files of selected VOC data sets as input reads, the original genome sequence of viral SARS-
CoV-2 ribonucleic acid (RNA) with a length of 29,903 nucleotides [31] available in NCBI
GenBank (NC_045512.2) as our reference genome, and annotation of a SARS-CoV-2 species
cache file provided by Ensembl Genomes [32] for easier annotation purposes (available
at http://ftp.ebi.ac.uk/ensemblgenomes/pub/viruses/variation/vep/sars_cov_2_vep_
101_ASM985889v3.tar.gz, accessed on 13 November 2021). Then, the BWA INDEX tool was
used to transform the reference genome in the full-text index in Minute space (FM-index)
prior to the alignment process. At the same time, the reference genome was also processed
by SBG FASTA Indices to create the FASTA dictionary and index which are later required for
running GATK tools. The raw reads were aligned to the reference genome in the FM-index
by BWA-MEM tool (v.0.7.17) and embedded with Biobambam2 sortmadup (v.2.0.87) [33]
internally to detect and remove duplicate reads by selecting “RemoveDuplicates” for
the duplicate detection option in the workflow settings. Next, the HaplotypeCaller tool
(v. 4.0.2.0) was used to perform variant calling of aligned reads to generate the information
of nucleic acid change positions for mutation identification purposes in the variant call
format (VCF) output file [34], a standard format for recording genome polymorphism data,
such as single nucleotide variations (SNVs), insertions/deletions (indels), and structural
variants. Therefore, the VEP tool (v.101.0) was further used for detailed annotations of
this VCF file by selecting “True” for the output sequence ontology variant class and to
pick one line or block of consequence data per variant, including the transcript-specific
column option, and “sars_cov_2” for the species option to generate the output of detailed
annotation of VCF with its corresponding summary file. Finally, the Bcftools Consensus
tool (v.1.9) was used to generate the genome sequence of raw sequencing data in FASTA
format based on this VCF file and the reference genome.

http://ftp.ebi.ac.uk/ensemblgenomes/pub/viruses/variation/vep/sars_cov_2_vep_101_ASM985889v3.tar.gz
http://ftp.ebi.ac.uk/ensemblgenomes/pub/viruses/variation/vep/sars_cov_2_vep_101_ASM985889v3.tar.gz
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2.3.2. Validation

All genome sequences reconstructed by our workflow were then passed to the web-
based Pango lineage assigner tool (Pangolin, https://pangolin.cog-uk.io; v.3.1.19, with
Pango lineages v. accessed on 20 January 2022) [35] in a multi-FASTA way to confirm the
related Pango lineage mentioned in each BioProject data set. Meanwhile, we selected the
most frequent mutations, a measure determined by dividing the number of corresponding
mutations of the specified variant group by the total sample available on the same variant
group that was present in ≥90% of the samples in our data sets within each VOC group.
The same criteria were also applied to select the most frequent mutation for each VOC in the
COVID-19 CoV Genetics (CG; https://covidcg.org/?tab=report accessed on 31 December
2021) web-based tool (v. 2.4.5) [36] to validate the mutation identification results from our
workflow that occurred in larger genomics population samples by directly comparing the
nucleotide features from our detailed annotation of the VCF output into this COVID-19 CG
web-based tool of related Pango lineages. For this validation purpose, we used COVID-
19 CG data as per 31 December 2021 that considered 965,917 Alpha, 27,098 Beta, 53,556
Gamma, and 151,863 Delta samples enabled by data from GISAID EpiCoV™. Meanwhile,
another web-based tool called, the University of California Santa Cruz (UCSC) SARS-CoV-2
Genome Browser [37] was used to validate annotations of key mutations found in the most
frequent mutations (available at https://genome.ucsc.edu/cgi-bin/hgTracks?db=wuhCor1
accessed on 31 December 2021) based on its 2021 updated database [38].

3. Results
3.1. Cloud Workflow Performance

In our experiment, 98% of reads (22,406,134 of 22,888,595) across 110 paired-ended
read files of 55 samples passed our data preprocessing step that were used as input for our
defined cloud workflow in mutation profiling steps. The 98% of reads came from data sets
that had no additional file when downloaded as paired ended files containing forward and
reverse reads.

All data preprocessing and mutation profiling steps were performed in the CGC
platform under the availability of diverse computed-optimized AWS instances. For twenty
minutes, US$ 2.22, with default instance configuration settings, was spent during this study
as shown in more detail in Table 3. The data preprocessing step took the most time, while
our workflow that focused on mutation profiling purposes took less time due to its parallel
computation capability, which works very efficiently in a timely manner to simultaneously
process multiple samples in one execution turn.

Table 3. Summary of the cloud workflow performance.

Step Name Instance 1 Time 2 Cost 3

Data preprocessing
SRA Download and Set

Metadata workflow c4.8xlarge a 7 0.09

FastQC tool c4.2xlarge b 6 0.04

Mutation Profiling Our cloud workflow * c4.2xlarge 7 2.09

Total 20 2.22
1 From Amazon Web Services; 2 in minutes; 3 in US$. a Thirty-six virtual central processing units (vCPUs),
60 gigabytes (GB) of memory, and 1024 GB attached storage; b 8v CPUs, 15 GB of memory, and 1024 GB attached
storage. * In parallel with one instance per sample that cost on average US $0.04 per instance.

3.2. Mutation Profiling

Our workflow successfully identified 96% of samples (53 of 55) after the lineage
of constructed genome sequence output for each sample was confirmed through the
web-based Pangolin tool which belonged to lineages or sub-lineages of the respective
lineage mentioned in corresponding data set metadata information with two samples with-
drawn: SRR13907331 and SRR13907335 from PRJNA708134 Alpha group which belonged

https://pangolin.cog-uk.io
https://covidcg.org/?tab=report
https://genome.ucsc.edu/cgi-bin/hgTracks?db=wuhCor1
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to B.1.1.528 and B.1.1.263 lineage respectively (the constructed FASTA genome file for all
55 samples is available as a zipped file in the Supplementary Materials). Some of the
samples were also confirmed to belong to the sub-lineage of the respective lineage: two
samples of the Q.4 sub-lineage in the Alpha group (SRR13907332 and SRR13907333 from
PRJNA708134) and one sample of the P.1.14 sub-lineage in the Gamma group (SRR14736561
from PRJNA733209). From these 96% confirmed samples, 328 mutations with SNVs dom-
inated at 273, and the remaining 55 indels were found by taking the output of detailed
annotation of the VCF file for each sample from our workflow (the summary list of muta-
tions from these 96% confirmed samples is available in Supplementary Materials: Table S1:
MutProfil “Mutation tab”, with the mutation details in the matrix format available in SNVs
and Indels tab in the same file).

We further proceeded to validate these mutations in order to observe the occurrence of
common mutations in each VOC group that could generally well represent or characterize
the corresponding VOCs. There were 112 most frequent mutations consisting of 104 SNVs
and 8 indels (one insertion and seven deletions) across the four VOCs; 32 for Alpha,
27 for Beta, 34 for Gamma, and 42 for Delta (a special explanation for Delta must be given
since it included only a single sample which was insufficient to derive the most frequent
mutations; therefore, we assumed all mutations in this sample were the most frequent
mutations). Our observations of these most frequent mutations also matched very well with
the COVID-19 CG. Specifically, all of the most frequent mutations listed in the COVID-19
CG for each VOC (31 for Alpha, 21 for Beta, 33 for Gamma, and 20 for Delta) belonged
to the list of our most frequent mutations. Meanwhile, all key mutations mentioned in
the UCSC SARS-CoV-2 Genome Browser for each VOC (23 for Alpha, 15 for Beta, 24 for
Gamma, and 12 for Delta) were also found in these validated most frequent mutations
(see Figure 3 for a list of the most frequent and key mutations across the four VOCs). All
of these key mutations occurred in the protein-coding gene region that has moderate or
high mutation consequences based on detailed annotation information of the codon change
from our cloud workflow output which can provide quick insights into how the mutation
impacts the encoded protein (see Tables 4–7 for more annotation details of key mutations of
Alpha, Beta, Gamma, and Delta, respectively). The annotation of mutations that occurred
in the open reading frame 1ab (ORF1ab) protein-coding gene from our results strongly
contrasted with results in the UCSC SARS-CoV-2 Genome Browser since the annotation
file did not cover all 16 non-structural proteins (nsps; nsp1~16) encoded from ORF1ab [39]
due to the complexity of the annotation process in this gene region [40]. Meanwhile, results
for the remaining protein-coding genes revealed a consensus with many mutations mainly
found in spike (S) protein-coding genes in all VOC groups.

Table 4. Key mutations in the Alpha VOC.

Mutation Type Level
Protein

Coding Gene
Annotation

Codon
Change

Consequence
for the AA
Sequence

Corresponding
Protein Annotation

of UCSC
SARS-CoV-2

C3267T SNV moderate ORF1ab aCt3002aTt T1001I nsp3
C5388A SNV moderate ORF1ab gCt5123gAt A1708D nsp3
T6954C SNV moderate ORF1ab aTa6689aCa I2230T nsp3

TCTGGTTTT11288- deletion moderate ORF1ab TCTGGTTTT
11023:11031-

SGF3675:3677- nsp6

C14408T SNV moderate ORF1ab cCt14144cTt P4715L nsp12

TACATG21765- deletion moderate S aTACATGtc
203:208atc IHV68:70I S

TTA21991- deletion moderate S gtTTAt
429-431gtt VY143:144V S
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Table 4. Cont.

Mutation Type Level
Protein

Coding Gene
Annotation

Codon
Change

Consequence
for the AA
Sequence

Corresponding
Protein Annotation

of UCSC
SARS-CoV-2

A23063T SNV moderate S Aat1501Tat N501Y S
C23271A SNV moderate S gCt1709gAt A570D S
A23403G SNV moderate S gAt1841gGt D614G S
C23604A SNV moderate S cCt2042cAt P681H S
C23709T SNV moderate S aCa2147aTa T716I S
T24506G SNV moderate S Tca2944Gca S982A S
G24914C SNV moderate S Gac3352Cac D1118H S
C27972T SNV high ORF8 Caa79Taa Q27stop ORF8
G28048T SNV moderate ORF8 aGa155aTa R52I ORF8
A28111G SNV moderate ORF8 tAc218tGc Y73C ORF8
G28280C SNV moderate N Gat7Cat D3H N
A28281T SNV moderate N gAt8gTt D3V N
T28282A SNV moderate N gaT9gaA D3E N
G28881A SNV moderate N aGg608aAg R203K N
G28883C SNV moderate N Gga610Cga G204R N
C28977T SNV moderate N tCt704tTt S235F N

AA, amino acid; SNV, single nucleotide variation; ORF, open reading frame; nsp, non-structural protein; S, spike;
N, nucleocapsid.

Figure 3. The most frequent mutations found in our variant of concern (VOC) samples. Mutation
percentages highlighted in yellow denote the most common mutations listed in the COVID-19 CG
for corresponding VOCs, while red mutation percentages denote key mutations listed by the UCSC
SARS-CoV-2 Genome Browser. * Most mutations found in the sample, unless for its sub-lineage (Q.4)
with C23604G.
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Table 5. Key mutations in the Beta VOC.

Mutation Type Level
Protein

Coding Gene
Annotation

Codon Change Consequence for
the AA Sequence

Corresponding Protein
Annotation of UCSC

SARS-CoV-2

C1059T SNV moderate ORF1ab aCc794aTc T265I nsp2
G5230T SNV moderate ORF1ab aaG4965aaT K1655N nsp3

A10323G SNV moderate ORF1ab aAg10058aGg K3353R nsp5

TCTGGTTTT11288- deletion moderate ORF1ab TCTGGTTTT
11023:11031- SGF3675:3677- nsp6

C14408T SNV moderate ORF1ab cCt14144cTt P4715L nsp12
A21801C SNV moderate S gAt239gCt D80A S

CTTTACTTG22281- deletion moderate S aCTTTACTTGct719-
727act TLLA240:243T S

G22813T SNV moderate S aaG1251aaT K417N S
G23012A SNV moderate S Gaa1450Aaa E484K S
A23063T SNV moderate S Aat1501Tat N501Y S
A23403G SNV moderate S gAt1841gGt D614G S
C23664T SNV moderate S gCa2102gTa A701V S
G25563T SNV moderate ORF3a caG171caT Q57H ORF3a
C26456T SNV moderate E cCt212cTt P71L E
C28887T SNV moderate N aCt614aTt T205I N

E, envelope.

Table 6. Key mutations in the Gamma VOC.

Mutation Type Level
Protein

Coding Gene
Annotation

Codon
Change

Consequence
for the AA
Sequence

Corresponding
Protein Annotation

of UCSC
SARS-CoV-2

C3828T SNV moderate ORF1ab tCa3563tTa S1188L nsp3
A5648C SNV moderate ORF1ab Aaa5383Caa K1795Q nsp3

TCTGGTTTT11288- deletion moderate ORF1ab TCTGGTTTT
11023:11031- SGF3675:3677- nsp6

C14408T SNV moderate ORF1ab cCt14144cTt P4715L nsp12
G17259T SNV moderate ORF1ab gaG16995gaT E5665D nsp13
C21614T SNV moderate S Ctt52Ttt L18F S
C21621A SNV moderate S aCc59aAc T20N S
C21638T SNV moderate S Cct76Tct P26S S
G21974T SNV moderate S Gat412Tat D138Y S
G22132T SNV moderate S agG570agT R190S S
A22812C SNV moderate S aAg1250aCg K417T S
G23012A SNV moderate S Gaa1450Aaa E484K S
A23063T SNV moderate S Aat1501Tat N501Y S
A23403G SNV moderate S gAt1841gGt D614G S
C23525T SNV moderate S Cat1963Tat H655Y S
C24642T SNV moderate S aCt3080aTt T1027I S
G25088T SNV moderate S Gtt3526Ttt V1176F S
T26149C SNV moderate ORF3a Tcc757Ccc S253P ORF3a
G28167A SNV moderate ORF8 Gaa274Aaa E92K ORF8
C28512G SNV moderate N cCa239cGa P80R N
A28877T SNV moderate N Agt604Tgt S202C N
G28878C SNV moderate N aGt605aCt S202T N
G28881A SNV moderate N aGg608aAg R203K N
G28883C SNV moderate N Gga610Cga G204R N
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Table 7. Key mutations in the Delta VOC.

Mutation. Type Level
Protein

Coding Gene
Annotation

Codon
Change

Consequence
for the AA
Sequence

Corresponding
Protein Annotation

of UCSC
SARS-CoV-2

C14408T SNV moderate ORF1ab cCt14144cTt P4715L nsp12
C21618G SNV moderate S aCa56aGa T19R S
T22917G SNV moderate S cTg1355cGg L452R S
C22995A SNV moderate S aCa1433aAa T478K S
A23403G SNV moderate S gAt1841gGt D614G S
C23604G SNV moderate S cCt2042cGt P681R S
C25469T SNV moderate ORF3a tCa77tTa S26L ORF3a
T26767C SNV moderate M aTc245aCc I82T M
T27638C SNV moderate ORF7a gTt245gCt V82A ORF7a
C27752T SNV moderate ORF7a aCa359aTa T120I ORF7a
G28881T SNV moderate N aGg608aTg R203M N
G29402T SNV moderate N Gat1129Tat D377Y N

M, membrane.

4. Discussion

We present herein a workflow that integrates several publicly available bioinformatics
tools, ranging from BWA-MEM, HaplotypeCaller, and VEP to BCFtools, that can be run in a
publicly available cloud platform, CGC, to process raw Illumina sequencing data in FASTQ
format stored in a public SRA database from systematic open-access data sets selected in the
NCBI BioProject based on some public available data for SARS-CoV-2, including the public
SARS-CoV-2 reference genome in the NCBI GenBank and SARS-CoV-2 annotation data
from Ensembl Genomes, for mutation profiling of SARS-CoV-2 variants. Our workflow
results were highly concordant in terms of genome consensus sequence identity (to the sub-
lineage level), and mutation identification and annotation when cross-validated with other
dedicated SARS-CoV-2 resources, ranging from the web-based Pangolin tool to COVID-19
CG and UCSC SARS-CoV-2 Genome Browser. In addition, this study also suggested that
when different data sets that come from different experiments are taken into consideration,
we can still conclude the similar most frequent mutations even with limited sample sizes.
Taking our experiment as an example, samples in the Alpha and Gamma groups that
came from more than one data set within the sub-lineage found for each group, Q.4 for
Alpha and P.1.14 for Gamma, still reflected the most frequent mutations found in larger
sample sizes available from other resources. This phenomenon can be explained by the
concordance of genomes deposited in the larger sample size in public repository data
which were also generated from many experiments around the world resulting in high
diversity levels similar to our distinct data sets used in the Alpha and Gamma groups.
Meanwhile, our workflow also ensures that there is an unbiased bioinformatics analysis
across data, since we used raw sequencing data as our input and applied uniform analytical
tools to process these data from the beginning. This approach is critical when dealing with
data that come from multiple data sets from different experiments as seen in this study
due to different experiments that may have been conducted by different sequencing data
analyses based on each lab’s protocol settings. Finally, our workflow that integrated many
publicly available resources ensures its reproducibility for use by a wide variety of users
from diverse backgrounds in their workspace by extending its capability to process their
own sequencing data sets in real-world settings beyond the open-access data sets shown in
this study by dragging and dropping their own sequencing files along with all necessary
data using the CGC web uploader to make it run.

Understanding SARS-CoV-2 mutations is also very helpful to elucidate genomic
variability that allows the virus to evade host immunity and acquire drug resistance. For
example, some vaccines to prevent the COVID-19 infection were developed to target
proteins of SARS-CoV-2 with the S protein as the main protein target due to its role in
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initiating viral entry into host cells [41]. Some mutations found in this S protein made the
current vaccines less effective since they can impact antibody neutralization which makes
variants within these mutations exhibit resistance to antibody-mediated immunity induced
by the vaccines [42]. Meanwhile, the antiviral drug, remdesivir, is also mainly used to inhibit
the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) protein (nsp12) that plays a role
in viral polymerase which is essential for replicating viral RNA [43]. Any mutation to this
RdRp makes the administration of remdesivir become ineffective since it affects the binding
affinity of the drug [44]. Therefore, our workflow that utilizes genomics technologies is
valuable for understanding the molecular underpinning of SARS-CoV-2 through profiling
its mutation capability. Furthermore, the direct annotation from sequencing data within our
cloud workflow can provide quick insights into where mutations exist in protein-coding
genes to derive additional insights into SARS-CoV-2. Take the most frequent mutations
from each VOC group in our experiment for example, there were four mutations found
which overlapped in four VOCs, which were C241T, C3037T, C14408T, and A23403G. These
mutations showed strong allelic associations since they were the dominant types found in
the SARS-CoV-2 genome in a previous study [45]. Two non-synonymous mutations of this
quartet, C14408T and A23403G, that respectively correspond to the RdRp protein P4715L
and S protein D614G were found to be key mutations in this study and may impact current
treatment options, while D614G was associated with an increase of human-to-human
transmission efficiency [46]. They also showed significant positive correlations with fatality
rates by Toyoshima et al. [47], which may explain why the disease severity increased when
infected by these four VOCs [48], while the other two did not belong to the key mutation
list in our experiment due to their location in the 5’ untranslated region (C241T) and having
low coding consequential impacts of a synonymous mutation in the nsp3 (C3037T), which
is known as the largest encoded multi-domain protein in CoV genera [49]. In addition,
the raw sequencing data used as input for our cloud workflow open the possibility of
precisely identifying existing or future SARS-CoV-two variants, which cannot be conducted
with the current existing diagnostics test assay of reverse-transcription polymerase chain
reaction (RT-PCR). Unlike sequencing, RT-PCR does not facilitate detecting changes in the
SARS-CoV-2 viral genome which is key to detecting mutations in the viral variants [50].

Our workflow can be a solution to a lack of resources for analyzing the SARS-CoV-2
genome. Our workflow has an affordable cost which will be beneficial for implementation
especially in those countries with limited computational and expert resources. Given the
fact that many VOCs and VOIs that appeared in developing countries as determined by the
United Nations [51], such as VOC Beta in South Africa, VOC Gamma and VOI Zeta in Brazil,
VOC Delta and VOI Kappa in India, VOI Theta in the Philippines, VOI Lambda in Peru,
and VOI Mu in Colombia, may have been circulating around the world including in those
least developed countries with resource-poor settings and limited access to computational
and expert resources, hence our workflow with fewer requirements is accessible online by
everyone through their own local machine with internet access which can be a solution to
tackle resource-limitation issues. Previously, without the workflow systems, each code-
based bioinformatics tool that constructed the workflow must be installed manually in
the local computer, required prior programming knowledge to perform the analysis, and
works independently to analyze one sample per run [52], which all are time-consuming
and not feasible especially in the time of pandemic. Even though, with workflow systems,
an understanding of the syntax was still required to set up the environment first before
running the entire workflow, for example, COVseq [53] and V-pipe [54] that required to
install the workflow engine of Snakemake [55], resulting in an additional time that may
delay mutation profiling process. Therefore, our CWL-based workflow takes advantage of
particular cloud environment by packed together several pre-defined bioinformatics tools
into an installation-free workflow by just copying and pasting the code in JSON format
on the CGC platform. This will ensure that users with no prior programming knowledge
can also directly benefit from our workflow by not necessarily deploying the analytical
tools one by one anymore, since the analytical process is automatically done end-to-end
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along the workflow. In addition, since our workflow works through the cloud that is
capable of parallel computation, the same workflow can be run in many instances to ensure
robustness, while users do not necessarily have to manually perform the same analysis for
each sample over and over again. Finally, our workflow can also provide great support
to the global health effort of tracking the occurrence of variants around the world. Our
cloud workflow is able to generate sequences of SARS-CoV-2 in FASTA format from raw
sequencing data in a short time which can be deposited in public data repositories such as
GISAID EpiCoV™ or NCBI GenBank. Later, these sequences can be used for any further
downstream analysis, if needed, like phylogenetics analysis to track transmission, flag key
mutations, or estimate reproduction numbers [56].

Our present workflow has several limitations. Although our workflow uses standard-
ized workflow definitions in CWL, since our workflow utilizes the CGC platform-agnostic
code, it might not work optimally outside the CGC platform. Therefore, prior registration
in the CGC platform is needed in order to use our cloud workflow. Meanwhile, parallel
computations on the CGC platform can only perform up to 80 samples in one execution turn
by default. If a user wishes to use a larger number, a request should be made to the CGC
team in advance. Furthermore, our workflow only works with Illumina sequencing data
as the input due to genomics technological differences that exist behind each sequencing
platform, while Illumina works in short read sequencing by a synthesis approach [57].

5. Conclusions

There are a number of SARS-CoV-2 variants circulating around the world which have
made the end of the novel COVID-19 pandemic unpredictable. It is important to know
particular variants based on the identified mutations of the genes, since such variants may
have different virulence activities. Cloud-powered diagnostic tools have accelerated the
identification of viral mutations through sequencing which has become critical to fighting
COVID-19. Our workflow that collects a set of well-established bioinformatics tools for
mutation profiling purposes, including viral mutation identification and annotation, can be
an option to meet this demand. Our workflow designed for Illumina sequencing works
in parallel, in a rapid and cost-effective manner suitable for resource-poor settings and
may be best suited for application worldwide for detecting current and emerging variants
so that the spread of specific variants can be limited as early as possible. In addition, our
workflow is able to generate a genome sequence of SARS-CoV-2 to support global genomics
surveillance by accession to public data repositories. In the future, our cloud workflow
capability can be extended to predict upcoming variants with a prominent machine learning
approach due to the abundant SARS-CoV-2 sequences available in public data repositories.
Furthermore, our workflow can also be easily operated to detect variants of other pathogens
species beyond SARS-CoV-2 as long as sequencing data, reference genome, and the related
species annotation data are available.

Supplementary Materials: The following supporting information can be downloaded at: https:
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