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Abstract: We use Mendelian randomization to estimate the causal effect of age at menarche on late
pubertal height growth and total pubertal height growth. The instrument SNPs selected from the
exposure genome-wide association study (GWAS) are validated in additional population-matched
exposure GWASs. Based on the inverse variance weighting method, there is a positive causal
relationship of age at menarche on late pubertal growth (β̂ = 0.56, 95% CI: (0.34, 0.78), p = 3.16× 10−7)
and on total pubertal growth (β̂ = 0.36, 95% CI: (0.14, 0.58), p = 1.30× 10−3). If the instrument SNPs
are not validated in additional exposure GWASs, the estimated effect on late pubertal height growth
increases by 3.6% to β̂ = 0.58 (95% CI: (0.42, 0.73), p = 4.38× 10−13) while the estimates on total
pubertal height growth increases by 41.7% to β̂ = 0.51 (95% CI: (0.35, 0.67), p = 2.96× 10−11).

Keywords: GWAS; pubertal height growth; age at menarche; Mendelian randomization; inverse
variance weighting; MR-Egger regression

1. Introduction

Human height is one of the most heritable human quantitative phenotypes with
an estimated heritability 60–80% [1–3]. The remaining heritability may be due to en-
vironmental factors (e.g., nutrition, exposure to diseases) [4,5]. It has been found that
higher stature is associated with higher risk of certain cancers including thyroid, breast,
pancreatic, colorectal, and prostate cancer [6,7]. Shorter stature is associated with higher
risk of type 2 diabetes and heart disease [8,9]. Interestingly, the term regression, which
is used to describe many statistical methods nowadays, comes from a famous study
by Galton on the average regression relationship between the height of fathers and the
height of their sons [10].

Postnatal height growth typically consists of three partially overlapping phases: in-
fancy, childhood, and puberty. Pubertal height growth is an important stage in the postnatal
height growth process. It accounts for 15–20% of adult stature and is highly heritable [11].
Some childhood growth patterns are associated with adult health risks. For instance, height
and obesity in childhood is associated with earlier age at menarche in girls which is in turn
associated with adult obesity [11].

Menarche is one of the most significant milestones in a woman’s life [12]. As much
as 57–82% of the variation in age at menarche can be explained by genetic factors [13–15].
Some single nucleotide polymorphisms (SNPs) associated with age at menarche are as-
sociated with pubertal growth spurt [16]. In addition, age at menarche is also influenced
by other factors including ethnicity, geography, socioeconomic status, childhood body
mass index (BMI), and nutritional status. Early menarche age (<12 years) is found to be
associated with the risk of obesity, insulin resistance, metabolic syndrome, nonalcoholic
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fatty liver disease, diabetes, cardiovascular disease in adulthood, and a wide-range of
health related traits [17–20].

There has been a strong interest in the relationship between age at menarche and
adult height [21–24]. For instance, the EPIC study found that European women grew
approximately 0.31 cm taller when menarche occurred 1 year later (range by country:
0.13–0.50 cm) [25]. Findings from an observational study among Greek women reveal a
significant association between age at menarche and adult height [26]. However, we have
seen no similar studies for age at menarche and pubertal height growth.

The main purpose of this research is to study the causal effect of age at menarche on
pubertal height growth. We conduct a two-sample summary data Mendelian randomization
(MR) study in subjects of European ancestry using the genome-wise association studies
(GWASs) on age at menarche (the exposure) and pubertal height growth (the outcome).

2. Materials and Methods
2.1. Calculation Procedures for Mendelian Randomization

Let Gi be the genetic score at SNP i. Consider the following structural models for the
exposure (X) and the outcome (Y)

X = γiGi + ξxU + ex

Y = βX + αiGi + ξyU + ey,

where β, γi, αi, ξx, and ξy are regression coefficients, U represents unobserved confounders,
and ex and ey are error terms. A reduced-form equation for Y is

Y = ΓiGi + (βξx + ξy)U + (βex + ey)

where Γi = αi + βγi. The ratio Γi/γi is the Wald ratio at SNP i. When αi = 0, Γi/γi is equal to β.
There are three assumptions for SNP i to be a valid instrument [27]: (1) (Relevance)

It is associated with the exposure (that is, γi 6= 0); (2) (Exclusion Restriction) It affects the
outcome only through their association with the exposure (that is, αi = 0); and (3) (Ex-
changeability) It is not associated with any confounders of exposure-outcome association
(that is, Gi is independent of U).

The coefficient αi is often called the horizontal pleiotropy effect. Clearly, Gi is an invalid
instrument when αi 6= 0, which is a not uncommon [28]. A less restrictive alternative to
assumption (2) is the InSIDE (Instrument Strength Independent of Direct Effect) assumption:
the distribution of αi is independent of that of γi [27].

The MR-Base database provides estimates γ̂i and Γ̂i together with their standard errors
from thousands of GWASs. These summary statistics can be used to estimate the causal
effect size β using SNPs selected from the exposure GWAS (e.g., using selection criterion
p < 5× 10−8) as instruments. The IVW estimate is [29,30]

β̂ =
∑i Γ̂iγ̂i/Var(Γ̂i)

∑i γ̂2
i /Var(Γ̂i)

,

where the summation is over the selected IV SNPs. This method is derived under the
assumption αi = 0 (i.e., the ith IV SNP is a valid instrument) for all i. The estimate β̂ can
be explained as the weighted average of the Wald ratio estimates {Γ̂j/γ̂j} with weights
{γ̂2

i /Var(Γ̂i)}. It can also be explained as the estimate of β in a weighted intercept-only
linear regression Γ̂i = βγ̂i where the weight for the ith IV SNP is 1/Var(Γ̂i) [27,29,30].
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In the situation that αi 6= 0 for some selected SNPs, ref. [27] suggest a method called
MR-Egger regression which is an application of the Egger regression to MR analysis.
Specifically, the causal estimate of β is obtained from a weighted linear regression for the
following model [27]:

Γ̂i = β0 + βγ̂i,

where the weight for the ith SNP is 1/Var(Γ̂i). The intercept measures the average directional
horizontal pleiotropy effect. When β0 = 0, the horizontal pleiotropy is balanced and the
MR-Egger regression reduces to the IVW method. If β0 > 0, there is positive directional
horizontal pleiotropy. If β0 < 0, there is negative directional horizontal pleiotropy effect [31].

In the above description, the intercept term β0 is treated as a fixed effect. When β0
is treated as a random effect, we have the random effect IVW method and the random
effect MR-Egger regression. Like the fixed effect MR-Egger regression, these two methods
are for the case where the assumption (2) is violated and there is horizontal pleiotropy.
In particular, the horizontal pleiotropy is balanced if E(β0) = 0. Cochran’s Q test can be
used to test whether there is heterogeneity among SNP instruments [30].

The IVW method and the MR-Egger regression are implemented in the R packages
TwoSampleMR and MRInstruments [32,33]. So is the Q test. The steps illustrated in [32] are
followed in our MR analysis.

2.2. Data and Instrumental Variable Selection

GWAS summary data are retrieved from the MR-Base database. At the genome-wide
significance level 5× 10−8, 117 instrument SNPs are selected from a large study on age at
menarche with 182,413 European ancestry females [34]. This is our main exposure GWAS.
To avoid selection bias [32,35–37], seven additional exposure GWASs are identified from
the MR-Base database. Two of them [38,39] share the most number of significant genes
with the main exposure GWAS. There are 29 genes that are shared by either of them and
the main exposure GWAS. (We considered shared genes rather than shared SNPs because
this leads to a larger number of SNPs.) These shared genes contain 34 instrument SNPs.
After pruning for linkage disequilibrium, there are 24 SNPs left. Pruning is exercised using
the clump_data function at its default threshold r2 < 0.001. Its purpose is to make sure
only independent SNPs are used.

The GWAS summary statistics on pubertal height growth are obtained from a large
study on females of European ancestry [11]. There are 5756 subjects measured for total
pubertal growth during the pubertal growth spurt (between age 8 years and adult) and
4946 subjects for late pubertal growth (between age 14 years and adult). Following the
procedure for two-sample MR analysis [32], the 24 selected SNPs from the exposure GWAS
are harmonized with those from the outcome GWAS. After harmonization, 7 SNPs were
removed. So there are 17 SNPs for MR analysis. No outlier SNPs were detected by MR-
PRESSO [28], the method recommended by [32] for detecting outlier SNPs.

Table 1 shows the rs-number, gene name, and the possible biological role (if known)
of the 17 instrument SNPs. The information on their possible biological role is taken
from [34]. These SNPs seem to be scattered across the genome. There are 4 SNPs that
there is information on the possible biological role of the genes they are in. Three of
them are involved in energy homeostasis & growth and one is involved in hormone
synthesis & bioactivity. We note that the LIN28B gene is known to be associated with adult
height [40] and height growth from birth to adulthood [38].
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Table 1. Summary of the 17 instrument SNPs selected for MR analysis.

Chr SNP Gene p-Value Possible Biological Role [34]

1 rs543874 SEC16B 1× 10−15 Energy homeostasis & growth
2 rs6747380 CCDC85A 6× 10−28

rs6758290 GPR45 7× 10−13

rs4369815 NR4A2 2× 10−10

3 rs16860328 TRA2B 1× 10−16

5 rs13179411 PHF15 3× 10−20

6 rs7759938 LIN28B 8× 10−110 Energy homeostasis & growth
9 rs10980921 ZNF483 2× 10−23

rs10453225 TMEM38B 6× 10−66

rs7853970 RMI1 2× 10−9

11 rs11022756 ARNTL 7× 10−20

rs1461503 BSX 3× 10−26

13 rs9560113 TEX29 2× 10−17

16 rs8050136 FTO 2× 10−17 Energy homeostasis & growth
rs246185 MKL2 7× 10−16

17 rs9635759 CA10 2× 10−24

20 rs852069 PCSK2 1× 10−13 Hormone synthesis & bioactivity

3. Results
3.1. Late Pubertal Growth

The Cochran’s Q tests are not significant (Table 2, p = 0.159 for IVW and p = 0.133
for MR-Egger), suggesting that there is no significant heterogeneity among the SNPs.
The estimated intercept of MR-Egger regression is not significantly different from 0
(β̂0 = −0.009, se(β̂0) = 0.02, p = 0.598). Therefore, one can choose the IVW method over
the MR-Egger regression because the latter reduces to the former when β0 = 0. Figure 1
is a scatter plot of {(γ̂i, Γ̂i), i = 1, 2, . . . , 17}. The Y-intercept of the MR-Egger line is the
estimate of the average pleiotropic effect β0. A forest plot of the Wald ratios {Γi/γi} for
the 17 SNPs are shown in Figure 2. Each Wald ratio is an estimate of the effect size β.
The right-most point corresponds to SNP rs7759938 in the LIN28B gene. These two plots
provide visualization of the same data but from different perspectives.

Figure 1. Scatter plot of {Γi} versus {γi} for late pubertal growth. The slopes of the two lines are
the MR estimates of the causal effect. The right-most point corresponds to SNP rs7759938 in the
LIN28B gene.
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Table 2. Results of Cochran’s Q test on the heterogeneity of instrument SNPs.

Method Q df p-Value

Late pubertal growth
IVW 21.525 16 0.159
MR-Egger 21.117 15 0.133

Total pubertal growth
IVW 28.180 16 0.030
MR-Egger 22.944 15 0.085

Figure 2. Forest plot of the Wald ratio Γi/γi at the 17 IV SNPs for later pubertal growth. The red
points represent the MR estimates.

Table 3 summarizes the estimate of causal effect β from different methods. Similar
to the European study [25] and the Greek study [26], both MR methods show a positive
effect of age at menarche on height growth. The estimate from the IVW method (β̂ = 0.56,
95% CI: 0.34–0.78) is somewhat higher than that from the Greek study (β̂ = 0.52, 95% CI:
0.04, 1.00) but is much more significant (p-values: 3.16× 10−7 versus 3.00× 10−2). It is
interesting that the effects for the European study are the lowest, regardless the subjects
were born before or after 1945.
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Table 3. Summary of estimates of causal effect β and estimates from previous European and Greek
studies. The outcome for the European study and the Greek study is adult height.

Method β̂ se(β̂) 95% CI p-Value

Late pubertal growth
IVW 0.56 0.11 (0.34, 0.78) 3.16× 10−7

MR-Egger 0.70 0.29 (0.13, 1.27) 2.75× 10−2

Total pubertal growth
IVW 0.36 0.11 (0.14, 0.58) 1.30× 10−3

MR-Egger −0.10 0.27 (−0.63, 0.43) 7.21× 10−1

Without two outlier SNPs
IVW 0.35 0.10 (0.15, 0.55) 6.07× 10−4

MR-Egger −0.02 0.24 (-0.49, 0.45) 9.26× 10−1

OLS: European study [25]
born before 1945 0.31 − (0.30, 0.33) −
born after 1945 0.39 − (0.36, 0.41) −

OLS: Greek study [26] 0.52 0.24 (0.04, 1.00) 3.00× 10−2

In order to better understand the data, a funnel plot is shown in Figure 3. The X-axis is
the Wald ratio Γi/γi and the Y-axis is the inverse of its standard error (which is a measure
of precision). This plot is essentially another representation of the information contained in
Figure 2. The location of the vertical lines correspond to the β estimates for the MR-Egger
regression and the IVW method shown in Table 3. Asymmetry in a funnel plot maybe
caused by a difference between the IVW and MR-Egger estimates or a difference in the fixed
effect and random effect IVW methods [30]. There is no apparent asymmetry observed in
Figure 3, which is consistent with the Cochran’s Q test results seen in Table 2.

Figure 3. Funnel plot of precision (1/SE) versus causal estimate β̂ for late pubertal growth.

In order to detect influential SNPs, a leave-one-out analysis is conducted (Figure 4).
The X-axis is the overall causal IVW estimate of age at menarche on adult height and the
Y-axis gives the SNP that is excluded. It seems that rs7759938 from gene LIN28B is the
most influential one, which can also be seen in Figure 1 as it corresponds to the right-most
point. A discussion on its role is given in Discussion.
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Figure 4. Leave-one-out plot of the IVW estimate for late pubertal growth when a SNP is left out.
The red dot represents the IVW estimate using all SNPs.

3.2. Total Pubertal Growth

An analysis parallel to that on late pubertal growth is conducted on total pubertal growth.
The MR-Egger regression has a downward trend (Figure 5). Cochran’s Q test result is signifi-
cant for IVW (p = 0.03) and marginally significant for the MR-Egger regression (p = 0.085)
(Table 2). These results suggest that there exists heterogeneity among the Wald ratios.

Figure 5. Scatter plot of {Γi} versus {γi} for total pubertal growth. The slopes of the two lines are
the MR estimates of the causal effect. The right-most point corresponds to SNP rs7759938 in the
LIN28B gene.
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Figure 6 indicates that SNP rs246185 has the most positive Wald ratio and SNP
rs4369815 has the most negative Wald ratio. These two SNPs are considered as outliers.
MR results with and without them are shown in Table 3. Still, the estimated effect from the
MR-Egger regression is negative. Keeping or removing the two outlier SNPs, the results
from the IVW method do not change much (β̂ = 0.36, 95% CI: 0.14–0.58) and β̂ = 0.35,
95% CI: (0.15, 0.55) before and after removing the two outliers, respectively).

There is no apparent change in the leave-one-out plots (not shown) for the IVW
method before and after the two outlier SNPs are removed.

Figure 6. Forest plot of the Wald ratio Γi/γi at the 17 IV SNPs for total pubertal growth. The red
points represent the MR estimates. SNP rs246185 and SNP rs4369815 are considered as outliers.

3.3. What Happens If the Instrument SNPs Were Not Validated in Other GWASs?

Recall that our instrument SNPs were validated in 2 additional GWASs on age at
menarche. A natural question is what the MR estimate of β would be if there is no such
validation. After pruning, harmonization, and filter for outlier SNPs by MR-PRESSO,
the number of the 117 instrument SNPs selected from the main exposure GWAS would be
reduced to 61. The corresponding MR analysis results are reported in Table 4.

Regarding late height growth, the estimate of causal effect size does not change much
for the IVW method (0.58 in Table 4 versus 0.56 in Table 3) while there is a larger change for
the MR-Egger method (0.65 in Table 4 versus 0.70 in Table 3). For both methods, the standard
errors become smaller; the 95% confidence interval become shorter; and the p-values are
more significant, maybe due to the more than tripled number of instrument SNPs.

For the total height growth, the scenario is rather different. The effect from the MR-
Egger regression becomes positive, being β̂ = 0.17 (Table 4) rather than −0.10 (Table 3).
The effect from the IVW method increases 41.7% from 0.36 (Table 3) to 0.51 (Table 4). Again,
the standard errors are smaller. So are the p-values.
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Table 4. Summary of estimate of β if no other exposure GWASs are used.

Method β̂ se (β̂) 95% CI p-Value

Late pubertal growth
IVW 0.58 0.08 (0.42, 0.73) 4.38× 10−13

MR-Egger 0.65 0.23 (0.20, 1.10) 6.14× 10−3

Total pubertal growth
IVW 0.51 0.08 (0.35, 0.67) 2.96× 10−11

MR-Egger 0.17 0.22 (−0.26, 0.60) 4.37× 10−1

4. Discussion

We have conducted a two-sample MR analysis on the causal effect of age at menarche
on late and total pubertal growth among women with European ancestry. To the best of
our knowledge, there are no previous MR analyses on this effect. Hence our work fills a
research gap.

There are some MR analyses on the causal effect of age at menarche on height, a concept
different from but closely related to pubertal height growth. The MR phenome-wide
association study [20] contains MR analyses of the causal effect of age at menarche on
comparative height size at age 10 and standing height using UK Biobank data. The Southern
Chinese study [24] concerns adult height in a different population.

Even though our research focuses on total pubertal growth, it might be interesting to
compare our estimates with those on adult height from other studies. Our IVW estimates
for total pubertal growth (β̂ = 0.36 and 0.35 before and after removing two outlier SNPs,
respectively) are in a range similar to the ordinary least squares (OLS) estimates for adult
height from the EPIC study (β̂ = 0.31 for women born before 1945 and β̂ = 0.39 for women
born after 1945) . The IVW estimate for late pubertal growth (β̂ = 0.56) is similar to the OLS
estimate for adult height from the Greek study (β̂ = 0.52). The Southern Chinese study
conducts a one-sample MR analysis and two multivariable regression analyses. The two
regression analyses differ in the covariates used. The effect estimate is rather high for the
MR method (β̂ = 1.36) and rather low for the two regression models (β̂ = 0.13 and β̂ = 0.19,
respectively). The effect size estimates from the MR phenome-wide association study [20]
on comparative height size at age 10 (β̂ = 0.0073, p < 2.23× 10−308) and standing height
(β̂ = −0.0060, p < 2.23× 10−308) are small (assume their units are cm/year) but highly
significant. Disparity in the estimates from different methods appears to be not unusual,
see, for instance [20]. This is an issue that warrants further investigation.

The EPIC study demonstrates that there is variation in β estimates among countries
of residence. The β estimates are between 0.21 and 0.41 for women born before 1945 and
between 0.13 and 0.50 for women born after 1945. Of the 9 European countries included in
the EPIC study, Greece and Sweden are the two countries that have smaller β estimates
for women born after 1945 than before 1945. In particular, for Greece, these estimates are
0.13 and 0.31, respectively. Both are smaller than the estimate from the Greek study. More
research appears to be needed to understand the variation of the effect size estimates in
these studies, especially on Greek population.

In the EPIC study, country of residence explains most of the variation in height (13%)
while the age at menarche explains 1% [25]. In comparison, no association between place
of birth or residence and the age at menarche is found in the Greek study [26]. This may
suggest a role of the heterogeneous genetic structure in MR analysis. Even though our main
exposure GWAS and the outcome GWAS are both on European population, there might
still be differences in their genetic structure. Currently MR methods for two heterogeneous
samples are extremely rare [41] and further methodology research is needed.

To avoid the selection bias in choosing the instrument SNPs, only SNPs validated in
additional population-matched exposure GWASs are used. The benefit of such validation
has been recognized theoretically [42]. However, it is seldom implemented in empirical MR
studies (but see [20]), perhaps due to the difficulty in finding independent GWASs on the
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same exposure. Fortunately, there are quite few GWASs on age at menarche which makes
such validation relatively easy. For other exposures, finding additional exposure GWASs
might be challenging.

In our analysis, doing validation or not doesn’t have much effect on the estimates
of β from IVW and MR-Egger for late pubertal growth although the number of IV SNPs
is reduced by more than a third by validation (from 61 to 17). But there is a rather large
change for total pubertal growth. The IVW estimate changed from 0.51 before validation to
∼0.36 after validation. Hence validation can make a difference in the estimates. Validation
greatly reduces the number of instrument SNPs and should be used caution when the
resulting number of instrument SNPs is not large. We recommend a sensitivity analysis be
done by comparing compare estimates before and after validation.

For late pubertal growth, the MR-Egger estimate is not statistically different from the
IVW estimate. For total pubertal growth, the MR-Egger estimates are negative before and
after validation and are in the opposite direction to the IVW estimates. Similar phenomenon
has been encountered in other studies where, at some loci, the adult height-increasing allele
is associated with earlier menarche while at other loci the direction of association is the
opposite [38]. Further investigation is needed on this issue and its implication to the use of
MR-Egger regression in general.

It is very interesting that rs7759938 in gene LIN28B is the most significant gene associ-
ated with age at menarche (p = 8× 10−110 with n = 182, 413) [34]. It is also strongly associ-
ated with pubertal growth but to a less extent (p = 4× 10−9 for female and p = 1.5× 10−4

for male, n = 5038) [40]. So whether assumption (2) holds may be in question. However,
there is also a possibility that this pleiotropy effect is vertical rather than horizontal. If verti-
cal, this SNP would be a valid IV. If horizontal, the InSIDE assumption may be true. These
issues worth further investigation.

One reviewer asks us to comment on the possible ways that age at menarche affects
pubertal height growth. We speculate that younger age at menarche may be an indication
of higher level of hormones which could lead to faster puberty growth.

One reviewer raises a question: What effect the fact that menarche occurs during
the period of pubertal growth has on our MR results? This question is very interesting.
Unfortunately, the outcome GWAS does not contain data that allow us to investigate this
issue. It can be investigated when appropriate data are available.

In summary, we have conducted a MR analysis on the causal effect of age at menarche on
pubertal height growth using data from European populations. Taking advantage of the exis-
tence of multiple GWASs on age at menarche, we assessed the effect of validating instrument
SNPs in additional exposure GWASs on the IVW method and the MR-Egger regression.
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The following abbreviations are used in this manuscript:

BMI body mass index
GWAS genome-wide association study
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IVW inverse variance weighting
MR Mendelian randomization
SNP single nucleotide polymorphism
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