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Abstract: Immune checkpoint inhibitor (ICI) treatment is considered as an innovative approach for
cancers. Since not every patient responded well to ICI therapy, it is imperative to screen out novel
signatures to predict prognosis. Based on 407 gastric cancer (GC) samples retrieved from The Cancer
Genome Atlas (TCGA), 36 immune-related hub genes were identified by weighted gene co-expression
network analysis (WGCNA), and eight of them (RNASE2, CGB5, INHBE, DUSP1, APOA1, CD36,
PTGER3, CTLA4) were used to formulate the Cox regression model. The obtained risk score was
proven to be significantly correlated with overall survival (OS), consistent with the consequence of
the Gene Expression Omnibus (GEO) cohort (n = 433). Then, the relationship between the risk score
and clinical, molecular and immune characteristics was further investigated. Results showed that the
low-risk subgroup exhibited higher mutation rate, more M1 macrophages, CD8+ and CD4+ T cells
infiltrating, more active MHC-I, and bias to “IFN-γ Dominant” immune type, which is consistent
with our current understanding of tumor prognostic risk. Furthermore, it is suggested that our
model can accurately predict 1-, 2-, and 3-year OS of GC patients, and that it was superior to other
canonical models, such as TIDE and TIS. Thus, these eight genes are probably considered as potential
signatures to predict prognosis and to distinguish patient benefit from ICI, serving as a guiding
individualized immunotherapy.

Keywords: immune-related genes; prognostic model; WGCNA; gastric cancer

1. Introduction

Gastric cancer (GC) is the second most lethal cancer worldwide, and the incidence
rate is higher in East Asia [1]. Although complete resection is the only chance of cure,
recurrence is common. To avoid the possibility of relapse, perioperative chemotherapy
is essential for GC. Currently, immune checkpoint inhibitor (ICI) treatment such as anti-
cytotoxic T-lymphocyte antigen 4 (CTLA4) mAb and anti-programmed death-1 (PD-1)
mAbs is considered as an innovative treatment strategy for advanced GC [2]. The ICI
treatment for GC has shown significant benefits in survival [3]. However, ICI treatment
seems to be more effective for the subgroups with high mutation burden, Epstein-Barr virus
(EBV) positive, or microsatellite instability high [4]. Multiple factors including the tumor
immune microenvironment (TME) influence ICI effectiveness, and few accurate biomarkers
can predict the response to ICI [5]. Identification of potential prognostic markers and the
development of ICI guidelines can allow for individualization of the immunotherapy for
patients with GC. Some researchers suggested that a deeper analysis of TME complexity was
helpful for revealing advanced biomarkers that identified patient populations responsive
to ICI therapy [6]. Unfortunately, we still know little about the TME of GC, and effective
prognostic signatures are urgently needed.
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In this study, we sought to develop a series of biomarkers for the immune profile
of GC, which may contribute to immune therapy choice. We originally focused on the
differentially expressed genes between normal (n = 32) and tumor (n = 375) samples from
TCGA and screened out immune-related hub genes through WGCNA. Next, eight genes
were identified to build a prognostic model, which was verified by the GC samples from
GEO (n = 433). Then, to further investigate the model, we analyzed the molecular and
immune characteristics of the high-risk (HR) and low-risk (LR) subgroups and discussed
their immune efficacy. Finally, we calculated the accuracy of our model in predicting
gastric cancer prognosis and compared the advantages and disadvantages of our model
and several existing models, such as the immune dysfunction and exclusion (TIDE) model
and the tumor inflammation signature (TIS) model. The results revealed that our model
provided promising prognostic biomarkers for immune subtypes that guided patients
receiving immune therapy.

2. Methods
2.1. Data Collection and Processing

The detailed information of GC samples was downloaded from The Cancer Genome
Atlas—Stomach Adenocarcinoma (TCGA-STAD), including 407 RNA sequencing (RNA-
seq) data (375 cancer samples and 32 para-cancer samples) and 443 clinical information
(https://portal.gdc.cancer.gov, accessed on 24 August 2021). Then, we used the limma
package (limma powers differential expression analyses for RNA-sequencing and microar-
ray studies. Nucleic Acids Research 43(7), e47) of R to merge transcriptome profiling and
clinical data to conduct follow-up analysis. The data of nucleotide mutation in these speci-
mens were also downloaded from TCGA-STAD, Workflow Type: VarScan2 Annotation.

Another 433 GC samples used to validate our model (GSE84437) were downloaded
from another database, Gene Expression Omnibus (GEO: https://www.ncbi.nlm.nih.gov/
geo/, accessed on 24 August 2021), comprising RNA-seq data and their survival informa-
tion and data processing described above.

The immune-related genes used in our study were downloaded from the Immunol-
ogy Database and Analysis Portal (ImmPort) (https://www.immport.org/shared/home,
accessed on 24 August 2021) and InnateDB (https://www.innatedb.com/, accessed on
24 August 2021) databases.

The immune subtypes of the 371 GC samples were provided by USUC Xena (https://
xena.ucsc.edu, accessed on 24 August 2021). The specific data of immunotherapy outcome-
related scores (TIDE, MSI, exclusion, and dysfunction situation) were obtained from Tumor
Immune Dysfunction and Exclusion (TIDE: http://tide.dfci.harvard.edu/, accessed on
24 August 2021).

2.2. Identification of Prognostic Immune-Related Genes

To look for genes with differential levels in normal and tumor samples, we used the
limma package of R (fdr (false discovery rate) < 0.05, |log2FC| > 1), based on TCGA RNA-
seq data (375 tumor and 32 normal). Then, we took the intersection of these genes with
immune-related genes obtained from ImmPort and InnateDB for identifying differentially
expressed immune-related genes. For these genes obtained above, Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed with the
R software “clusterProfiler” package 3.14 (https://bioconductor.org/packages/release/
bioc/html/clusterProfiler.html, accessed on 24 August 2021). (q value < 0.05) and the
“ggplot2” (ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, NY,
USA, 2016) and “GOplot” (GOplot: an R package for visually combining expression data
with functional analysis. Bioinformatics (2015): btv300) packages in R were used for
visualization of GO and KEGG enrichment analysis results.

To identify hub genes in connection with the clinical state of GC, the weighted gene
co-expression network analysis (WGCNA) was performed based on the WGCNA package
of R. First, we preprocessed the expression data of differentially expressed immune genes

https://portal.gdc.cancer.gov
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.immport.org/shared/home
https://www.innatedb.com/
https://xena.ucsc.edu
https://xena.ucsc.edu
http://tide.dfci.harvard.edu/
https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
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(n = 493) and deleted those with little fluctuation in expression. Next, we clustered samples
to exclude outliers and prepared the non-outliers for the next step. Then, we obtained the
optimal power value from the fitting index and average connectivity with the power scatter
plot. Under this power value, we can obtain the optimal scale-free network. Then, the
similarity matrix was constructed by calculating the Pearson coefficient between any two
genes, which was transformed into an adjacency matrix based on the optimal power value
(a soft threshold of β = 3). Next, a topological matrix was also constructed to describe the
degree of association between genes with the topological overlap measure (TOM) (1-TOM
was used as the distance to cluster the genes). Finally, gene modules were determined
by the dynamic cut tree method, and those modules with high similarity were merged
(height = 0.25).

Since the genes in the turquoise modules were the most significantly correlated to
the clinical trait (normal vs. tumor) (p = 4 × 10−34), they were used to construct the co-
expression network (weight threshold > 0.3). Their gene expression quantity was then
extracted from the tumor samples of TCGA (n = 375) and combined with the survival
data (n = 371), using the limma package of R. Thus, 36 prognostic genes (p < 0.05) were
obtained by univariate COX analysis, and their survival curves were made based on the
best cut-off value, obtained by the surv_cutpoint function from survminer (survminer:
Drawing Survival Curves using ‘ggplot2’. R package version 0.4.9. https://CRAN.R-
project.org/package=survminer, accessed on 24 August 2021) package of R.

2.3. Construction and Validation of the Risk-Score Model

Among the 36 immune-related genes, 8 genes significantly affecting survival were
identified based on the 371 GC samples from TCGA, to construct a prognostic model
by multivariable Cox regression analysis. The risk score of each sample was calculated
by adding the product of each genes’ expression and their certain coefficient (obtained
from survival package of R, Therneau T (2021). _A Package for Survival Analysis in R_.
R package, version 3.2-13. https://CRAN.R-project.org/package=survival, accessed on

24 August 2021). The formula is as follows: Riskscore =
8
∑

i=1
(Genei × Coe fi).

Then, Kaplan–Meier (K–M) survival curves were drawn with log-rank tests using
both TCGA and GEO cohorts to evaluate the prognostic power of the model. Furthermore,
univariate and multivariable Cox regression analyses were also performed to validate the
independent prognostic value of the model.

2.4. Comprehensive Analysis of Molecular and Immune Characteristics in HR and LR Subgroups

The gene set enrichment analysis (GSEA) was applied to study the enrichment path-
ways and functions of differentially expressed genes (using the limma package of R)
between HR (n = 185) and LR (n = 186) subgroups (p < 0.05). Two reference gene sets used
in our research were “KEGG sets as Gene Symbols” (http://www.gsea-msigdb.org/gsea/
msigdb/download_file.jsp?filePath=/msigdb/release/7.5.1/c2.cp.kegg.v7.5.1.symbols.gmt,
accessed on 24 August 2021) and “all GO gene sets as Gene Symbols” (http://www.gsea-
msigdb.org/gsea/msigdb/download_file.jsp?filePath=/msigdb/release/7.5.1/c5.go.v7.5
.1.symbols.gmt, accessed on 24 August 2021), and the clusterProfiler package of R was
applied. In the gene mutation analysis, the Maftools package of R was used to calculate
and collate mutation data of HR and LR samples, and the genes with the top 20 mutation
rates were exported. Then, correlation analysis between risk score and 4 targeting genes
(PD-L1, CTLA4, TGFB1, CXCL12) and total mutation burden (TMB) was performed.

In the immune characteristic analysis, the gene expression data from TCGA (n = 407)
were adopted to explore immune cell infiltration. We applied CIBERSORT (Cell type Identi-
fication by Estimating Relative Subsets of RNA Transcripts, https://cibersortx.stanford.edu,
accessed on 24 August 2021) to calculate the fractions of the 22 immune cell types based
on the default signature matrix at 1000 permutations. Then, the boxplot and barplot were
drawn based on the limma package of R to see if the proportion of immune cells varied

https://CRAN.R-project.org/package=survminer
https://CRAN.R-project.org/package=survminer
https://CRAN.R-project.org/package=survival
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http://www.gsea-msigdb.org/gsea/msigdb/download_file.jsp?filePath=/msigdb/release/7.5.1/c2.cp.kegg.v7.5.1.symbols.gmt
http://www.gsea-msigdb.org/gsea/msigdb/download_file.jsp?filePath=/msigdb/release/7.5.1/c5.go.v7.5.1.symbols.gmt
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between HR and LR subgroups. Next, based on the best cut-off obtained by surv_cutpoint,
we compared the survival differences between high- and low-expression groups of immune
cells. Furthermore, to investigate the relationship between GC prognosis and immunity, we
scored each sample for immune function. For this purpose, single sample GSEA (ssGSEA)
analysis and correction were performed relying on several representative gene sets with the
GSVA package (http://www.bioconductor.org/packages/release/bioc/html/GSVA.html,
accessed on 24 August 2021) of R. Next, to explore differences in survival, K–M survival
curves were applied.

By uploading expressed data files onto the TIDE website, we finally obtained the TIDE
relevant scores of each sample (n = 407).

2.5. Verifying the Model Accuracy and Contrasting It with Traditional Ones

In this section, time-dependent receiver operating characteristic (ROC) curve analysis
was applied to calculate the value of area under the curve (AUC) with the timeROC pack-
age of R (https://cran.r-project.org/web/packages/timeROC/index.html, accessed on
24 August 2021). Then we obtained the AUC in predicting 1-, 2- and 3-year overall survival
(OS) separately. To prove the superiority of our model, a comparison of our prognostic
model and other classical models (TIDE model and TIS model) was also conducted.

2.6. Statistical Analysis

Continuous variables were compared between the two subgroups by the independent
T test, classified data were compared by the chi-square (χ2) test, and the TIDE score was
compared by the rank sum test. Univariate survival analysis was performed by K–M
survival analysis with the log-rank test, while the Cox regression was used to carry out
multivariable survival analysis. A two-sided p < 0.05 was considered significant and
marked for ‘*’, p < 0.01 (**), p < 0.001 (***), and p > 0.05 (ns).

3. Results
3.1. Outcomes of Prognostic Immune-Related Genes

A list of 8833 genes was identified by differential expression analysis based on 375 tu-
mor samples and 32 normal samples (Supplementary Figure S1A), among which 493 were
immune-related differentially expressed genes. Of those immune-related genes, 309 genes
were upregulated and 184 were downregulated in the tumor samples compared with
normal samples (Supplementary Figure S1B). In GO and KEGG analyses, we found that
69 pathways and 1688 GO terms, including 1561 biology processes (BP), 29 cellular com-
ponents (CC), 98 molecular functions (MF), were significantly enriched in these 493 dif-
ferentially expressed immune-related genes. The corresponding bubble plots of the top
30 KEGG pathways and top 10 BP, CC, MF are shown in Figure 1A,B. Circos are also shown
in Figure 1C,D.

http://www.bioconductor.org/packages/release/bioc/html/GSVA.html
https://cran.r-project.org/web/packages/timeROC/index.html


Genes 2022, 13, 720 5 of 18Genes 2022, 13, x FOR PEER REVIEW 5 of 20 
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of Genes and Genomes (KEGG) pathways enriched in the IDEG (p < 0.05). (B) Top 10 biology processes
(BP), cellular components (CC) and molecular functions (MF) in Gene Ontology (GO) enrichment
analysis enriched in the IDEG (p < 0.05). (C) Circos of the GO analysis outcomes. (D) Circos of the
KEGG analysis outcomes. (E) Gene modules related to GC obtained by WGCNA. (F) The network of
the genes in the turquoise module (weight > 0.3).

To obtain the immune-related prognostic genes, we first obtained the sample dendro-
gram and heatmap based on WGCNA analysis (Supplementary Figure S2A) The changes in
the network regression slope and connectivity under different β are shown in Supplemen-
tary Figure S2B; the optimal power value was 3 and its R = 0.90649810, slope = −1.3467096.
Then, the dynamic cut tree algorithm was used to perform preliminary clustering of the
topology matrix, and the elementary network modules were identified. Next, we merged
the network modules with high similarity (Height = 0.25), with a total of five modules
(Supplementary Figure S2C). The final results of module eigengenes clustering are drawn
as Supplementary Figure S2D.

Thus, the relationship of module and trait was calculated and is shown in Figure 1E,
which indicates that there were three modules closely correlated with GC (p < 0.05), and the
turquoise one was the most significant; the genes in these modules were selected for further
analysis. There were 78 genes and 204 edges for the turquoise module of the networks with
a threshold weight > 0.3 (Figure 1F). Thirty-six prognostic genes (p < 0.05) were closely
correlated with GC patient OS as determined by K–M analysis, among which 31 genes were
considered as HR-related genes (HR > 1) and five were as LR (HR < 1) (Figure 2A). Then,
according to the best cut-off value of each gene, the GC samples were divided into high- and
low-expression subgroups and obtained the corresponding survival curves (Supplementary
Figure S4). Furthermore, we measured the mutation rate of each gene in TCGA samples
(n = 431), with SLIT2 as the highest (Supplementary Figure S3).

3.2. Constructing Model via 8 Biomarkers

Eight genes were identified as prognostic biomarkers to carry out the risk score
(Table 1). Among them, PTGER3 and CTLA4 were strongly inversely associated with the
prognostic risk, and RNASE2, CGB5, INHBE, DUSP1, APOA1, CD36 had a positive impact
on risk. Their corresponding coefficients from survival R package are demonstrated in
table (Table 1).

To further explore the mechanism of risk score influencing prognosis, we investigated
the clinical, molecular, and immunogenetic features of different scoring subgroups.

Table 1. Eight prognostic genes were screened out via WCGNA and co-expression analysis.

Source_Reference_ID Gene Name Coefficient

NM_00293.4 RNASE2 0.276627343597117
NM_033043.1 CGB5 0.255445846089108
NM_031479.3 INHBE 0.501097892816982
NM_003584.1 DUSP1 0.259804690773917
NM_000039.1 APOA1 0.07098152433948

NM_001001548.1 CD36 0.234091941360161
NM_198712.2 PTGER3 −0.348295793637423
NM_005214.3 CTLA4 −0.341191391278679
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Figure 2. Construction and validation of the risk-score model. (A) Univariate Cox analysis of
36 immune-related prognostic genes. (B) The Kaplan–Meier (K–M) survival curve of different
subgroups in the TCGA cohort. (185 high-risk vs. 186 low-risk). (C) The Kaplan–Meier (K–M) survival
curve of different subgroups in the GEO cohort (232 high risk vs. 201 low risk). (D) Univariate Cox
analysis of clinical factors and the risk score (p < 0.001). (E) Multivariable Cox analysis of clinical
factors and the risk score (p < 0.001).

3.3. Clinical Characteristics of Different Risk Subgroups

We assigned patients to the HR and LR subgroups using median risk scores, and survival
analysis was performed on both subgroups, which showed that patients of the LR subgroup
had a better OS than that of the HR subgroup (p < 0.001) (Figure 2B). Meanwhile, the GSE84437
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GC dataset (n = 433) for survival analysis made the model more convincing, and the results
were consistent; the prognosis of the LR subgroup was better (p < 0.05) (Figure 2C).

However, other clinical features such as age, gender, grade, stage, and TMN were
evenly distributed between HR and LR subgroups; the results are presented in the heatmap
(Supplementary Figure S5).

In univariate and multivariable Cox regression analyses, we found that age and stage
were significantly associated with the prognosis of GC, and risk score was confirmed as an
independent prognostic factor (p < 0.001) (Figure 2D,E).

3.4. Molecular Characteristics of Different Risk Subgroups

GSEA was performed to determine the gene sets enriched in different risk subgroups.
The gene sets of the HR samples were significantly enriched in 41 pathways (p < 0.05),
especially in complement and coagulation cascades pathway (NES = 2.25) (Figure 3A),
while the gene sets of the LR samples were significantly enriched in 14 pathways (p < 0.05),
especially in DNA replication pathway (NES = −1.56) (Figure 3B).
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Figure 3. Molecular characteristics of different risk subgroups (A) The top 5 enrichment pathways
enriched in the high-risk subgroup (p < 0.05) obtained by gene set enrichment analysis (GSEA).
(B) The top 5 enrichment pathways enriched in the low-risk subgroup (p < 0.05) obtained by GSEA.
(C) The oncoplot showing the significantly mutated genes in the low-risk GC samples (top 20).
(D) The oncoplot showing the significantly mutated genes in the high-risk GC samples (top 20).
(E) The relationship between risk score and PD-L1, CTLA4, TGFB1, CXCL12 expression and TMB.

Gene mutations were then analyzed to gain further biological insight into the TME of
different risk subgroups. We found that the mutation rate in the LR subgroup (altered in
166 (92.74%) of 179 samples) was significantly higher than that in the HR subgroup (altered
in 153 (83.61%) of 183 samples). Missense mutation was the most common mutation type,
followed by nonsense and frame shift deletions. Genes with the highest mutation frequency
were TTN (54% in LR samples and 40% in HR samples), TP53 (44% in LR samples and 39% in
HR samples), MUC16 (35% in LR samples and 25% in HR samples) and so on (Figure 3C,D).

Next, we explored the relationship between risk score and the expression of those
of therapeutic targeting (PD-L1, CTLA4, TGFB1, CXCL12) and TMB. Genetic difference
analysis indicated that the expression of PD-L1 (R = −0.17; p < 0.01) and CTLA4 (R = −0.24;
p < 0.001) ere distinctly higher in the LR subgroup than in the HR subgroup (Figure 3E),
while TGFB1 (R = 0.28; p < 0.001) and CXCL12 (R = 0.25; p < 0.001) were lower in the LR
subgroup (Figure 3E). TMB was negatively correlated with risk score (R = −0.29; p < 0.001)
(Figure 3E), which means that higher TMB may represent more sensitivity to treatment.

3.5. Immune Characteristics of Different Risk Subgroups

The infiltration of immune cells in each sample is displayed in Figure 4A. Through
differential analysis, we found that the proportion of T cells CD4 memory activated, T cells
follicular helper (p < 0.01), T cells CD8+ and Macrophages M1 (p < 0.05) was higher in the
LR subgroup, while the content of Monocytes, Macrophages M2 (p < 0.001), Neutrophils
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(p < 0.01) and Eosinophils (p < 0.05) was more abundant in the HR subgroup. Taking the
median expression as the cut-off value, we could find that low expression of dendritic cells
resting, Macrophages M2 and NK cells resting was associated with high survival rate, but
low expression of T cells CD8, Macrophages M0, and Mast cells resting was associated with
low survival rate (p < 0.05) (Figure 4B).
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Figure 4. Immune characteristics of different risk subgroups (‘*’ stands for p < 0.05, ‘**’ stands for
p < 0.01, ‘***’ stands for p < 0.001). (A) The infiltration of 22 subtype immune cells in high- and
low-risk subgroups. (B) K–M survival analysis of the 6 differential infiltration immune cells. (C) The
score of 29 immune functions. (D) Heatmap and table showing the distribution of immune subtypes
between the different risk subgroups (χ2 = 0.046). Immunotherapy effects of different subgroups:
(E) TIDE, (F) T-cell exclusion and (G) dysfunction, (H) MSI score in different risk subgroups.

Next, to penetrate into the immune patterns of different risk subgroups, we marked
29 immune-related functions of each sample via ssGSEA. Thirteen of them showed differ-
ences between the HR and LR subgroups: CCR (p < 0.01), DCs (p < 0.01), iDCs (p < 0.01),
Macrophages (p < 0,001), Mast cells (p < 0.001), Neutrophils (p < 0.001), T helper cells
(p < 0.05), Type II IFN Response (p < 0.001) were active in the HR subgroup; however, Cy-
tolytic activity (p < 0.05), Inflammation−promoting (p < 0.01), MHC class I (p < 0.001), Th1
cells (p < 0.05), Th2 cells (p < 0.001) were relatively silent in the LR subgroup (Figure 4C),
which indicated that these immune-related functions were closely linked with the prognosis.

Furthermore, the 343 TCGA samples were classified according to a novel immune
landscape of cancer, which identified tumor as six immune subtypes: Wound Healing
(C1), IFN-γ Dominant (C2), Inflammatory (C3), Lymphocyte Depleted (C4), Immunologi-
cally Quiet (C5), and TGF-β Dominant (C6) [7]. They were characterized by differences
in macrophage or lymphocyte signatures, Th1:Th2 cell ratio, extent of intra-tumoral het-
erogeneity, aneuploidy, extent of neoantigen load, overall cell proliferation, expression of
immunomodulatory genes, and prognosis, representing six different category features of
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the TME. As shown in Figure 4D, there were more C1 and C3 subtypes in the HR subgroup,
while there were more C2 and C4 subtypes in LR subgroup.

3.6. Immunotherapy Effects of Different Subgroups

To further explain the relationship between risk score and prognosis, TIDE prediction
scores were performed on each sample. The higher TIDE represented the greater potential
of immune escape, and the worse the clinical benefits of immunotherapy. As shown in
Figure 4E, the HR subgroup had a higher TIDE score (p < 0.001), indicating that patients of
HR were less likely to profit from ICI. Microsatellite instability (MSI, Figure 4H), exclusion
(Figure 4G), and dysfunction (Figure 4F) score were also carried out to further investigate
factors affecting prognosis. We found that the value of MSI was distinctly higher in the
LR subgroup (p < 0.01) while the exclusion (p < 0.05) and dysfunction (p < 0.001) scores
were higher in the LR subgroup, which suggested that patients with higher MSI and lower
exclusion and dysfunction scores may have a better efficacy of ICI.

3.7. The Accuracy of the Prognostic Model

From the ROC curve, we can confidently draw a conclusion that our prognostic model
had good performance in survival prediction at 1, 2, and 3 years, with an accuracy of
0.654, 0.676, and 0.719. Furthermore, in terms of AUC, our model (0.719) also preceded the
traditional TIDE (0.509) and TIS (0.481) model (Figure 5) at 3 year follow-up.
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Figure 5. The accuracy of the prognostic model. (A) ROC analysis of our model on OS at 1-, 2-, and
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These outcomes showed that our model was a promising prognostic biomarker for
patients who are urging for perioperative chemotherapy (Figure 6).
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4. Discussion

With an increased understanding of the tumor-immune microenvironment, ICI therapy
has gradually become a novel treatment for cancers [8,9]. Some PD-1/PD-L1 pathway
inhibitors have been proven to be effective for patients with advanced GC and were
approved as a third-line therapy in GC [2,10]. However, their use as first-line options
is still under evaluation. The objective response rate (ORP) of patients with GC is still
low [11]. To circumvent this low ORP, identifying patients who can benefit most from ICI is
crucial. Currently, it is acknowledged that different subclasses of the immune environment
influenced tumor response to ICI [12]. This highlights the urgency to identify prognostic
and immune-therapeutically relevant gene signatures for ICI in GC.

4.1. CTLA4 Plays a Vital Role in Response to ICI

Due to the complexity and diversity of the TME, WGCNA is used to identify candidate
immune-related biomarkers. With the analysis of the TCGA database, we identified
36 immune-related genes affecting patient prognosis via WGCNA and constructed the
model according to eight genes. Among these eight genes, CTLA4, a major negative
regulator of T cell responses, has been an apparently highly effective target in the treatment
of a variety of highly malignant forms of cancers. Lpilimumab, a monoclonal antibody,
activates the immune system by targeting CTLA4 and has been approved by the FDA
for the treatment of advanced gastric cancer [13]. It is noted that Lpilimumab does not
provide obvious benefit in GC patients but can be used in combination with other ICI or
chemotherapy [14]. The combination of anti-PD-1 antibody and Lpilimumab increased
response rates and progression-free survival in patients with melanoma, especially in
PD-L1-negative patients [15]. These suggested that CTLA4 plays a vital role in response to
ICI treatment. Our model showed that CTLA4 is a biomarker positively associated with
the LR group, suggesting that patients with a higher level of CTLA4 may respond well to
ICI treatment, consistent with the important role of CTLA4 in immune therapy.

4.2. Relationship between Immune-Related Genes and Cancers

Bioinformatics analysis showed that RNASE2, an RNA-binding protein, was identified
as a novel immune prognostic marker in multiple kinds of cancers [16]. CGB, also known as
CGB5, plays an important role in cancer growth, invasion, and metastasis [17]. Especially in
tumor-resistant immunity, CGB contributes to desensitization of the immunological system
toward cancer cells [18]. RNASE2 and CGB have been reported to be significantly associated
with the overall survival of GC patients [19], which is consistent with the basis of our model.
The role of INHBE in GC has not been reported. INHBE is upregulated in pancreatic
cancer, and it can predict the prognosis of patients with papillary renal cell carcinoma [20].
INHBE may act during drug-induced endoplasmic reticulum stress, but the associated
mechanism remains elusive [21]. DUSP1, a “critical node” of the MAPK pathway, acts as a
negative regulator of innate immunity and plays a complex role in adaptive immunity [22].
As for adaptive immunity, it negatively regulates JNK and ERK1/2 signaling in T-cells
and inhibits induction of regulatory T cells by downregulating TGF-β2 production from
dendritic cells [23]. In addition, DUSP1 seemed to impede invariant natural killer T cell
activation through MAPK signaling [24]. Despite the prominent mechanisms of the MAPK
pathway in cancer, the role of DUSP1 in cancer still remains controversial. However, it
is reported that a DUSP1 blockade might provide a novel chemotherapeutic strategy to
sensitize cancer cell death [22]. Taken together, given the robust role of DUSP1 in the
immune system and chemo-resistance, it is reasonable to serve it as a prognostic marker of
immunotherapy. Recently, Ma and colleagues discovered that higher expression of CD36
is associated with shorter survival since CD36-mediated ferroptosis of tumor-infiltrating
CD8+ T cells restricted antitumor immunity [25]. Shihao Xu also found that CD36 promoted
lipid peroxidation and dysfunction in CD8+ T cells in tumors [26]. These studies suggested
that blocking CD36 may serve as a new immune target, the same as CTLA4.
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4.3. Somatic Mutation, TMB and TME Corelated with Response to ICI Treatment

Increasing evidence suggests that somatic mutations can produce neoantigens that are
able to elicit potent T cell responses driven by current immunotherapies such as ICI [23].
Consistent with these findings, we analyzed gene mutations of different risk groups and
found that the mutation rate in the LR subgroup was significantly higher than that in the
HR subgroup. This suggests that patients who responded to ICI well had a higher mutation
rate. In addition, we found that missense mutation was the most common mutation
type, followed by nonsense and frame shift deletions. The largest difference of mutations
between groups was TTN mutations, which were more common in the LR group than in
the HR subgroup (54% vs. 40%). This was consistent with the studies that patients with
mutated TTN had longer progression-free survival than those with wild-type status [27].
Since different types of TP53 mutations were associated with enhanced/reduced immune
cell infiltration and PD-L1 expression, which influence the response to ICI [28], the types of
TP53 mutation were different in different types of cancer. Thus, the role of TP53 mutations
in antitumor immunity is still controversial. For GC, other bioinformatics analyses showed
that TP53 mutations inhibited immune response [29], which was inconsistent with our
results. However, our model showed that not only the TP53 mutations but also PD-L1
expression was higher than that in the HR subgroup, suggesting that TP53 mutations were
positively associated with PD-L1 expressions and response to ICI.

TMB is defined as the total number of somatic genes that code errors, substitutions,
base insertions, or deletion errors detected per million bases [30]. Recent studies indicated
that TMB, as endogenous antigens, could activate CD8+ cytotoxic T cells and trigger T-
cell -mediated antitumor activity [31]. Therefore, increased TMB produced more new
antigens and enhanced response to immunotherapy, which might predict the response to
immunotherapy [32]. Here, we found that risk score had a significant correlation with TMB,
which suggested that TMB helped explain the feasibility of our model with immunotherapy
prognosis, while there are more other possible mechanisms involved in it.

TME is a hive of immune activity where an array of factors including the intrinsic
properties of a tumor and extrinsic factors act to either promote or inhibit anticancer
immunity [33]. Among these extrinsic factors, infiltrating immune cells play a crucial role
in immunotherapy. In our analysis, the composition of infiltrating immune cells has a
significant difference between HR and LR subgroups. Cytotoxic CD8+ T cells, activated
CD4+ T cells and M1 macrophages are enriched in the LR subgroup while M0 and M2
macrophages are more in the HR subgroup. The most frequent subset of CD8+ T cells is
classical IFN+ T cell, which correlates with a more favorable prognosis [34], likely due to
cytotoxic potential in conjunction with IFN-gama [35]. A recent clinical study showed that
M1 macrophages enhanced T cell-dependent immune responses via regulating PD-L1 [36],
suggesting that M1 but not M2 macrophages are helpful in the prognosis of immunotherapy.
In summary, these explain the reason the higher levels of CD8+ T cells and M1 macrophages
in the LR group.

4.4. Relationship between Immune Subtypes of Solid Tumors and Our Model

A variety of factors contribute to the response to ICI. According to patient responses
to anti-PD-1/PD-L1 therapy, there are three basic immune profiles including immune-
inflamed, immune-excluded, and immune-desert phenotype [33]. Patients with immune-
inflamed phenotype are characterized by the presence in the parenchyma of CD4+ and
CD8+ T cells, monocytic cells, accompanied by PD-L1, which showed a positive response
to ICI. They are completely consistent with the characteristics of the LR subgroup in
our model. These immune-infiltrating cells are absent in patients with immune-desert
phenotype. The major difference of immunity between immune-inflamed and immune-
excluded phenotypes is whether immune cells penetrate the parenchyma of tumors. These
two subtypes cannot be distinguished from the composition of immune cells. Meanwhile
the immune-excluded subtype has unique molecular characters, such as active TGF-β
signaling and FAP+ CAF-CXCL12 suppressing immunity [37], which can be distinguished
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by our model. As levels of TGF-β and CXCL12 are more in the LR subgroup than that in
the HR subgroup, there were fewer patients with immune-excluded and immune-desert
and more patients with immune-inflamed in the LR group.

Recently, six distinct immune subtypes (C1-C4) of solid tumors from TCGA were
identified by Thorsson. It is reported that C1 subtype showed intermediate immune
infiltration with M2 macrophages and active TGF-β signaling pathway [7], implying
suppressive TME. In contrast, the C2 subtype had a strong CD8+ signal and the greatest T
cell receptor diversity, implying a favorable immune-activated phenotype. In total, 88%
of cases in our model belong to C1 and C2 subtypes. There was more C1 in the HR
subgroup but more C2 in the LR subgroup. These results indicated that HR patients were
immunosuppressive, while LR patients had active immunity.

4.5. MSI and TIDE Support Our Model

Further to PD-L1 and TMB that we have discussed above, microsatellite instabil-
ity (MSI) is the most validated and clinically used FDA-approved biomarker for ICI re-
sponse [20]. MSI is defined as hypermutations induced by defective DNA mismatch repair
in microsatellite regions. The increased score is positively associated with a higher level of
CTL, which renders a more effective antitumor immune response. This is consistent with
our results that the LR group had a higher MSI score and a higher likelihood of response to
immunotherapy. The TIDE score is associated with T-cell dysfunction in CTL infiltrating
tumors and T-cell exclusion in CTL-absent tumors, predicting the prognosis of ICI therapy.
In agreement with the TIDE prognosis, our study showed that the HR subgroup had less
CTL infiltration and higher TIDE, T-cell dysfunction, and T-cell exclusion score.

5. Conclusions

Therefore, we have reason to believe that our model provides a valid prognostic
immune-related biomarker for ICI therapy, with better survival in the LR subgroup and
worse survival in the HR subgroup. Our model might be a potential prognostic indicator
of ICI, which needs more studies.
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