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(S I N N

Abstract: The abundance of cell-free microRNA (miRNA) has been measured in blood plasma and
proposed as a source of novel, minimally invasive biomarkers for several diseases. Despite improve-
ments in quantification methods, there is no consensus regarding how haemolysis affects plasma
miRNA content. We propose a method for haemolysis detection in miRNA high-throughput se-
quencing (HTS) data from libraries prepared using human plasma. To establish a miRNA haemolysis
signature we tested differential miRNA abundance between plasma samples with known haemolysis
status. Using these miRNAs with statistically significant higher abundance in our haemolysed group,
we further refined the set to reveal high-confidence haemolysis association. Given our specific context,
i.e.,, women of reproductive age, we also tested for significant differences between pregnant and non-
pregnant groups. We report a novel 20-miRNA signature used to identify the presence of haemolysis
in silico in HTS miRNA-sequencing data. Further, we validated the signature set using firstly an
all-male cohort (prostate cancer) and secondly a mixed male and female cohort (radiographic knee
osteoarthritis). Conclusion: Given the potential for haemolysis contamination, we recommend that
assays for haemolysis detection become standard pre-analytical practice and provide here a simple
method for haemolysis detection.

Keywords: microRNA; plasma; biomarker; prediction; haemolysis; bioinformatics

1. Introduction

MicroRNAs (miRNAs) represent a class of short, ~22-nucleotide single-stranded
non-coding RNA transcripts found in the cytoplasm of most cells that act directly as post-
transcriptional regulators of gene expression [1,2] and also coordinate extensive indirect
transcriptional responses [3]. In their canonical action, miRNAs mediate the expression of
specific messenger RNA (mRNA) targets by binding to the 3'-untranslated region (UTR)
of transcripts by either repressing translation or marking them for degradation [4]. In the
canonical miRNA pathway, target specificity requires exact nucleotide-sequence comple-
mentarity between the miRNA “seed’ region (the first 2-7 bases at the 5" end of the mature
miRNA transcript) and the 3’-UTR of the mRNA. Importantly, miRNAs demonstrate tissue,
temporal, and spatial expression specificity and are known regulators of development, with
most mammalian mRNAs harbouring conserved targets of one or many miRNAs [1,2,5].

miRNA expression is both temporally and spatially tissue-specific, with transcripts
identified beyond the cells in which they were synthesized, in various body fluids, including
urine, saliva, and blood plasma [6]. Circulating cell-free miRNAs identified in plasma are
packaged in microvesicles such as exosomes [7,8] or bound to protein complexes, such as
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argonaute 2 (Ago2), nucleophosmin 1 (NPM1), and high-density lipoprotein (HDL) [9-11],
making them exceptionally stable [6]. This stability, coupled with their minimally invasive
accessibility, has suggested circulating cell-free miRNAs as an important resource for the
identification of novel biomarkers.

Whilst much progress has been made in the search for novel miRNA biomarkers of
disease processes [12-14], outcomes of this research approach are often inconsistent or
even contradictory [6]. There are many reasons for this, including variations in enrichment,
extraction, and quantification methods, variation among individuals, lack of consensus
regarding optimal reference miRNA for normalization, and the difficulty in quantifying
both the amount and quality of RNA transcripts from blood plasma samples [15,16]. An
important but often overlooked factor is the potential for sample haemolysis during blood
collection or sample preparation resulting in miRNA from lysed red blood cells (RBCs)
being spilled into and retained within the plasma sample to be assayed [15].

The issue of haemolysis altering the miRNA content of plasma and the potential for
confounding biomarker discovery has been reported previously [15,17,18]. Using RT-qPCR,
Kirschner and colleagues [15] showed that contamination of plasma samples with the
miRNA content of RBCs changed the abundance of both miR-16 and miR-451a. This, in turn,
altered the relative abundance of potential biomarkers for mesothelioma and coronary artery
disease, including miR-92a and miR-15. Using the same technique, Pritchard et al. [18]
demonstrated in plasma that 46 of the 79 circulating miRNA cancer biomarkers were highly
expressed in more than one blood-cell type, noting that the effects of sample-specific blood-
cell counts and haemolysis can alter miRNA biomarker levels in a single patient sample up
to 50-fold. As a result, the authors emphasized caution in classifying blood-cell-associated
miRNAs as biomarkers, given the possible alternate interpretation.

Haemolysis is associated with either blood collection or RNA extraction and sample
preparation. Thus, despite differences between the quantification methods, high-throughput
sequencing data used in our study is equally susceptible to the confounding effects of
sample haemolysis on miRNA abundance levels in plasma as RT-qPCR. There are cur-
rently two commonly used gold standard approaches in the assessment of haemolysis in
plasma: (1) delta quantification cycle (ACq), where expression levels of a known blood
cell-associated miRNA (miR-451a) and a control miRNA (miR-23a-3p) are determined
based on the difference between the two raw Cq values; and (2) spectrophotometry, where
absorbance is measured at 414 nm (A414) with the use of a spectrophotometer. In the case
of ACq assessment, miR-451a is known to vary and miR-23a-3p is known to be invariant
in plasma affected by haemolysis [15,16]. Using spectrophotometry, haemolysis is quan-
tified by assessing the presence of cell free haemoglobin by measuring the absorbance at
414 nm, the absorbance maximum of free haemoglobin [19,20]. In controlled experiments,
haemolysis is highly correlated with raw A414. Patient samples, however, may sometimes
be affected by sample interferences, such as lipaemia. In these cases, more sophisticated
absorbance-based corrections to the raw A414 can improve the accuracy of haemolysis
detection [21]. A third, less commonly used, method—ELISA—can also be used to detect
haemolysis [22]. All three methods require access to sufficient amounts of the original
plasma sample and the laboratory equipment required to perform the assays. Free access
to a web tool that can perform in silico assessment of RBC contamination in human plasma
would be of exceptional value to the research community.

Whilst it is well established that haemolysis frequently occurs during extraction or
processing of blood samples, the assessment of RBC contamination is rarely mentioned in
publications. It is even rarer that the results of any such testing are present in the metadata
assigned to publicly available sequencing data. There is currently no publicly available
tool for analysis of haemolysis without access to the physical plasma specimen. Although
the theory underlying identification of haemolysis in plasma is relatively straightforward,
surprisingly, to our knowledge, this has never before been extrapolated into a data-only
in silico approach. The paucity of haemolysis information in the context of publicly avail-
able datasets combined with the lack of tools to identify affected datasets after the fact
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substantially limits the utility of this data resource and reproducibility of research find-
ings. Further, it increases the risk that results obtained may unwittingly represent blood
cell-based phenomena, rather than signatures of the pathology of interest.

In this study, we assessed miRNA abundance in HTS data from libraries prepared
using human plasma from pregnant and non-pregnant women of reproductive age. Using
a set of samples with confirmed haemolysis (ACq (miR-23a-3p-miR-451a), we established
a set of 20 miRNAs differentially abundant between plasma from samples with and without
substantiated haemolysis. Using the expression values of these 20 miRNAs as a ‘signature’
of haemolysis, we calculated the difference between the mean normalized expression levels
of these miRNAs compared to those of all other miRNAs (as a ‘background’ set). This pro-
duced a quantitative metric representing the strength of the evidence of haemolysis in an
individual sample. When this metric is interpreted in the context of other samples, it can be
used to identify sample(s) that display substantial evidence of haemolysis. Where direct as-
sessment of haemolysis cannot (or has not) be undertaken using one of the aforementioned
assays, our method allows the researcher to consider discarding problematic sample data
from further analyses or using caution in their interpretation. We consulted the EMBL-EBI
Expression Atlas (ebi.ac.uk) to ensure all signature miRNAs were identified in multiple
human tissue types (male and female) and had no known developmental stage association.
For ease of application, we developed this method into a web-based Shiny /R application,
DraculR (a tool that allows a user to upload and assess haemolysis in high-throughput
plasma miRNA-seq data), for use by the research community [23].

2. Materials and Methods
2.1. Patient Information

Our analysis involved two prospectively collected cohorts: the first a cohort of women
of reproductive age recruited at the Adelaide Medical School during 2005-2006 who
were not pregnant at the time of blood collection, and the second a cohort of women
undergoing elective termination of pregnancy at the Pregnancy Advisory Centre, Queen
Elizabeth Hospital during 2016-2019. To test for differences among the means of our patient
characteristics, we performed Student’s t-tests on dCq (miR-451a - miR-23a-3p) within
both the pregnant and non-pregnant groups and across the cohort as a whole for each
characteristic, splitting age, BMI, and gestational age into equal-sized groups. For each
test the p-value was > 0.29, indicating no significant differences. All patient samples were
collected with written, informed consent. Patient characteristics are shown in Table 1, with
more detail regarding ethnicity and pregnancy status in Table S1.

Table 1. Patient Characteristics. Age, BMI and Gestational Age presented as mean and interquartile range.

Pregnant Not Pregnant
(n=111) (n=10)
Smoker Yes No Yes No
48 63 unknown unknown
Age 26.9 (21-32) 24.1 (21-24)
BMI 24.3 (21-36) 23.8 (19-25)
Gestational age (weeks) 12.5 (9-16) Not applicable

BMI = body mass index.

2.2. Sample Collection

Peripheral blood (9 mL) was collected with informed, written consent from women
undergoing elective terminations of otherwise healthy pregnancies. Blood was collected
into standard EDTA blood tubes pre-termination and stored on ice until processed. Whole
blood underwent centrifugation at 800 x g for 15 min at 4 °C before plasma removal and
then spun for a further 15 min to ensure any remaining cellular debris, including cell
membranes from lysed red blood cells, was removed. All samples were stored at —80 °C
until further processing. Termination samples were collected from the Pregnancy Advisory
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Centre (PAC), Woodpville, South Australia. Blood was also collected with informed, written
consent from non-pregnant volunteers at the Adelaide Medical School. Following collection,
blood tubes were stored on ice until processing. Whole blood underwent centrifugation at
1015 x g for 10 min at 4 °C. Approximately 4-6 mL plasma was collected in 2 mL aliquots.
500 uL plasma (the supernatant) were aliquoted into clean tubes, and the pellet containing
any remaining blood cells at the bottom of the tube was discarded. All samples were stored
at —80 °C until further processing.

2.3. RNA Extraction and Library Preparation

For publicly available data previously published by us, raw sequencing reads were
downloaded from NCBI GEO, Study GSE151362 [24] and combined with new small-RNA
dataset with sequencing as follows. miRNA was isolated from 200 pL plasma samples
using the Qiagen miRNA serum/plasma kit (Qiagen, Hilden, Germany) according to the
manufacturer’s instructions and stored at —80 °C.

Library preparation and sequencing was performed using Qiagen (Valencia, CA) with
the QIAseq miRNA Library and QIAseq miRNA 48 Index IL kits as per the manufacturer’s
instructions (Qiagen, Hilden, Germany). Amplified cDNA libraries underwent single-end
sequencing by synthesis (Illumina v1.9) using the Illumina NovaSeq 75 bp single-end read
sequencing on miRNA libraries from 42 plasma samples taken from 10 non-pregnant and
32 pregnant women aged 16 to 44 years.

2.4. Haemolysis Detection by RT-gPCR

Plasma samples were examined with Qiagen (Hilden, Germany) for haemolysis based
on the expression levels of two miRNAs: miR-451a and miR-23a-3p. miR-451a (previously
named miR-451) is known to be highly expressed in red blood cells, whereas miR-23a-3p is
known to maintain stable abundance levels in plasma. After RNA extraction and cDNA
synthesis, 2 uL of RNA was reverse-transcribed in 10 pL reactions using a miRCURY LNA
RT kit (Qiagen version 5). Each RT was performed using an artificial RNA spike-in (UniSp6).
cDNA was diluted 50 x and assayed in 10 uL PCR reactions according to the protocol for
miRCURY LNA miRNA PCR, and each miRNA was assayed once by PCR using the assays
for miR-23a-3p and miR-451a. In addition to these miRNA assays, the RNA spike-ins
were assayed. The amplification was performed in a LightCycler 480 real-time PCR system
(Roche, Sydney, Australia) in 384-well plates. The amplification curves were analyzed using
in-house software, both for determination of Cq (by the 2nd derivative method) and for
melting curve analysis. The raw data were extracted from the LightCycler 480 software. The
evaluation of expression levels was performed based on raw Cq values. According to the
Qiagen protocol for haemolysis detection using the AACq method, samples with ACq <7
for these two miRNAs were considered clear of contamination, ACq >7 was considered
contaminated, and ACq =7 was considered borderline.

2.5. miRNA Annotation and Abundance

Read quality-control metrics were assessed using FastQC [25] (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/) to check for per base sequence quality, sequence-length
distribution, and duplication levels. Adapter detection and trimming were performed using
Atropos [26]. Alignment was performed using BWA version 0.7.17-r1188 (GRCh38) [27].
UMI-tools was used to collapse duplicate reads mapped to the same genomic location with
the same UMI barcode. Quality-control metrics were reported using multiQC [28]. Read
counts for mature miRNAs were determined using an in-house script [29] with miRNA
annotation from miRBase version 22.0 [30,31] (http://www.mirbase.org). miRNA counts
were quantified as counts per million (CPM) miRNA reads.

2.6. Analysis of Potential Confounding Factors

All profile and expression analyses were conducted in the R statistical environment
(v4.0.2), using the edgeR (v.3.16.5) [32] and limma (v.3.30.11) [33] R/Bioconductor packages.
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Prior to conducting the differential expression analysis between haemolysed and non-
haemolysed expression data, we considered the effect of participant characteristics, such
as sex, age, smoking, pregnancy status, and ethnicity. Sex was not included here, as all
samples were taken from female participants. Maternal age was excluded from the final
regression model, as there was no strong evidence of association with the outcome, and
hence, considering the sample size, a simpler model was chosen to preserve degrees of
freedom. Differential miRNA abundance between pregnant and non-pregnant groups was
tested using only samples with ACq (miR-23a-3p-miR-451a) < 7 (i.e., not haemolysed).
miRNA identified as differentially abundant between samples from pregnant and non-
pregnant women was removed from the final set of haemolysis signature miRNA when
calculating the haemolysis metric for our pregnant/non-pregnant cohorts. There were
three independent sequencing batches in the data analyzed here, which are detailed in
Table S2. As such, sequencing batch was also included in all regression models.

2.7. Identification of Haemolysis miRNA Signature

Prior to defining a collection of haemolysis informative miRNAs for the 121 samples
analyzed here, pre-filtering steps were undertaken: 1) mature miRNA with fewer than
five reads was reduced to zero independently for each sample, and 2) miRNA with fewer
than 40 counts per million (CPM) in the haemolysed group (1 = 12) was removed from
further consideration. This was done to ensure only highly abundant miRNA likely to be
present in most samples remained. The trimmed means of M values (TMM) normalization
method was used to correct for differences in the underlying distribution of miRNA
expression [34]. Next, we used limma [33] to obtain the fold change of each miRNA between
the haemolysed (n = 109) and non-haemolysed (1 = 12) groups to identify miRNAs that were
more abundant in the plasma affected by haemolysis. To ensure the haemolysis miRNA
signature was robust, we took the intersection of the 60 miRNAs from each category of
highest expression and lowest adjusted p-value and miRNAs with a log,FC > 0.9, revealing
a set of 20 high-confidence miRNAs. To further refine the set of haemolysis informative
miRNAs, we used limma to calculate the fold change for each miRNA between the samples
from pregnant and non-pregnant women not affected by haemolysis and removed any
of the high-confidence miRNA which was also differentially abundant in pregnancy. The
workflow, source code, and input files associated with this research are available at (https:
/ /github.com/mxhp75/haemolysis_maternaPlasma.git).

2.8. Classification—Haemolysis Metric

To classify the data coming from samples as haemolysed, borderline or unaffected, we
first focused on samples from the non-pregnant group. For these, we subset the miRNA
read count table into miRNA from the high-confidence haemolysis informative miRNA
(n = 20) and all others (1 = 169). Using this data partition, we calculated the geometric mean
of the distribution of read counts using the psych package (v1.8.12) [35] and subtracted the
geometric mean of the counts of ‘other’ miRNA from that of the ‘haemolysis informative’
miRNA. Next, for samples from the pregnant group, we performed the same calculations
described above after first discarding miRNA that was associated with pregnancy.

2.9. Data Availability

The dataset(s) supporting the conclusions of this article are available in: NCBI's Short
Read Archive (SRA) [36] and through BioProject accession number PRINA824637 (https://
www.ncbi.nlm.nih.gov/sra/PRJNA824637); and for previously published data, BioProject
accession number PRJNA635621.

3. Results
3.1. High-Throughput Sequencing

Using libraries with > 1 million reads for analyses, we obtained 121 libraries with an
average of ~3.49 million reads per sample (range ~1.00-18.64 million reads). RT-qPCR was
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used to analyze ACq (miR-23a-3p-miR-451a), where the ratio of miR-23a-3p to miR-451a (or
ACq (miR-23a-3p-miR-451a) > 7) correlated with the degree of haemolysis. We identified
12 plasma samples with a ACq of 7 or above (Table S2) and determined that there was no
difference in the proportion of haemolysed and non-haemolysed data in the exclusion of
samples, due to low library size (Fisher’s exact test p-value = 0.7). Sequence alignment
was performed using BWA [27] to the human genome (version GRCh38) and miRNA read
counts were generated by mapping to human miRBase v22 [30,31] identifying 1133 mature
miRNAs. Further analysis of non-miRNA small RNA species identified antisense, inter-
genic, and intronic (average of 13.4%, 16.9%, and 8.6% respectively) transcripts, as well
as a small abundance of long non-coding and protein-coding RNA, rRNA, snRNA, and
snoRNA transcripts (Table S3).

To analyse the effects of haemolysis on miRNA-expression data from next-generation
sequencing, we first determined the number of unique mature miRNAs identified in
each of our samples and analyzed the data relative to read depth. Using an analysis of
variance (ANOVA) we identified a significant difference between the haemolysed and
non-haemolysed samples (p < 0.05), with haemolysis being frequently associated with
fewer mature miRNA species detected at a given read depth (Figure 1).

800
750 1
700 4
650 4
600
550 1
500 1
450 +
400 A
350
300

250 1

R?=0.77 miR-23a-3p - miR-451a < 7

R? = 0.83 miR-23a-3p - miR-451a 2 7

T

—_ — —_
N o o - - - » - N -
() EN (3 ~ ) IS) ) w () o ) ©

MicroRNA Read Counts (million reads)

Haemolysis(ACq) == miR-23a-3p - miR-451a <7 == miR-23a-3p - miR-451a 27

Figure 1. The number of mature miRNA species identified in an individual sample increases with
read depth for both haemolysed (dark red) and non-haemolysed (blue) samples. However, the
number of mature miRNA species identified for a given read depth is significantly lower (ANOVA,
p-value = 1.68 x 10-9) in samples affected by haemolysis when compared to a non-haemolysed

sample of equal read depth (n = 121).
3.2. MicroRNA Haemolysis Signature Set

To ensure that miRNAs identified here were representative of those found in a broad
set of plasma samples, we first filtered to discard miRNAs of low abundance. After filtering,
189 highly abundant miRNA remained (Table S4). Differential expression analysis compar-
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ing miRNA read counts identified 100 miRNAs with a higher abundance in haemolysed
compared to non-haemolysed samples (statistically significant differentially expressed
miRNA, false discovery rate (FDR) < 0.05, with a log, fold change (log,FC) > 0) (Figures S1
and S2a,b). We further ranked the differentially expressed miRNAs based on log,FC, FDR
and abundance levels, and subset the list such that only miRNAs that had a log, FC > 0.9
and were in the top 60 percent of each of the FDR and abundance rank criteria remained.
This resulted in a high-confidence set of 20 miRNAs indicative of a haemolysis signature
(Table 2).

Table 2. Twenty miRNAs with a general-use plasma haemolysis signature set. To remove confounding
effects within our pregnancy-specific dataset, we identified a subset of 10 abundant miRNAs that
were invariant with respect to pregnancy.

Average .
miRNA Log,FC Expression Ail{;; i:leed Pregnancy Assoc.
(log, CPM) P

miR-106b-3p 1.589 8.731 8.61 x 10715 no
miR-140-3p 1.073 10.098 2.75 x 10713 no
miR-142-5p 0.962 10.651 496 x 10712 no
miR-532-5p 1.288 7.237 4.96 x 10712 no
miR-17-5p 0.952 7.892 7.84 x 10712 no
miR-19b-3p 1.128 8.696 1.93 x 107% no
miR-30c-5p 0.950 7.325 2.48 x 107% no
miR-324-5p 1.304 7.186 2.50 x 1079 no
miR-192-5p 0.941 8.944 1.37 x 10798 no
miR-660-5p 1.305 7.620 3.45 x 10710 no
miR-186-5p 1.228 8.052 2.75 x 10713 yes
miR-425-5p 1.282 11.246 4.96 x 10712 yes
miR-25-3p 1.212 12.939 1.26 x 101 yes
miR-363-3p 1.237 7.882 452 x 10711 yes
miR-183-5p 1.550 9.382 9.34 x 101 yes

miR-451a 1.372 13.002 3.65 x 10710 yes
miR-182-5p 1.341 10.585 2.48 x 107% yes
miR-191-5p 0.929 11.790 4.68 x 1070 yes
miR-194-5p 0.937 7.679 1.85 x 1098 yes
miR-20b-5p 0.932 7.430 1.96 x 1008 yes

For in silico assay of haemolysis in our data, we further removed miRNAs that were
differentially abundant between the PAC (pregnant) and NPC (non-pregnant) cohorts
to avoid confounding miRNA associated with haemolysis with those associated with
pregnancy. Differential expression analysis of miRNA read counts from pregnancy and non-
pregnancy samples identified 127 miRNAs (FDR < 0.05) that were significantly differentially
expressed between the groups (Figure S3a,b). Strikingly, one of our first observations
highlighted the importance of including haemolysis analysis as an adjunct in our study:
miR-451a, which is the sole haemolysis signature miRNA used in the current ACq (miR-23a-
3p-miR-451a) gold standard method for haemolysis detection, was discovered to be highly
correlated with pregnancy status, indicating a strong confounding factor in pregnancy
studies when haemolysis levels are estimated using RT-qPCR alone. Accordingly, when
analysing the data from our pregnancy cohort, miR-451a was removed from calculations,
along with nine other miRNAs that were differentially expressed between the pregnant
and non-pregnant groups from the core set of haemolysis signature miRNA. This resulted
in 10 miRNAs remaining for evaluation of haemolysis levels. Note that removing miRNAs
from the signature set using our method also excluded those miRNA from the calculation
of the distribution of background miRNAs.

Incorporating concepts from previous RT-qPCR analyses of haemolysis, we estab-
lished a new measure of the inclusion of RBC-associated miRNA in human plasma. After
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establishing the 20-miRNA signature associated with RBC content inclusion, we deter-
mined the geometric mean of the distribution of miRNA read counts as an appropriate
measure of abundance and summary statistic. Using this summary statistic, our method
calculated a ‘haemolysis metric’, defined as the difference between the geometric means of
the normalized abundance levels of the haemolysis miRINA signature set compared to that
of all other miRNAs (the ‘background’ set). Note that in a case—control study, to reduce
the risk of confounding the haemolysis metric with experimental variables, any miRNA
known to be differentially expressed between groups should be excluded from both the
signature, and background sets should be reduced to exclude any miRNA known to be
differentially expressed between groups. In this case, the geometric mean of the reduced
signature set will be calculated, as defined in Equation (1). Let Z, be the miRNA reduced
signature set (logy CPM counts) and Z; be the background miRNA set (logy CPM counts),
where x = 1,2,3,..., p1 with p; = the number of miRNAs in the reduced signature set and
y =1,23...,pp where p, = the number of miRNAs in the background and i =1,2.3,...,n
where n = the sample size after filtering:

P1 P2
Haemolysis Metric; = 7t [ [ Zx, — 72| [ | Zy, (1)
x=1 y=1

Prior to establishing a threshold for the new haemolysis metric, we measured the
linear dependence between the new haemolysis metric and the ACq (miR-23a-3p-miR-451a)
metric by calculating Pearson’s correlation. Our results indicated a Pearson’s correlation
coefficient of 0.64 (p < 0.0001) (Figure 2a) and also examined the linear relationship be-
tween the ACq (miR-23a-3p-miR-451a) metric and each individual signature set miRNA
(Figure S4.1). With confidence in the correlation, to establish a threshold for the haemolysis
metric, we compared the results of the ACq (miR-23a-3p-miR-451a) and summary statistic
methods directly. Briefly, we compared the haemolysis metric to the ACq (miR-23a-3p-
miR-451a) results for sample and established a cut-off criterion for inclusion into the Clear
(no haemolysis detected) and Caution (haemolysis detected) groups (Figure 2a). We chose
a threshold of > 1.9 for the assignment of ‘Caution’ to individual samples based on the
minimum summary statistic difference of samples assayed using the ACq (miR-23a-3p-
miR-451a) metric of > 7 (Figure 2a) and the minimal overlap between the distribution of
the haemolysis metric in haemolysed compared to non-haemolysed samples (Figure 2b).
Where a sample is assigned ‘Caution’, researchers are advised to consider removing the
sample or to continue with caution. Given the correlation of the two metrics is imperfect
and the arbitrary nature of choosing any cut-off, samples with a haemolysis metric close
to the 1.9 cut-off may be interrogated further prior to any decision to retain or remove.
Of the 121 samples assayed, 25 samples met the criteria for Caution. Of these, 12 were
previously determined as haemolysed or borderline using the ACq (miR-23a-3p-miR-451a)
assay. We found that all samples identified as ACq > 7 (Figure 2a, scarlet) were above
the criteria for the haemolysis metric (Figure 2a, horizontal grey bar; threshold > 1.9).
Further, we identified 13 samples with a haemolysis metric > 1.9 not included in the ACq
(miR-23a-3p-miR-451a) criteria.

To further validate the consistency and accuracy of the miRNA signature set, we per-
formed two additional analyses. Firstly, we compared the results of the two gold standard
methods of determining haemolysis: ACq (miR-23a-3p-miR-451a) and spectrophotometry
absorbance A414 and the haemolysis metric described here (Figure S5). These results
showed a high correlation (Pearson’s R > 0.82) among all methods, with the correlations
between the haemolysis metric and the two other methods (R = 0.87 for A414, R = 0.90
for ACq (miR-23a-3p-miR-451a)) being higher than that between the two gold standard
methods (R = 0.82). This is consistent with the haemolysis metric being an accurate and
useful marker of haemolysis.
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Figure 2. (a) A comparison of the derived haemolysis metric and the ACq measure of haemolysis
shows a clear correlation. We identified 13 samples (named) that we suggest should be discarded or
used with caution in further analysis. (b) Histogram of haemolysis metric values from the 121 samples
in our experiment, coloured according to their ACq (miR-23a-3p-miR-451a) classification, indicate
a minimum haemolysis metric of > 1.9 for samples previously identified as haemolysed.

Next, using public plasma datasets for (a) prostate cancer [37] and (b) early radio-
graphic knee osteoarthritis [12], we demonstrated application of the haemolysis metric to
these case studies, including the exclusion of miRNAs suspected or confirmed to be differ-
entially abundant for reasons unrelated to haemolysis (osteoarthritis: Figure S6; prostate
cancer: Figure S7). First, we calculated a sequencing-based proxy of the ACq (miR-23a-
3p-miR-451a) haemolysis metric (by subtracting the log, (CPM) values for miR-451a from
miR-23a-3p) and demonstrated that this metric was strongly correlated (R = 0.82) with ACq
(miR-23a-3p-miR-451a) (Figure 54.2 and 54.3). We then validated both a) the reproducibility
of the relationship between the abundance of individual signature miRNAs and the proxy
miR-451a:miR-23a-3p metric, and b) the consistency between the sequencing-based proxy
of ACq (miR-23a-3p-miR-451a) and the calculated haemolysis metric. Importantly, these
datasets contained samples from both males and females (osteoarthritis) or male individ-
uals only (prostate cancer), thus validating the approach beyond female individuals. We
observed a consistent correlation among the many miRNAs in the signature set with the
proxy miR-451a:miR-23a-3p metrics and between the proxy miR-451a:miR-23a-3p metric
and the haemolysis metric, and no substantial difference in the relationships for male and
female individuals (Figures S6 1,2 and S7 1,2). For each dataset, a small number of miRNAs
(miR-191-5p for osteoarthritis [38], miR-30c-5p and miR-191-5p for prostate cancer [37]) had
evidence or hints in the literature of a role in the biology of the dataset. In accordance with
our recommendations, these were excluded from calculations of the haemolysis metric for
the relevant dataset. This choice was supported by the anticipated marked lack of positive
correlation between the expression of these miRNAs and the proxy miR-451a:miR-23a-3p
metric (Figures 56.3 and S7.3). These examples reinforce the need for careful consideration
of confounding signatures when calculating the haemolysis metric. In cases such as these,
we recommend excluding from both the signature set and background any miRNAs known
or suspected to relate to the study biology before calculating the haemolysis metric.

4. Discussion

Through an analysis of differential miRNA expression in samples whose haemolysis
levels were known, we identified a novel 20 miRNA signature indicative of haemolysis.
Given our hypothesis that plasma samples contaminated with RBC content would contain
proportionally higher levels of many RBC-associated miRNAs, not just miR-451a, we
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established a method using a group of background miRNAs as a reference. Accordingly,
as a group, signature miRNAs (miRNAs abundant in red blood cells) were shown to be
more highly abundant in samples contaminated with RBCs. The degree of this change
can be used as a measure of RBC content contamination and quantified by comparing the
geometric means of the expressions of RBC signature miRNAs to that of the background
set of miRNAs. We further established that where a comparison between conditions is
considered, e.g., in a biomarker-discovery experiment, any miRNA known to be associated
with the condition for which the biomarker is proposed should be removed to prevent
confounding between the condition of interest and the quantification of RBC-associated
miRNA inclusion.

Our experimental results demonstrate that it is possible to identify a haemolysis
signature in silico, avoiding the effort and expense of lab validation, and in situations
where blood plasma samples are exhausted, otherwise unavailable or cost-prohibitive to
assay using current gold standard approaches. Given the limited access to physical samples
associated with publicly available data, the haemolysis metric technique introduced here
provides the research community with an alternative method for haemolysis detection. Our
method also formed the basis for the development of a publicly available tool (DraculR: A
web-based application for in silico haemolysis detection in high throughput small RNA
sequencing data).

Among the haemolysis miRNA signatures was miR-451a (previously named miR-451),
commonly associated with RBC contamination and used in the calculation of ACq (miR-
23a-3p-miR-451a). However, we removed miR-451a together with nine other miRNAs from
our calculation of distribution difference, due to changes in miRNA abundance associated
with pregnancy. During pregnancy, total blood volume increases, varying between 20% to
100% above pre-pregnancy levels. This change, however, is not uniform across all blood
components, as plasma volume increases proportionally more than the RBC mass [39]. This
is an important consideration, and highlights the limitation of the current gold standard
approach that uses two miRNAs, rather than a larger signature set, to calculate a measure of
contamination. If, as in this example, the abundance of either miRNA used to determine the
ACq is also affected by the condition or pathology under investigation, the issue is twofold.
Firstly, you may identify miR-451a as being differentially abundant in the pathology of
interest and propose its use as a biomarker, only to find that it is confounded by haemolysis.
Secondly, you may, using the ACq calculation, classify samples as haemolysed when the
change in miR-451a abundance is more appropriately associated with the pathology of
interest. By establishing a larger signature set of miRNAs to detect haemolysis in small-
RNA sequencing from human plasma, we hope to provide a resource to the community. To
overcome issues identified in previous studies, the flexibility and redundancy included in
our metric buffer against the issue of confounding conditions of interest with the measure
of haemolysis.

We found a wide range in the overlap between the miRNAs identified as useful for
the detection of haemolysis and those previously reported as markers of haemolysis con-
tamination. Shkurnikov and colleagues used microarray analyses to correlate miRNA
expression with haemoglobin concentration evaluated using spectrophotometry [40]. Their
results were highly consistent with ours: of the nine miRNAs they reported that were sig-
nificantly correlated with haemoglobin concentration, three were included in our signature
set (miR-451a, miR-17-5p, and miR-20b-5p) and five others showed concordant differential
abundance in our dataset (miR-486-5p, hsa-miR-16-5p, hsa-miR-93-5p, hsa-miR-20a-5p,
and hsa-miR-107), though they were not chosen for the signature set, due to our stringent
selection criteria including minimum miRNA abundance. Another microarray study [41]
had similar consistencies and differences, with all five key haemolysis marker miRNAs
reported being differentially abundant in our data (miR-486-5p, miR-92a-3p, miR-16-5p,
and miR-22-3p), but only one (miR-451a) being in the signature set.

Several other studies have found limited overlap [15,18,42]. However, the differ-
ences in study methodology, as well as research question, are likely to contribute to these
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differences. Importantly, the method of quantification of miRNAs in these studies was
targeted RT-qPCR, rather than transcriptome-scale approaches, such as HTS (used here) or
microarrays [40]. The limitations of RT-qPCR to investigate which miRNAs are affected by
haemolysis has been identified previously [43]. Given our use of HTS, our experiment was
able to identify differential abundance in miRNNAs not quantified in Kirschner et al. [15],
Pritchard et al. [18], or McDonald et al. [42], meaning that whilst many of the miRNAs
associated with previous haemolysis work were also associated here, including miR-16-5p,
miR-486-5p, and miR-92a-3p, many of these were not included in the final miRNA haemol-
ysis metric signature set, as they failed to pass filtering criteria for log, FC and expression
level. Secondary to the technical differences introduced by using different miRNA quantifi-
cation technologies, it is important to note that all plasma samples used here to establish
which miRNAs were affected by haemolysis in our primary dataset were taken from adult
women of reproductive age. No sex or age information was included with either of the
compared studies, although it is likely these samples included specimens from men and
women. To confirm that the use of the miRNA signature set to evaluate haemolysis could
be generalized to male individuals, we performed two additional validation analyses to
evaluate the relationship between the abundance of the miRNA signature set, haemolysis
level, and sex (Figures S6 and S7), and saw no difference in correlation for male vs. female
individuals. To address any potential bias from using all reproductively aged volunteers,
we also ensured all miRNAs included here had previously been identified in multiple
tissue types and were not affected by developmental stage.

Interestingly, all signature miRNAs, with the exception of miR-325-5p, have previ-
ously been reported as prognostically valuable plasma or serum biomarkers. In this small
sampling of recent miRNA-biomarker research, we identified several instances where more
than one of our haemolysis signature miRNAs were identified as disease biomarkers for
the same condition in the same experiment [44—46], which, given our findings and those
of previous haemolysis research, further call into question their validity as biomarkers
of disease or condition. In conjunction with our research, we found many miRNAs as
suggested circulating biomarkers for multiple disease states. For example, miR-122-5p was
given biomarker potential in liver disease, lung cancer, and myasthenia gravis [14,44,47],
and miR-660-5p was given biomarker potential in Alzheimer’s disease, breast cancer, and
lung cancer [45,48,49], respectively. These miRNAs may represent effective biomarkers,
but they may simply highlight RBC contamination or be indicative of a general state
of inflammation.

This study has limitations. Firstly, data contained in this study were obtained from
two cohorts (one pregnant, the other non-pregnant) of female volunteers of reproductive
age. We attempted to mitigate this by validating our approach using two publicly available
human plasma miRNA datasets: one male and one mixed male and female. Further,
we have generalized this method such that removal (from the signature miRNA set) of
domain-specific miRNA is built in, providing a framework that allows use within research
conducted in any human plasma context. Secondly, the plasma preparation protocol,
the centrifugation step, differs between the pregnant and non-pregnant groups, which
confounds the interpretation of differentially abundant miRNAs associated with pregnancy.
Our results highlight that ignoring the issue of miRNA from RBCs leaves researchers open
to the risk that newly discovered miRNA disease biomarkers could in fact be biomarkers of
haemolysis. Future research, including validation of the miRNA signature set proposed
here using RT-qPCR, would strengthen confidence in our approach. Our research both
recommends and enables tests for haemolysis to become standard pre-analytical practice in
the absence of a physical assay for RBC contamination.
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Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ genes13071288/s1, Figure S1: Haemolysis signature feature selection. Raw
single-end reads from small RNA-seq libraries are preprocessed using a range of Unix- and python-
based computational tools to quantify miRNA expression in each library. Data quality is ensured
through quality control steps throughout the workflow. Concurrently with sequencing, ACq (miR-
23a-3p-miR-451) was assessed by RT-qPCR and incorporated into the differential expression analysis;
Figure S2: (a) Volcano plot of differential expression. Linear regression identified 138 miRNA which
were more highly abundant in haemolysed compared to non-haemolysed samples with FDR < 0.05
(green). (b) MA plot (M (log ratio) and A (mean average)) of Log, fold change as a function of Log,
average expression indicates most miRNA have an average expression < 10 Log, CPM. miR-451a
and miR-16-5p, both highly red blood cell associated, are highly expressed and more abundant in the
haemolysed group (green); Figure S3: (a) Volcano plot of differential expression between the pregnant
and non-pregnant samples. Linear regression identified 104 miRNA (FDR < 0.05) which were more
highly abundant in the pregnant population (red). Haemolysis Metric signature miRNAs are labelled
(b) MA plot (M (log ratio) and A (mean average)) of Log, fold change as a function of Log, average
expression indicates most miRINA have an average expression < 10 Log, CPM. Unsurprisingly,
the most differentially expressed miRNA are miR-517a-3p, miR-517b-3p, miR-516b-5p, miR-518b,
which are all members of the highly placenta associated chromosome 19 miRNA cluster; Figure S4:
Scatter plots of logy signature miRNA counts per million (CPM) as a function of ACq (miR-23a-3p-
miR-451) (1) or the ratio of abundance (CPM) of miR-23a-3p and miR-451a (2). There is a strong
correlation between the haemolysis signature miRNAs and the other measures of haemolysis. (3) The
relationship between the ACq (miR-23a-3p-miR-451) and the ratio of abundance (CPM) of miR-23a-3p
and miR-451a methods; Figure S5: Comparison of the derived Haemolysis Metric, ACq PCR and
Spectrophotometry Absorbance methods for estimating haemolysis. A clear correlation is present
between all three methods; Figure S6: Public dataset GSE151341 (radiographic knee osteoarthritis).
Scatter plots of logy signature microRNA (miRNA) counts per million (CPM) as a function of a
simple, proxy, measure of haemolysis calculated by subtracting the logy, CPM expression of the
invariant miRNA miR-23a-3p from the red blood cell associated miR-451a. Signature miRNAs are
presented in ascending numeric order from miR-17-5p (a) to miR-451a (s). Importantly, in this mixed
experiment containing both male and female patients (1 = 91) we see no clustering of haemolysis
signature miRNA expression by sex. We found a strong correlation between our haemolysis signature
miRNAs and the proxy measure of haemolysis. There were no signature miRNAs associated with
this data reported dysregulated in radiographic knee arthritis [12]. Notably, miR-191-5p is negatively
correlated with the proxy measure of haemolysis. Whilst this study did not identify miR-191-5p
as dysregulated in radiographic knee osteoarthritis, miR-191-3p was identified as dysregulated in
their Patient:Control experiment. Previous studies have shown miR-191-5p to be upregulated in
patients with hand osteoarthritis [38], highlighting the need for careful consideration of confounding
signals when calculating the Haemolysis metric (1). Public dataset GSE151341 (radiographic knee
osteoarthritis). Scatter plot of the Haemolysis metric as a function of the proxy measure of haemolysis
calculated by subtracting the log, CPM expression of the invariant miRNA miR-23a-3p from the
red blood cell associated miR-451a. Both in silico measures of haemolysis show a strong correlation
(2). Public dataset GSE151341 (radiographic knee osteoarthritis). Scatter plot of miR-191-5p log,
CPM expression as function of the proxy haemolysis metric calculated by subtracting the log, CPM
expression of the invariant miRNA miR-23a-3p from the red blood cell associated miR-451a. miR-191-
5p is the signature miRNA dropped from calculation of the Haemolysis metric in accordance with our
recommendations. As anticipated, miR-191-5p does not have a strong positive correlation with the
proxy measure of haemolysis (3); Figure S7: Public dataset GSE118038 (prostate cancer study). Scatter
plots of log, signature microRNA (miRNA) counts per million (CPM) as a function of a simple, proxy
measure of haemolysis calculated by subtracting the logy CPM expression of the invariant miRNA
miR-23a-3p from the red blood cell associated miR-451a. Signature miRNAs used in the calculation
of the Haemolysis metric are presented in ascending numeric order from miR-17-5p (a) to miR-451a
(0). Importantly, in this all-male experiment (1 = 70), the haemolysis signature miRNAs correlate
strongly with the proxy measure of haemolysis. The publication associated with this data reported
dysregulation of miR-30c-5p in prostate cancer [37]. A further literature search identified miR-191-5p
as dysregulated in prostate cancer with a previous study reporting this miRNA to be upregulated in
patients with prostate cancer. In accordance with our method, this miRNA was excluded, as were
miR-324-5p, miR-194-5p and miR-20b-5p that were found to have no expression profile in this dataset
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(1). Public dataset GSE118038 (prostate cancer study). Scatter plot of the Haemolysis metric as a
function of the proxy measure of haemolysis calculated by subtracting the logy CPM expression of
the invariant miRNA miR-23a-3p from the red blood cell associated miR-451a. Both in silico measures
of haemolysis show a strong correlation (2). Public dataset GSE118038 (prostate cancer study). Scatter
plots of the two signature miRNAs dropped from calculation of the Haemolysis metric in accordance
with our recommendations. As anticipated, neither miR-30c-5p (a) or miR-191-5p (b) have a strong
positive correlation with the proxy measure of haemolysis calculated by subtracting the log, CPM
expression of the invariant miRNA miR-23a-3p from the red blood cell associated miR-451a (3);
Table S1: Patient characteristics for 121 patient samples. Data includes Pregnancy Status, Age, BMI,
Smoking Status, Ethnicity and Gestational Age (where appropriate); Table S2: Sample BioProject,
Accession and Batch details, Fastq quality control and RT-qPCR Cq data for miR-23a-3p, miR-451a
and ACq (miR-23a-3p-miR-451); Table S3: Distribution of small RNA sequencing reads across RNA
classes from GRCh38 Ensembl annotation; Table S4: MicroRNA counts per million reads for all
miRNA retained for differential expression analysis.
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