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Abstract: Genetic diversity and evolution of infectious bronchitis virus (IBV) are mainly impacted
by mutations in the spike 1 (S1) gene. This study focused on whole genome sequencing of an IBV
isolate (IBV/Ck/Can/2558004), which represents strains highly prevalent in Canadian commercial
poultry, especially concerning features related to its S1 gene and protein sequences. Based on the
phylogeny of the S1 gene, IBV/Ck/Can/2558004 belongs to the GI-17 lineage. According to S1
gene and protein pairwise alignment, IBV/Ck/Can/2558004 had 99.44–99.63% and 98.88–99.25%
nucleotide (nt) and deduced amino acid (aa) identities, respectively, with five Canadian Delmarva
(DMV/1639) IBVs isolated in 2019, and it also shared 96.63–97.69% and 94.78–97.20% nt and aa
similarities with US DMV/1639 IBVs isolated in 2011 and 2019, respectively. Further homology
analysis of aa sequences showed the existence of some aa substitutions in the hypervariable regions
(HVRs) of the S1 protein of IBV/Ck/Can/2558004 compared to US DMV/1639 isolates; most of these
variant aa residues have been subjected to positive selection pressure. Predictive analysis of potential
N-glycosylation and phosphorylation motifs showed either loss or acquisition in the S1 glycoprotein
of IBV/Ck/Can/2558004 compared to S1 of US DMV/1639 IBV. Furthermore, bioinformatic analysis
showed some of the aa changes within the S1 protein of IBV/Ck/Can/2558004 have been predicted
to impact the function and structure of the S1 protein, potentially leading to a lower binding affinity
of the S1 protein to its relevant ligand (sialic acid). In conclusion, these findings revealed that the
DMV/1639 IBV isolates are under continuous evolution among Canadian poultry.

Keywords: infectious bronchitis virus (IBV); spike 1 (S1) gene; phylogeny; Delmarva (DMV/1639);
bioinformatic analysis

1. Introduction

Avian infectious bronchitis (IB) represents one of the globally ubiquitous diseases
of commercial poultry, characterized by high morbidity and variable mortality, and with
subsequent economic losses [1]. IB is induced by an infectious bronchitis virus (IBV) that is
a part of the genus Gammacoronavirus, the family Coronaviridae, and the order Nidovirales [2].
IBV possesses a single-stranded positive-sense ribonucleic acid (RNA) genome with a
length of around 27.6 kb, and the two untranslated regions (UTRs) are located at its 5′ and
3′ ends [3,4]. The genome has a minimum of 10 open reading frames (ORFs) arranged
as 5′-1a-1b-spike (S)-3a-3b-envelope (E)-membrane (M)-5a-5b-nucleocapsid (N)-3′ [5]. A
large polyprotein 1ab, responsible for RNA replication and transcription, is translated
from two overlapping ORFs (1a, 1b) that constitute two-thirds of the genome. Four major
structural proteins (S, E, M, and N) are encoded by the rest of the genome, and there are
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two accessory genes (3 and 5) translated into four accessory proteins (3a and 3b, 5a and 5b,
respectively) [6].

The S glycoprotein is one of the main structural proteins, and it is post-translationally
cleaved by proteolysis into S1 and S2 subunits at the furin consensus specific site (RRFRR/
HRRR) to enhance virus binding to receptor and entry into the host cell [7]. There are
three hypervariable regions (HVRs): HVR 1 (amino acid (aa) position 38–67), HVR 2
(aa 91–141), and HVR 3 (aa 274–387), located in the S1 subunit [8,9]. The HVRs play
important roles in viral infectivity by possessing a minimum of five neutralization sites [10]
and serotype-specific epitopes [11]. HVRs vary widely, resulting in an array of antigenic
variants around the world [12]. The S1 subunit is most likely associated with high mutation
rates and recombination events [13–16]. The S2 glycoprotein includes an ectodomain,
a transmembrane part, and a C-terminal domain, and its function is to facilitate the virus
fusion to the host cell membrane [7]. Several studies have revealed that the S1 subunit
has a receptor-binding domain (RBD) that includes many aa residues that can fold in an
independent manner, and they are crucial for virus attachment to host cell receptors such
as sialic acid [17–19].

Genetic categorization of IBV variants is commonly performed by phylogenetic analy-
sis of a complete sequence of the S1 gene, encoding the relevant protein. There are seven
genotypes (GI-GVII), including 35 genetic lineages according to phylogenetic analysis of
the IBV S1 gene [20]. Most of the genetic lineages (29 lineages) are related to Genotype
GI, and each of the remaining genotypes contains only one lineage. A majority of IB
endemic countries have IBV from the Massachusetts (Mass) lineage (GI) and the 793B
lineage (GI-12), whereas the other lineages spread only in certain regions throughout the
world [21,22]. The lineage GI-17 involves IBV isolates in the USA, which were linked to
respiratory, renal, and reproductive diseases [22]. In 2011, multiple nephropathogenic IB
outbreaks in the Delmarva peninsula, USA, have been associated with a new variant of IBV
known as Delmarva (DMV)/1639, which belongs to GI-17 [23]. Since 2015, there has been
an increasing prevalence of IBV strains genetically identical to the DMV/1639 variant in
poultry operations in eastern Canada [24]. It has been shown that the Canadian DMV/1639
strain induces marked pathological lesions in different body systems, including respiratory,
renal, and reproductive systems [25].

The N-glycosylation of viral protein plays a key role in virus virulence and tissue
tropism [26]. The glycosylation sites in the M and S proteins of coronaviruses could par-
ticipate in viral fusion, receptor binding, and antigenic properties [27–30]. Changes in the
N-glycosylation motifs of viral proteins could impact receptor binding, thus leading to
lower recognition efficiency by host innate immune responses and antibodies, eventually
affecting viral infectivity and replication [31–33]. Phosphorylation of proteins has essential
advantages for viral assembly and replication as it helps in the modulation and regulation
of physiological functions of virus proteins [34,35]. Palmitoylation shares numerous func-
tions with viral proteins such as sub-cellular localization and transport and protein–protein
interactions, in addition to different physiological features [36,37]. In the case of coron-
aviruses, palmitoylation has an impact on viral glycoproteins relevant to fusion to cellular
membranes, viral assembly, and infectivity [38,39].

The majority of genomic variance can be attributed to single nucleotide polymor-
phisms (SNPs) [40], which are greatly associated with phenotypic changes and multiple
diseases. Missense SNPs are varieties of non-synonymous SNPs (nsSNPs); they cause aa
substitutions and lead to damaging or neutralizing effects. Various types of computational
tools have been recognized to detect the potential SNPs and predict their mutational impacts
on the protein function and structure [41–46]. These tools are reliable, easy to use, fast, and
of low cost [47]; therefore, they could be applied as preliminary steps to filter the potential
deleterious nsSNPs before performing the experimental screening to detect the mutations.
The present study aimed to analyze the whole genome sequence of IBV/Ck/Can/2558004
isolate with special emphasis on the prospective effects of aa changes on the function and
structure of the S1 glycoprotein by predictive bioinformatic tools.
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2. Materials and Methods
2.1. Virus Isolation and Propagation

The IBV isolate, IBV/Ck/Can/2558004, was isolated from one clinical sample obtained
from the Animal Health Laboratory (AHL), at the University of Guelph, Canada. The
examined sample was collected from two-week-old broiler chickens raised in a commercial
farm with a capacity of 46,000, situated in Ontario, Canada. For virus isolation and
propagation, embryonated chicken-specific pathogen-free (SPF) eggs were purchased from
the Canadian Food Inspection Agency (CFIA), Ottawa, Ontario, Canada. The embryonated
chicken eggs were kept in the incubator at 37 ◦C until the embryos were 9 to 11 days old;
afterwards, they were inoculated with 200 µL of sample supernatant into the allantoic
cavity. Eggs that had embryo deaths after 24 h of incubation were eliminated from further
analysis. The allantoic fluid was harvested 2 days following inoculation and then aliquoted
and stored at −80 ◦C. Serial passage of the obtained allantoic fluid was performed in the
embryonated eggs two times to increase the virus titer.

2.2. RNA Extraction and Whole Genome Sequencing

The viral RNA was extracted from 200 µL of allantoic fluid using a Quick-RNA
Viral Kit (ZymoResearch, Irvine, CA, USA, Catalog # R1034), according to the manufac-
turer’s instructions. The concentration of resulted RNA was measured by a Nanodrop1000
spectrophotometer (ThermoScientific, Wilmington, DE, USA), based on absorbance at a
260/280 nm wavelength. The complementary DNA (cDNA) was converted from 150 ng
of the obtained RNA using random primers (High-Capacity Reverse Transcription Kit™,
Applied Biosystems, Invitrogen Canada Inc., Burlington, ON, Canada), as indicated by the
manufacturer. To detect and confirm IBV propagation on embryonated eggs, an already
established real-time PCR was performed, targeting the IBV-N gene [48]. The RT-qPCR
positive samples with Cq lower than 20 was submitted to the whole genome sequencing
using a Miseq platform (Illumina corp, San Diego, CA, USA) at the Faculty of Veterinary
Medicine, University of Montreal, Montreal, Quebec, Canada.

2.3. Phylogenetic Analysis and Pairwise Alignment of S1 Gene and Protein

The phylogenetic analysis and genetic relatedness were based on the complete nu-
cleotide (nt) sequence of the S1 gene of IBV/Ck/Can/2558004 and 85 reference IBV strains
(Table S1) retrieved from GenBank (https://www.ncbi.nlm.nih.gov/genbank/) (accessed
on 1 February 2022). The retrieved reference sequences were considered to be representative
for each genotype and lineage as previously described [22]. We performed the pairwise
alignment of S1 nt sequences using fast Fourier transformation (MAFFT) [49] as a tool built
into the Geneious® software v10.2.6 (https://www.geneious.com/) (accessed on 5 Febru-
ary 2022). The phylogenetic analysis was constructed by maximum-likelihood method
using 1000 bootstrap replicates in MEGA X software [50]. Then, the resulting tree was
edited and visualized using the iTOL v4 program [51]. MAFFT was also employed to align
the aa sequences of the S1 protein of IBV/Ck/Can/2558004 and other Canadian and US
DMV/1639 IBVs (Table S2).

2.4. Prediction of Post-Translational Modifications Based on S1 Glycoprotein

S1 glycoprotein of IBV/Ck/Can/2558004 and MDL_DMV1639_15-5582 (KX529725)
isolates were subjected to post-translational modifications analysis. Firstly, the N-glycosylation
sites were predicted with the aid of a web server called NetNGlyc-1.0 [52] (https://services.
healthtech.dtu.dk/service.php?NetNGlyc-1.0) (accessed on 14 February 2022). For recogni-
tion of potential phosphorylation sites, the NetPhos-3.1 [53] (https://services.healthtech.
dtu.dk/service.php?NetPhos-3.1) (accessed on 20 February 2022) was used. The palmitoy-
lation sites were determined by CSS-Palm 4.0 software (http://csspalm.biocuckoo.org/)
(accessed on 20 February 2022), which depends on the fourth generation of the Group-based
Prediction System (GPS) algorithm [54].

https://www.ncbi.nlm.nih.gov/genbank/
https://www.geneious.com/
https://services.healthtech.dtu.dk/service.php?NetNGlyc-1.0
https://services.healthtech.dtu.dk/service.php?NetNGlyc-1.0
https://services.healthtech.dtu.dk/service.php?NetPhos-3.1
https://services.healthtech.dtu.dk/service.php?NetPhos-3.1
http://csspalm.biocuckoo.org/
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2.5. Identification of Codon Sites under Selection Pressure in S1 Glycoprotein

To find the aa residues under selection pressure, the aa sequence alignment of S1
glycoproteins of eight DMV/1639 IBVs (Table S2) and IBV/Ck/Can/2558004 were ex-
amined in the SELECTION server (https://selecton.tau.ac.il/) (accessed on 10 February
2022). For every single site within the protein sequence, the SELECTION server could
count the ratio between synonymous (dS) and non-synonymous (dN) substitutions [55].
Additionally, the obtained ratio is shown on a colored scale plot sorting the selection into
positive, neutral, or purifying.

2.6. In Silico Prediction Analysis on Functional, Structural Impacts, and Interatomic Interactions

Initially, we employed aa sequence alignment for both S1 glycoproteins of IBV/Ck/Can/
2558004 and MDL_DMV1639 _15-5582 (KX529725) to list the aa substitutions using MAFFT.
To predict the functional outcomes of aa substitutions, PROVEAN, SIFT, Poly-Phen-2,
PhD-SNP, and SNPs&GO were performed.

PROVEAN (http://provean.jcvi.org/index.php) (accessed on 20 February 2022),
an online database, expects the deleterious effects of single or numerous aa changes
on protein function [56]. The variant codon can be deleterious when its PROVEAN
score is ≤−2.5. The SIFT tool (https://sift.bii.a-star.edu.sg/) (accessed on 20 February
2022) anticipates the capability of the mutant codons within the protein to affect the
function through sequence homology and physical properties of protein residues [57].
The prospective functional effects of aa changes within the protein were evaluated using
Poly-Phen-2 (http://genetics.bwh.harvard.edu/pph2/) (accessed on 22 February 2022)
based on reasonable physical and comparative foresights [58]. The obtained data by
Poly-Phen-2 were categorized into possibly damaging (probabilistic score >0.15), prob-
ably damaging (probabilistic score >0.85), and benign (remaining). PhD-SNP (https:
//snps.biofold.org/phd-snp/phd-snp.html) (accessed on 22 February 2022) is a web server
that depends on the support vector machines to predict the disease-related effects of aa
variations within the protein [59]. Based on the function of protein annotation, SNPs&GO
(https://snps.biofold.org/snps-and-go/snps-and-go.html) (accessed on 22 February 2022)
is employed to ratify whether the variant codons have disease effects or not within the
tested protein [60].

To predict the structural effects of aa changes, seven computational tools (MutPred2,
MUpro, NetSurfP-2.0, DUET, mCSM, SDM, HOPE) were used. MutPred2 (http://mutpred.
mutdb.org/) (accessed on 25 February 2022), an online application, depends on a probabilis-
tic paradigm to discover the functional and structural effects of variants within the protein,
and thus could be beneficial for the mutants associated with phenotype alteration in the
experimental analyses [61]. MUpro (https://www.ics.uci.edu/~baldig/mutation.html)
(accessed on 25 February 2022) relies on support vector machines to expect the effect
of each point mutation on the protein stability with 84% accuracy [62]. NetSurfP-2.0
(https://services.healthtech.dtu.dk/service.php?NetSurfP-2.0) (accessed on 25 February
2022) was employed to anticipate the secondary structure, solvent accessibility, and struc-
tural changes among each codon site within the examined protein [63]. DUET, mCSM,
and SDM (http://biosig.unimelb.edu.au/duet/) (accessed on 25 February 2022) are col-
lectively implemented in the same web server and they depend on the support vector
Machines [64]. Using the 3D structure of the protein as an input, the HOPE server
(http://www.cmbi.ru.nl/hope/input/) (accessed on 27 February 2022) was performed to
analyze the impacts of variable aa residues on protein function and structure [65].

For the aim of interatomic interactions analysis, the DynaMut server (http://biosig.
unimelb.edu.au/dynamut/) (accessed on 1 March 2022) was employed to accomplish the
consequences of mutant aa residues on the protein flexibility and stability [66].

2.7. Homology Modelling and Structure Verification of S1 Glycoprotein

Based on aa sequences of S1 glycoprotein of IBV/Ck/Can/2558004 and MDL_DMV1639
_15-5582 (KX529725) isolate, the I-TASSER server (http://zhanglab.ccmb.med.umich.edu/

https://selecton.tau.ac.il/
http://provean.jcvi.org/index.php
https://sift.bii.a-star.edu.sg/
http://genetics.bwh.harvard.edu/pph2/
https://snps.biofold.org/phd-snp/phd-snp.html
https://snps.biofold.org/phd-snp/phd-snp.html
https://snps.biofold.org/snps-and-go/snps-and-go.html
http://mutpred.mutdb.org/
http://mutpred.mutdb.org/
https://www.ics.uci.edu/~baldig/mutation.html
https://services.healthtech.dtu.dk/service.php?NetSurfP-2.0
http://biosig.unimelb.edu.au/duet/
http://www.cmbi.ru.nl/hope/input/
http://biosig.unimelb.edu.au/dynamut/
http://biosig.unimelb.edu.au/dynamut/
http://zhanglab.ccmb.med.umich.edu/I-tasser
http://zhanglab.ccmb.med.umich.edu/I-tasser
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I-tasser.) (Accessed on 1 January 2022) was performed to generate their 3D structures. The I-
TASSER depends on aa sequence, and the output includes secondary, tertiary, and 3D struc-
tures predictions, as well as some protein function-related purposes [67]. After homology
modeling, a web server called COACH (http://zhanglab.ccmb.med.umich.edu/COACH/)
(accessed on 1 January 2022) was used to recognize the active binding sites against specific
ligands. The COACH server acts by two methods named TM-SITE and S-SITE [68]. The
comparison and identity between the two 3D modeled structures were achieved using
UCSF Chimera software (http://www.cgl.ucsf.edu/chimera/) (accessed on 4 January
2022). The quality of the generated structures was verified using the Ramachandran Plot
Server (https://zlab.umassmed.edu/bu/rama/index.pl) (accessed on 4 January 2022),
which shows a colored scale graph with three categories (highly preferred conformations,
preferred conformations, questionable conformations).

2.8. Analysis of Protein–Ligand Interactions by Molecular Docking

Initially, the sialic acid 3D structure (PubChem CID 444885) was retrieved from the
PubChem database (https://pubchem.ncbi.nlm.nih.gov/) (accessed on 11 January 2022)
and was utilized as a ligand. Then, the ligand was prepared through minimizing the energy
by Avogadro software [69]. Similarly, S1 proteins in PDB format were viewed by a Swiss
PDB viewer for energy minimization [70]. Following protein and ligand preparations,
the molecular docking was blindly employed using AutoDock Vina integrated within the
CB-Dock server [71]. For visualization of the docked outputs, Discovery Studio was used
to clarify the protein–ligand interactions [72].

3. Results
3.1. Characteristics of Whole Genome Sequence, Phylogenetic Analysis, and Comparative
Sequence Alignment

The full genomic length of IBV/Ck/Can/2558004 was submitted to GenBank under
accession number ON950740. The complete genome length was 27,710 nt, and it included
13 ORFs (5′UTR-1a-1b-S-3a-3b-3c(E)-M-4b-4c-5a-5b-N-6b-3′UTR). ORF1a and 1b consisted
of 11,889 nt and 8034 nt, respectively, and they formed the gene 1. The S glycoprotein was
encoded by gene 2, and it had 3501 nt (encoding 1166 aa). Furthermore, the S protein was
cleaved post-translationally into the S1 and S2 subunits by cleavage site RRSRR into 536 aa
and 625 aa residues, respectively. Gene 3 contained 3 ORFs (3a, 3b, 3c) that encoded three
different-sized proteins (57 aa, 64 aa, 109 aa, respectively). The M protein was encoded by a
single ORF consisting of 678 nt (225 aa) and was located in gene 4. while gene 5 included 4b
and 4c ORFs that had 94 and 56 aa, respectively. Two ORFs (5a, 5b) were observed at gene
6, and they were composed of 198 nt and 249 nt with 65 aa and 82 aa, respectively. A single
ORF (1230 nt) was located at gene 7 encoding the N protein with 409 aa. A non-coding
region (8 nt) between gene N and 6b has been detected. The length of UTRs at both genomic
ends, 5′ and 3′, were 530 nt and 274 nt, respectively.

Based on S1 gene homology analysis, IBV/Ck/Can/2558004 had 99.63%, 99.50%,
99.44%, 99.50%, and 99.57% identities when compared to five Canadian DMV/1639 IBVs:
IBV/Ck/Can/17-035614, IBV/Ck/Can/18-048430, IBV/Ck/Can/18-048192T, IBV/Ck/
Can/17-036989, and IBV/Ck/Can/18-049707 [24], respectively. Moreover, IBV/Ck/Can/
2558004 was related to the lineage GI-17 (Figure 1). Meanwhile, IBV/Ck/Can/2558004
shared 96.63% and 97.69% identities with MDL_DMV1639_15-5582 (KX529725) and GA9977/
2019 (MK878536), respectively. The later IBV strains were related to DMV/1639, IBVs that
were isolated in 2011 and 2019, respectively in the USA [23,73].

http://zhanglab.ccmb.med.umich.edu/I-tasser
http://zhanglab.ccmb.med.umich.edu/I-tasser
http://zhanglab.ccmb.med.umich.edu/COACH/
http://www.cgl.ucsf.edu/chimera/
https://zlab.umassmed.edu/bu/rama/index.pl
https://pubchem.ncbi.nlm.nih.gov/
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Figure 1. Phylogenetic relationships between IBV/Ck/Can/2558004 (denoted with blue color) and
85 reference strains based on the nt sequences of the S1 gene. The tree was constructed using the
maximum-likelihood method and the Tamura–Nei model with 1000 bootstrap replicates in MEGA X
software. Strains located within the same lineage are indicated in the same color. The constructed
tree was viewed by iTOL software.

3.2. Pairwise Comparison Based on the aa Sequences of S1 Glycoprotein

The similarity of the deduced aa sequences of the S1 protein of IBV/Ck/Can/2558004,
other Canadian DMV/1639, and USA DMV/1639 IBVs isolated between 2011 and 2019
are presented in Table S3. The S1 protein of IBV/Ck/Can/2558004 had 94.78% aa identity
when compared to that of MDL_DMV1639 _15-5582 (KX529725), and there were 29 aa
substitutions among IBV/Ck/Can/2558004, indicating that the nt changes were mostly of
non-synonymous type. Two out of twenty-nine aa substitutions were located in HVR 1 at
positions 54A and 60S, while six variants were observed in the HVR 2 at positions 104V, 113R,
116H, 117F, 123F, and 136I. HVR 3 included four aa changes at positions 278F, 315S, 339T, and
369N. Alternatively, the IBV/Ck/Can/2558004 S1 protein shared the highest aa similarity
(98.88% to 99.25%) in comparison with that of the Canadian DMV/1639 isolates, and it
had three aa substitutions. Two of the three aa variants were nearly situated in HVR 1
and HVR 2 at positions 31R and 269I, respectively, while the S1 protein of GA9977/2019
(MK878536) exhibited 97.20% aa identity in comparison with that of IBV/Ck/Can/2558004,
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where four aa changes were found in and/or near HVR 1, HVR 2, and HVR 3 at positions
(31R, 54A,), (91S, 95T, 116H,), and (269I, 293T, and 295Q), respectively.

3.3. Prediction of Potential N-Glycosylation, Phosphorylation, and Palmitoylation Sites

A predictive computational analysis was performed to identify and compare post-
translational modifications such as N-glycosylation, phosphorylation, and palmitoylation
motifs in the S1 glycoprotein of IBV/Ck/Can/2558004 and that of MDL_DMV1639 _15-5582
(KX529725).

N-glycosylation motifs were predicted based on a consensus sequence (sequon) Asn-
X-Ser/Thr, where Asn refers to Asparagine, X refers to any aa except Proline (Pro), Ser is
Serine, and Thr refers to Threonine. Among the S1 glycoprotein of IBV/Ck/Can/2558004,
there were 41 sequons (Asn-X-Ser/Thr) where 14 sites were predicted to be N-glycosylated
(Figure 2A), whereas the S1 glycoprotein of MDL_DMV1639 _15-5582 (KX529725) displayed
43 sequons, in which 17 were expected to have N-glycosylation (Figure 2B). Therefore,
the IBV/Ck/Can/2558004 S1 protein lacks three N-glycosylation sites compared to that
of MDL_DMV1639 _15-5582 (KX529725); one of the three sites was lost because the aa
isoleucine (I) substituted threonine (T) at position 269.
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The prospective phosphorylation sites were identified by the NetPhos 3.1 server, 
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conserved potential phosphorylation sites and their positions in the S1 glycoprotein of 
IBV/Ck/Can/2558004 and MDL_DMV1639 _15-5582 (KX529725) are listed in Table S4. S1 
glycoprotein of IBV/Ck/Can/2558004 showed lack of Thr and Tyr phosphorylation sites at 
positions 62 T, 121 T, 372 T, 519 T, and 459 Y, respectively, in comparison with that of 
MDL_DMV1639 _15-5582 (KX529725). On the other hand, the IBV/Ck/Can/2558004 S1 
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Figure 2. The sequons Asn-X-Ser/Thr in the S1 glycoprotein of IBV/Ck/Can/2558004 (A) and
MDL_DMV1639 _15-5582 (KX529725) (B). Asn-Xaa-Ser/Thr sequons in the sequences are highlighted
in blue. Sequons predicted to be N-glycosylated by NetNglyc server are shown in red.

The prospective phosphorylation sites were identified by the NetPhos 3.1 server,
which predicts Ser, Thr, or tyrosine (Tyr) phosphorylation sites in the S1 glycoprotein. The
conserved potential phosphorylation sites and their positions in the S1 glycoprotein of
IBV/Ck/Can/2558004 and MDL_DMV1639 _15-5582 (KX529725) are listed in Table S4.
S1 glycoprotein of IBV/Ck/Can/2558004 showed lack of Thr and Tyr phosphorylation
sites at positions 62 T, 121 T, 372 T, 519 T, and 459 Y, respectively, in comparison with that
of MDL_DMV1639 _15-5582 (KX529725). On the other hand, the IBV/Ck/Can/2558004 S1
protein exhibited acquisition of Thr and Ser phosphorylation sites at positions 101 T, 533 T,
and 25 S, respectively, when compared to that of MDL_DMV1639 _15-5582 (KX529725).
Ser substitutions at positions 2 S and 87 S added unique Ser phosphorylation sites to the
conserved sites in IBV/Ck/Can/2558004.

To predict the palmitoylation sites, CSS-Palm 4.0 software was employed. The prospec-
tive palmitoylation sites were conserved and showed the same pattern in the S1 glycopro-
tein of IBV/Ck/Can/2558004 and that of MDL_DMV1639 _15-5582 (KX529725) (Table S5).
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3.4. Selection Pressure Analysis of S1 Glycoprotein

The selection pressure examination was conducted by a web server called SELECTION.
It estimates the selection pressure by using a Mechanistic Empirical Combination (MEC)
model at certain codons. The MEC model acts by consideration of the different rates of
aa changes. The positive selection was observed at different aa residues all over the S1
glycoprotein (Figure 3). The positive selection was detected in a total of 35 aa residues
(6.5%), while the rest were subjected to purifying selection. Furthermore, it was shown that
most aa residues subjected to positive selection were in and/or near the residues forming
the three HVRs of S1 glycoprotein.

Genes 2022, 13, x FOR PEER REVIEW 8 of 19 
 

 

T, and 25 S, respectively, when compared to that of MDL_DMV1639 _15-5582 (KX529725). 
Ser substitutions at positions 2 S and 87 S added unique Ser phosphorylation sites to the 
conserved sites in IBV/Ck/Can/2558004. 

To predict the palmitoylation sites, CSS-Palm 4.0 software was employed. The pro-
spective palmitoylation sites were conserved and showed the same pattern in the S1 gly-
coprotein of IBV/Ck/Can/2558004 and that of MDL_DMV1639 _15-5582 (KX529725) (Table 
S5). 

3.4. Selection Pressure Analysis of S1 Glycoprotein 
The selection pressure examination was conducted by a web server called SELEC-

TION. It estimates the selection pressure by using a Mechanistic Empirical Combination 
(MEC) model at certain codons. The MEC model acts by consideration of the different 
rates of aa changes. The positive selection was observed at different aa residues all over 
the S1 glycoprotein (Figure 3). The positive selection was detected in a total of 35 aa resi-
dues (6.5%), while the rest were subjected to purifying selection. Furthermore, it was 
shown that most aa residues subjected to positive selection were in and/or near the resi-
dues forming the three HVRs of S1 glycoprotein. 

 
Figure 3. The MEC model in the SELECTION server was used to detect the selective pressure for 
the aa sequences alignment of S1 glycoprotein for 9 DMV/1639 IBVs, including 
IBV/Ck/Can/2558004. The aa residues colored with orange to yellow refer to a positive selection, 
while the residues highlighted with white and gray are indicative of a neutral selection. The purify-
ing selection is represented by a purplish color. 

3.5. Impact of aa Substitutions on Function and Structure of S1 Glycoprotein 
Because the highest aa changes in the S1 glycoprotein were detected when comparing 

IBV/Ck/Can/2558004 to MDL_DMV1639 _15-5582 (KX529725), we therefore considered 
the later as a wildtype (non-mutant). Further computational analysis was conducted on 
the wildtype S1 glycoprotein versus (vs.) IBV/Ck/Can/2558004 (mutant one) to study the 

Figure 3. The MEC model in the SELECTION server was used to detect the selective pressure for the
aa sequences alignment of S1 glycoprotein for 9 DMV/1639 IBVs, including IBV/Ck/Can/2558004.
The aa residues colored with orange to yellow refer to a positive selection, while the residues
highlighted with white and gray are indicative of a neutral selection. The purifying selection is
represented by a purplish color.

3.5. Impact of aa Substitutions on Function and Structure of S1 Glycoprotein

Because the highest aa changes in the S1 glycoprotein were detected when comparing
IBV/Ck/Can/2558004 to MDL_DMV1639 _15-5582 (KX529725), we therefore considered
the later as a wildtype (non-mutant). Further computational analysis was conducted on
the wildtype S1 glycoprotein versus (vs.) IBV/Ck/Can/2558004 (mutant one) to study the
prospective effects of aa substitutions on protein function, structure, and physico-chemical
properties as well as to analyze interatomic interactions and protein–ligand interaction.
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3.5.1. Prediction of Functional Effect of aa Substitutions on S1 Glycoprotein

To detect the functional effect of aa substitutions on the S1 protein of IBV/Ck/Can/
2558004, a total of five tools were used (PROVEAN, SIFT, Poly-Phen-2, PhD-SNP, SNPs&GO).
Twelve out of twenty-nine aa substitutions were predicted by the SIFT server to have a
damaging effect on the S1 protein, and their tolerance index was 0. The PROVEAN server
showed four aa residues had a deleterious effect (PROVEAN score > −2.5). The number of
affecting ones expected with the aid of PolyPhen-2 was five. The damaging variants identi-
fied by poly-Phen-2 were five; four of them were “probably damaging” (score 0.980–1.00)
and only one was “possibly damaging” (score 0.919). The disease -associated variant
aa residues predicted by PhD-SNP, SNAP-2, and SNPs&GO were nine, five, and one in
number, respectively.

A total of eight variant aa residues were collectively anticipated by three or more tools
to have damaging effects and were therefore functionally significant. These variants were
taken into account in the following analyses.

3.5.2. Prediction of Structural Impact of aa Substitutions on S1 Glycoprotein

Eight variants (L2S, Q31R, G116H, T269I, G520D, Q522H, F523H, N526G) that had been
expected to cause a negative effect on protein function were then subjected to structural
impact analysis. For this, seven tools (MutPred2, MUpro, NetSurfP-2.0, DUET, mCSM,
SDM, HOPE) were used.

MutPred2 exhibited four mutants to be pathogenic, while Mupro predicted three
variants to increase the stability of the protein structure, and the rest (L2S, G116H, T269I,
F523H, N5226G) had a decreasing effect. NetSurfP-2.0 showed that the residue is either
buried or exposed among the protein structure. It was shown that one mutant (T269I)
shifted from exposed to buried in comparison with the wildtype S1 structure. Additionally,
DUET predicted five mutants with destabilizing effects, and the others had stabilizing
effects. In terms of SDM, four showed stabilizing effects, whereas mCSM revealed seven
aa residues to be destabilizing. The HOPE server was used to determine the impact of
physico-chemical characters, solvent accessibility, the interaction between the molecules,
and effects on function and structure. Seven mutants were anticipated to induce a change
in protein size, and three mutations revealed a modification in the charge. In the case
of solvent accessibility, four mutations induced a variation in the hydrophobicity while
two lost their hydrophobicity. Glycine residues at positions 116 and 520 of the wildtype
structure were flexible enough to make torsion angles but replacing glycine with other aa
residues caused the local backbone to be in an incorrect conformation, thus disrupting the
local structure in the mutant S1 protein.

3.5.3. Prediction of Inter-Atomic Interactions

The atomic interactions of the native and variant aa residues of the S1 protein were
analyzed and illustrated by the DynaMut server (Figure 4). It has been observed that
the ∆∆G EnCoM revealed all mutants to have a destabilizing effect. Three mutants (L2S,
G116H, T269I) had an increased effect on molecule flexibility predicted by ∆∆SVib ENCoM.
Meanwhile, the DynaMut ∆∆G predicted four mutants with stabilizing effects (Q31R, T269I,
G520D, N526G).
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3.5.4. Homology Modelling and Quality Validation of the 3D Structures

To generate the 3D structures of the wildtype and mutant S1 protein of DMV/1639
IBVs, the I-TASSER server was employed. The generated models were topped in a certain
arrangement and classified by the TM-score, which degrees the distance of deviation (in
Angstrom) between the residual position of the model and wildtype structure. For both
of the modeled sequences utilized in this study, the TM-score output exceeded 0.5, thus
indicating that both 3D structure models were biologically significant and had a convenient
structural topology (Figure 5; Table 1). The similarity between both 3D structures (wildtype
and mutant S1 protein of DMV/1639 IBVs) was 88.43%. Apart from structural similarity,
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both 3D models showed common active binding sites to some exogenous ligands (Table 1).
To verify the quality of the 3D models, the Ramachandran Plot Server was used. The
obtained results showed that more than 90% of the residues in both structures were in the
favored regions.
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Table 1. TM- and C-scores, and predicted aa residues bound to exogenous ligand (magnesium).

Sequences C-Score TM-Score Ligand Binding Site
Residues Ligand

Mutant S1 protein 0.19 0.74 ± 0.11 232,235,236 Magnesium
Wildtype S1 protein −0.17 0.69 ± 0.12 232,235,236 Magnesium

3.5.5. Analysis of Sialic Acid-S1 Protein Interaction by Molecular Docking

It has been shown that sialic acid residues on cell surfaces have a major role in initiating
IBV infection, particularly in the early stages [17–19]. Therefore, molecular docking was
employed to detect the binding affinity of S1 proteins to sialic acid residues. The binding
affinity of sialic acid to the mutant S1 protein was −5.8 kcal/mol, while the wildtype S1
protein had −6 kcal/mol, so the mutant S1 protein binds to sialic acid with lower stability.
Visualization of the docking outputs using Discovery Studio showed some differences in
the mutant and wildtype S1 proteins (Figure 6). In terms of binding sialic acid with mutant
S1 protein, there were seven hydrogen bonds, in which three bonds were located at residue
252, two bonds at residue 255, and finally two bonds at aa residues 500 and 516. While
wildtype S1-sialic interactions revealed four hydrogen bonds at aa residues 262, 263, 441,
and 482, two carbon-hydrogen bonds were detected at aa residues 262 and 482. Lastly,
there was an acceptor hydrogen bond at aa 441.



Genes 2022, 13, 1617 12 of 19Genes 2022, 13, x FOR PEER REVIEW 12 of 19 
 

 

 
Figure 6. Sialic acid interacted with mutant (A) and wildtype (B) S1 proteins. Visualization of mo-
lecular docking outputs was performed by Discovery Studio. Ligand (sialic acid) was colored pur-
ple, while bond interactions were indicated with different colors. The green color refers to hydrogen 
bonds, blue color shows carbon-hydrogen bonds, and red color refers to acceptor hydrogen bonds. 
Residues of aa included in the interactions were indicated with an ID and three letters. Black arrow 
refers to serine, green arrow indicates glutamine, blue arrow shows arginine, red arrow refers to 
lysine, yellow arrow shows tyrosine, and brown arrow refers to glutamic Acid. 

4. Discussion 
Over the last few years, DMV/1639 became the most prevalent strain of IBV in the 

Eastern part of Canada. The IBV S1 gene plays a major role in virus evolution and the 
emergence of variants. Our study was conducted to analyze the whole genome sequence 
of an IBV isolate (IBV/Ck/Can/2558004) and to identify the evolutionary trends within the 
S1 gene, with potential functional and structural impacts within the encoded protein. In 
the present study, the nt sequence of the S1 gene of IBV/Ck/Can/2558004 was almost iden-
tical (above 99%) to that of Canadian DMV/1639 IBV strains isolated in 2019 [24] and was 
less similar (96.63%) to the S1 gene of US DMV/1639 IBV isolated in 2011 [23]. Homology 
analysis of aa sequences revealed aa substitutions, predominantly in the HVRs of the 
IBV/Ck/Can/2558004 S1 protein compared to that of US DMV/1639. These aa changes in 
the S1 protein of IBV/Ck/Can/2558004 could result in potential functional and structural 
impacts. 

Our results revealed that IBV/Ck/Can/2558004 had 27, 710 nt long, consisting of 13 
ORFs organized as 5′UTR-1a-1b-S-3a-3b-3c(E)-M-4b-4c-5a-5b-N-6b-3′UTR, and this 
agreed with previously characterized IBV isolates in some parts of the world [74,75]. Ad-
ditionally, our findings showed the presence of a non-coding region consisting of eight nt 
located between genes N and 6b, which has been previously recognized [76]. 

In the current work, the S1 cleavage site of IBV/Ck/Can/2558004 was RRSRR, and was 
thus in accordance with a similar study [77]. The homology analysis based on the S1 gene 
sequences revealed that IBV/Ck/Can/2558004 shared the highest nt identity percentage 
(99.44–99.63%) in comparison with five Canadian DMV/1639 IBV isolates recently isolated 
from Eastern Canada [24]. In addition, based on S1 sequences, nt similarity between 
IBV/Ck/Can/2558004 and two DMV/1639 IBV isolates, MDL_DMV1639_15-5582 and 
GA9977/2019, were 96.63% and 97.69%, respectively; these two IBV strains were previ-
ously isolated in the USA in 2011 and 2019, respectively [23,73]. Based on S1 nt sequences, 
our findings showed that IBV/Ck/Can/2558004 belonged to the GI-17 genotype that con-
tains IBV strains isolated in the USA with different clinical diseases [22]. Transmission of 

Figure 6. Sialic acid interacted with mutant (A) and wildtype (B) S1 proteins. Visualization of
molecular docking outputs was performed by Discovery Studio. Ligand (sialic acid) was colored
purple, while bond interactions were indicated with different colors. The green color refers to
hydrogen bonds, blue color shows carbon-hydrogen bonds, and red color refers to acceptor hydrogen
bonds. Residues of aa included in the interactions were indicated with an ID and three letters. Black
arrow refers to serine, green arrow indicates glutamine, blue arrow shows arginine, red arrow refers
to lysine, yellow arrow shows tyrosine, and brown arrow refers to glutamic Acid.

4. Discussion

Over the last few years, DMV/1639 became the most prevalent strain of IBV in the
Eastern part of Canada. The IBV S1 gene plays a major role in virus evolution and the
emergence of variants. Our study was conducted to analyze the whole genome sequence
of an IBV isolate (IBV/Ck/Can/2558004) and to identify the evolutionary trends within
the S1 gene, with potential functional and structural impacts within the encoded protein.
In the present study, the nt sequence of the S1 gene of IBV/Ck/Can/2558004 was almost
identical (above 99%) to that of Canadian DMV/1639 IBV strains isolated in 2019 [24]
and was less similar (96.63%) to the S1 gene of US DMV/1639 IBV isolated in 2011 [23].
Homology analysis of aa sequences revealed aa substitutions, predominantly in the HVRs
of the IBV/Ck/Can/2558004 S1 protein compared to that of US DMV/1639. These aa
changes in the S1 protein of IBV/Ck/Can/2558004 could result in potential functional and
structural impacts.

Our results revealed that IBV/Ck/Can/2558004 had 27, 710 nt long, consisting of
13 ORFs organized as 5′UTR-1a-1b-S-3a-3b-3c(E)-M-4b-4c-5a-5b-N-6b-3′UTR, and this
agreed with previously characterized IBV isolates in some parts of the world [74,75].
Additionally, our findings showed the presence of a non-coding region consisting of eight
nt located between genes N and 6b, which has been previously recognized [76].

In the current work, the S1 cleavage site of IBV/Ck/Can/2558004 was RRSRR, and was
thus in accordance with a similar study [77]. The homology analysis based on the S1 gene
sequences revealed that IBV/Ck/Can/2558004 shared the highest nt identity percentage
(99.44–99.63%) in comparison with five Canadian DMV/1639 IBV isolates recently isolated
from Eastern Canada [24]. In addition, based on S1 sequences, nt similarity between
IBV/Ck/Can/2558004 and two DMV/1639 IBV isolates, MDL_DMV1639_15-5582 and
GA9977/2019, were 96.63% and 97.69%, respectively; these two IBV strains were previously
isolated in the USA in 2011 and 2019, respectively [23,73]. Based on S1 nt sequences, our



Genes 2022, 13, 1617 13 of 19

findings showed that IBV/Ck/Can/2558004 belonged to the GI-17 genotype that contains
IBV strains isolated in the USA with different clinical diseases [22]. Transmission of IBV
variants to Canada, which were previously characterized in the USA, could be attributed
to close geographic distance as well as the common trade between the two countries [78].

With regards to the alignment of aa sequences in the S1 protein, IBV/Ck/Can/2558004
had 29 aa substitutions that represented 5.22% aa dissimilarity when aligned with that
of the US DMV/1639 (MDL_DMV1639_15-5582), while it shared only 2.8% and 0.75 to
1.12% aa difference compared to the other US DMV/1639 (GA9977/2019) and the five
Canadian DMV/1639 IBVs, respectively. Interestingly, it has been observed that a reason-
able numbers of these aa substitutions were located within and/or near the three HVRs
of the S1 subunit, thus reflecting a continuous change of neutralizing sites and serotype-
specific epitopes with subsequent lower protective efficacy of homologous IB vaccines.
These observations agreed with other previous studies, which indicated that the different
serotypes within the genetically divergent IBVs are generally associated with changes in
the HVRs of the S1 subunit [79,80]. Another study showed that the emergence of a new IBV
serotype could have resulted from 10 to 15 aa substitutions (represent 2 to 3%) within the S1
glycoprotein [81]. Paradoxically, diversity within the IBV S1 gene are not often associated
with new antigenic variants [82,83].

For N-glycosylation sites, our findings showed a lack of 3 N-glycosylation sites
within the S1 protein of IBV/Ck/Can/2558004 compared to that of US DMV/1639 (MDL_
DMV1639_15-5582). One of the three lost N-glycosylation sites was detected at position
267 because the consensus N-glycosylated sequence (Asn-X-Ser/Thr) was lost because the
aa residue I substituted T at position 269. These changes in the N-glycosylation sites may
have some functional consequences in the S1 protein. Similar analyses showed that the
differences in N-glycosylation motifs of viral proteins could influence the receptor binding
capacity and therefore minimize the recognition capacity by host innate immune responses
and antibodies, ultimately affecting viral infectivity and replication [31–33]. Previous
studies were conducted to analyze the N-glycosylation sites within the S1 glycoprotein of
different IBV strains; their observations also revealed loss or acquisition of N-glycosylation
sites in the S1 subunit of the compared IBV strains [84,85]. In terms of potential phos-
phorylation sites, the S1 protein of IBV/Ck/Can/2558004 revealed loss and acquisition
in comparison with that of US DMV/1639 (MDL_DMV1639_15-5582) at certain positions;
these observations were in accordance with previous studies [84,85]. Wilbur et al. [86]
pointed out that the property of phosphorylation could be observed only in the N protein
of coronaviruses. However, we observed potential phosphorylation motifs within the S1
glycoprotein based on the predictive tool, but this has no consequence for phosphorylation
because S is an established glycoprotein that does not possess this property. Therefore,
further investigations are warranted to confirm whether the S glycoprotein has phosphory-
lation peptides similar to those of the N protein. Our observations on palmitoylation sites
within the S1 subunit demonstrated no substantial distinctions between the two tested IBV
isolates; these findings contradicted other experimental studies that showed mutations in
the palmitoylation activity within different viral proteins [84,87–89].

It has been shown that virus evolution is associated with two essential steps: the
appearance of genetic variations and selection [90]. Here, we observed that 35 aa (6.5%)
within the S1 subunit were subjected to positive selection pressure, and some of them were
present in or near the three HVRS, which is in accordance with an experimental study on
Italy 02 IBV isolates, which revealed evidence of aa residues with positive selection pres-
sure among the HVRs [91]. The occurrence of positive selection pressure in the S1 protein
of Canadian DMV/1639 IBV is not suggested to be driven by vaccine-induced immune
pressure; there are two reasons for this: (1) no available homologous commercial vaccines
against DMV/1639 in Canada, (2) the birds are often exposed to a heterologous immune
response against that isolate. A previous study supported our suggestion, which revealed
that vaccine-driven immune pressure could enhance the selective forces within the S1 pro-
tein of QX strains, particularly after administration of a homologous vaccine [92]. However,
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the positive selection pressure could be attributed to other factors beyond the resistance
of the host, such as the biosecurity measures [90,93]. On the other hand, the partially
immunized birds, because of unsuitable vaccination and immunosuppressive agents, could
enhance the virus circulation, resulting in the selection and emergence of newly immune-
evaded variants [94,95].

We employed further bioinformatic tools to predict if aa changes had an influence on
the function, structure, and protein–ligand interaction in the S1 glycoprotein of IBV/Ck/
Can/2558004 compared to that of US DMV/1639. Occasionally, the bioinformatic analysis
could output negative results; however, we overcame this bias by using several tools. Ini-
tially, seven tools were used to determine the functional impacts. Eight variant aa residues
(L2S, Q31R, G116H, T269I, G520D, Q522H, F523H, N526G) out of the substituted ones
(29 aa) were unanimously detected by four tools to functionally affect the S1 subunit of
IBV/Ck/Can/2558004. The eight filtered variants were then involved in the following
analyses. It was shown that two mutants (G116H and T269I) were collectively detected
by all tools to structurally impact the S1 subunit; however, the other mutants were pre-
dicted to influence the protein structure by some tools. The functional and structural
consequences within the S1 subunit of IBV/Ck/Can/2558004 may alter the binding affinity
to its natural receptors (sialic acid). Therefore, we performed molecular docking to identify
the interactions between S1 glycoprotein and its relevant ligand. It was notable that the
binding energy of the S1 glycoprotein of IBV/Ck/Can/2558004 to the sialic acid was lower
compared to that of US DMV/1639. The possible explanation for this scenario would be
that the S1 subunit contains two separate folded domains: the N-terminal domain (NTD)
(aa 21 to 237) and the C-terminal domain (CTD) (aa 269 to 414), which act as the receptor
binding domain [96]. Depending on the later observation, our findings showed that the
most impactful aa residues on the S1 subunit function and structure were clustered in the
same sequences of both domains (NTD and CTD). Ultimately, the occurrence of mutations
within these domains could result in decreased binding potency to the ligands. Another
experimental analysis was conducted on the M41 spike protein; it was shown that the
aa sequence from 19 to 272 is necessary for S protein binding to the trachea as well as
attachment to 2, 3-linked sialic acid [97].

The forementioned in silico findings reflect continuous changes in the S1 gene and
its encoded protein of IBV/Ck/Can/2558004; subsequently, this may affect the virus
pathogenesis and also lead to the existence of dozens of serotypes, which are problematic
with regard to vaccination efficiency and could result in a high prevalence of Canadian
DMV/1639 among Canadian poultry operations. The data obtained by the Animal Health
Lab (University of Guelph, ON, Canada) from 2015 to 2016 supported our findings, in which
the prevalence of DMV/1639 had reached to just below 25% among the detected IBV strains
in the country in 2016. In 2017 and 2018, there was a substantial increase in the prevalence
of DMV/1639, representing around 45% of all IBV strains in Canada, which dominated all
other strains [98]. Furthermore, a recent vaccine efficacy study revealed that the Mass and
Connecticut (Conn) vaccines could not provide complete protection against DMV/1639
in specific pathogen-free layer chickens [99]. Therefore, there is a strong probability that
the higher rates of genetic diversity within the DMV/1639 S1 gene, together with lower
vaccine efficacy, may lead to a further increased prevalence of Canadian DMV/1639 in
chicken flocks in Canada.

In conclusion, our results elucidated that the S1 glycoprotein of Canadian DMV/1639
has experienced remarkable evolutionary changes in the form of mutations and selection
pressure, which lead to functional and structural impacts within this protein. It is important
to note that the S1 glycoprotein possesses a significant role in cell binding and receptor
identification, and genetic diversity is frequently observed in this protein of IBV. Therefore,
by identifying these properties, we will be able to better understand the epidemiology,
the molecular mechanisms of infection, and virus evolution. Additionally, the continuous
evolution of the S1 glycoprotein of Canadian DMV/1639 indicates the significance of
constant monitoring of circulating IBV strains and the necessity of developing effective
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vaccines that counteract the emergence of new variants. The approach of computational
analysis is user-friendly, reliable, accessible, and essential to predict multiple events within
a gene. However, validation of these predictions requires proper laboratory and in vivo
experiments.
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IBVs; Table S4: Prediction of conserved serine, threonine, and tyrosine phosphorylation sites in S1
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of potential palmitoylation sites in S1 glycoprotein of IBV/Ck/Can/2558004 and MDL_DMV1639
_15-5582 (KX529725).
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