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Abstract: RNA interference (RNAi) is a powerful tool whose efficacy against a broad range of targets
enables functional genetic tests individually or systematically. However, the RNAi pathway has been
lost in evolution by a variety of eukaryotes including most Leishmania sp. RNAi was retained in
species of the Leishmania subgenus Viannia, and here we describe the development, optimization,
and application of RNAi tools to the study of L. (Viannia) braziliensis (Lbr). We developed vectors
facilitating generation of long-hairpin or “stem-loop” (StL) RNAi knockdown constructs, using
GatewayTM site-specific recombinase technology. A survey of applications of RNAi in L. braziliensis
included genes interspersed within multigene tandem arrays such as quinonoid dihydropteridine
reductase (QDPR), a potential target or modulator of antifolate sensitivity. Other tests include
genes involved in cell differentiation and amastigote proliferation (A600), and essential genes of the
intraflagellar transport (IFT) pathway. We tested a range of stem lengths targeting the L. braziliensis
hypoxanthine-guanine phosphoribosyl transferase (HGPRT) and reporter firefly luciferase (LUC)
genes and found that the efficacy of RNAi increased with stem length, and fell off greatly below about
128 nt. We used the StL length dependency to establish a useful ‘hypomorphic’ approach not possible
with other gene ablation strategies, with shorter IFT140 stems yielding viable cells with compromised
flagellar morphology. We showed that co-selection for RNAi against adenine phosphoryl transferase
(APRT1) using 4-aminopyrazolpyrimidine (APP) could increase the efficacy of RNAi against reporter
constructs, a finding that may facilitate improvements in future work. Thus, for many genes, RNAi
provides a useful tool for studying Leishmania gene function with some unique advantages.

Keywords: trypanosomatid protozoan parasite; Leishmania braziliensis; Leishmania guyanensis; virulence;
gene knockdowns; site specific recombinase; quinonoid dihydropteridine reductase (QDPR); intraflagellar
transport; hypomorphic mutations

1. Introduction

More than 1.7 billion people are at risk for the ‘neglected tropical disease’ leishmania-
sis, with nearly 12 million exhibiting symptomatic disease and more than 50,000 deaths
annually, and upwards of 100 million harboring asymptomatic infections [1–5]. Leishmania
sp. have two distinct growth stages, the promastigote in the sand fly vector, and the
intracellular amastigote residing within cellular endocytic pathways in the mammalian
host. While the promastigote stage is readily cultured in the laboratory and amenable
to molecular techniques, amastigotes require the use of macrophage infection systems or
infections of animal models replicating key aspects of human disease.
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Different species of Leishmania tend to associate with different clinical presentations
ranging from localized mild cutaneous disease to more severe visceral or mucosal disease,
with host factors also playing key roles [3,6]. Leishmania classified within the subgenus
Viannia are widespread parasites of mammals within South and Central America [7,8].
L. Viannia sp. represent one of earliest diverging groups of Leishmania, with numer-
ous differences from later-diverging subgenera including development within the insect
hindgut, retention of the RNA interference (RNAi) pathway, and often the presence of RNA
viruses [7,9,10]. Most importantly this extends to host responses and pathology, especially
mucocutaneous disease presentations which most commonly arises from L. braziliensis (Lbr)
infections and are uncommon in infections by species outside of Viannia [11].

In this work we focus on experimental applications of the RNAi pathway, an evo-
lutionarily conserved post-transcriptional gene silencing mechanism in eukaryotes [12].
Trypanosoma brucei, a kinetoplastid parasite closely related to Leishmania, was the first
trypanosomatid and indeed one of the first eukaryotes found to have a functional RNAi
pathway [13]. As in other organisms, RNAi quickly became a key tool for diverse func-
tional genetic analysis, ranging from individual to genome-wide applications [14–16]. In
contrast, early studies showed that most species of the related trypanosomatid parasite
Leishmania lack this pathway, in common with an evolutionarily widely separated group of
other eukaryotic microbes [17,18]. These observations have raised many questions about
the forces operating on microbes to retain or lose this otherwise universally conserved
eukaryotic pathway, such as retention or loss of RNA viruses or retrotransposons [10,19].

While initially disappointing for application towards many Leishmania sp., phyloge-
netic mapping showed that RNAi had been retained in the lineage leading to the subgenus
Viannia, before its loss in the lineages leading to the remaining species of ‘higher’ Leishmania
such as L. major, L. donovani or L. mexicana [10]. The discovery of an active RNAi pathway
in Viannia species raised the possibility that RNAi could be used as useful tool for genetic
manipulation, as in other eukaryotes. In Leishmania classic gene knockouts by homologous
recombination work efficiently, but are challenged by the need to disrupt at least two
alleles, and/or the presence of multi-copy genes (although this is rapidly evolving with
the implementation of CRISPR/Cas9 based tools [20]). The potential utility of RNAi in
L. braziliensis emerged in several studies showing the impact of RNAi on cellular protein or
RNA levels [10,21].

In this study we provide further evidence for the utility of the RNAi in L. braziliensis,
surveying its activity against a spectrum of gene targets relevant to Leishmania biology or
chemotherapy, such as flagellar, stage specific or metabolic genes. To accelerate these stud-
ies, we applied vectors facilitating the one step production of the dsRNA trigger hairpin-
generating “stem-loop” (StL) constructs, using GatewayTM (Invitrogen) technology in a
single step. A similar approach was described previously in African trypanosomes [22]. We
explored several parameters relevant to the efficacy of RNAi, which in turn informed meth-
ods to generate hypomorphic loss of function mutations of otherwise lethal knockdowns,
and co-selections for elevated RNAi efficacy by negative selection. As the great majority of
Leishmania genes are shared across all species [23], RNAi performed within Viannia sp. will
likely inform studies of Leishmania sp. more broadly outside of this subgenus.

2. Materials and Methods
2.1. Leishmania Strains and Parasite Culture

Leishmania braziliensis (Lbr) M2903 (MHOM/BR/75/M2903) was obtained from D.
McMathon-Pratt (Yale School of Public Health) and grown as promastigotes in Schnei-
der’s Insect Medium (Sigma-Aldrich, St. Louis MO USA; cat. No. S9895) supplemented
with 10% heat-inactivated fetal bovine serum (FBS), 2 mM L-glutamine, 500 units mL−1

penicillin and 50 µg mL−1 streptomycin (Gibco No. 5070). L. braziliensis M2903 SA
(MHOM/BR/75/M2903) was obtained from S.C. Alfieri (Universidade de São Paulo,
Brasil). The SA line had been adapted for growth and was serially maintained as amastig-
otes at 34 ◦C in modified UM-54 medium [24].
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2.2. Leishmania Transfection

Stable transfection of L. braziliensis M2903 strain (MHOM/BR/75/M2903) was per-
formed using the high-voltage procedure [25]. Parasites were grown to mid-log phase,
pelleted at 1300 g, washed once with cytomix electroporation buffer (120 mM KCl, 0.15 mM
CaCl2, 10 mM K2HPO4, 25 mM HEPES-KOH, pH 7.6, 2 mM EDTA and 5 mM MgCl2) and
resuspended in cytomix at a final concentration of 1 × 108 cells mL−1. For transfection,
10 µg DNA was mixed with 500 µL of cells and electroporated twice in a 0.4 cm gap cuvette
at 25 µF, 1400 V (3.75 kV cm−1), waiting 10 sec between electroporations. Cells were then
incubated at 26 ◦C for 24 hours in drug-free media and then plated on semisolid media con-
taining the appropriate drug to select clonal lines. For selections using blasticidin deaminase
(BSD gene), hygromycin phosphotransferase (HYG gene), streptothricin acetyltransferase
(SAT gene) and the bleomycin-binding protein from Streptoalloteichus hindustanus (PHLEO
gene) markers, parasites were plated on 10–20 µg mL−1 blasticidin, 30–80 µg mL−1 hy-
gromycin B, 50–100 µg mL−1 nourseothricin and 0.2–2 µg mL−1 phleomycin, respectively
(ranges reflect differences when using drugs singly or in combination). Colonies normally
appeared by 14 days, at which point they were recovered, grown to stationary phase in
1 mL and passaged with the appropriate drugs. Plating efficiencies range from 60% to 95%
for the un-transfected L. braziliensis M2903 strain; transfection efficiencies varied from 2 to
50 colonies per µg of SwaI-digested pIR vector controls.

Lbr expressing luciferase were generated by electroporation of SwaI-digested pIR1PHLEO-
GFP65*-LUC (B6034; Supplementary Table S1) as described previously [10]. These parasites
were then electroporated with SwaI-cut pIR2SAT-LUC-StL(A)-APRT-StL(b) (B6391; Supple-
mentary Table S1) followed by selection with both phleomycin and nourseothricin. The
presence of both constructs was confirmed by PCR tests. The LUC stem in this configuration
is 508 nt [10].

2.3. Western-Blot Analysis

Leishmania promastigotes were collected and resuspended in phosphate-buffered
saline (PBS) at 1 × 108 cells/mL. Cell extracts were prepared and Western blots performed
after separation by SDS-polyacrylamide gel electrophoresis as previously described [26].
For HGPRT, primary antibodies were anti-L. donovani HGPRT and APRT antiserum [27] was
used at a titer of 1:5000 and 1:1000, respectively. For normalization anti-L. major H2A [28]
was used at a titer of 1:100,000, with goat anti-rabbit IgG as the secondary antibody
(1:20,000, Licor Inc., Lincoln, NE USA.). Similar procedures were used for QDPR Western
blot analysis with extracts from 1.6 × 107 cells. Gels were transferred to nitrocellulose
membranes, which were blocked with a 5% skim milk solution and incubated with 1:500
dilution of rat anti-QDPR [29], a 1:1000 dilution of rabbit anti-PTR1 [30] or anti-L. major
H2A as described above. IRDye™ anti-rat or rabbit goat immune globulin G were used as
the secondary antisera at 1:10,000 dilution. Antibody binding to blots was detected and
quantified using an Odyssey infra-red imaging system (Li-Cor).

2.4. Quininoid Dihydropteridine Reductase Assay

Parasites were harvested at log phase (4–6 × 106 cells/mL) and collected by cen-
trifugation at 1250× g for 10 min at 26 ◦C, washed twice with PBS, and resuspended at
2 × 109 cells ml−1 in 10 mL of Tris-Cl, pH 7.0, with 1 mM EDTA and a mixture of protease
inhibitors as described [31]. Cells were lysed by three rounds of freeze thawing and sonica-
tion, and the extracts clarified by centrifugation at 15,000× g for 30 min at 4 ◦C. Protein
concentrations were determined using Qubit Fluorometric Quantification (Invitrogen).
Quininoid dihydropteridine reductase activity was measured at 25 ◦C as described [32]
using quinonoid dihydrobiopterin generated continuously by horseradish peroxidase medi-
ated oxidation of H4-biopterin. The standard reaction mixture contained 50 mM Tris-HCl,
pH 7.2, 20 µg of horseradish peroxidase, 0.1 mM H2O2, 20 µM of H4-biopterin, 100 µM
NADH, and purified QDPR or parasite lysates; all components were incubated for 3 min
prior to initiation of reaction by addition of H4B. The activity was measured by monitoring
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NADH consumption at 340 nm (ε340 for NADH is 6200 M−1 cm−1) in a Beckman DU-640
spectrophotometer.

2.5. Luciferase Assay

Logarithmic growth phase promastigotes (106) were suspended in 200 µL media
containing 30 µg/ mL of luciferin (Biosynth AG, Staad, Switzerland) and added to a
96-well plate (Black plate, Corning Incorporated, NY, USA). The plate was imaged after
10 min using a Xenogen IVIS photoimager (Caliper LifeSciences), and luciferase activity
quantitated as photons/sec (p/s).

2.6. Transmission Electron Microscopy

Leishmania promastigotes were harvested in logarithmic growth phase and fixed in
2% paraformaldehyde/2.5% glutaraldehyde (Polysciences Inc., Warrington, PA, USA) in
100 mM phosphate buffer, pH 7.2, for 1 h at room temperature. Samples were washed in
phosphate buffer and postfixed in 1% osmium tetroxide (Polysciences Inc., Warrington, PA,
USA) for 1 h, rinsed extensively in water, and block stained with 1% aqueous uranyl acetate
(Ted Pella Inc., Redding, CA, USA) for 1 h. Following several rinses in water, samples were
dehydrated in a graded series of ethanol solutions and embedded in Eponate 12 resin (Ted
Pella Inc.). Sections of 95 nm were cut with a Leica Ultracut UCT ultramicrotome (Leica
Microsystems Inc., Bannockburn, IL, USA), stained with uranyl acetate and lead citrate,
and viewed on a JEOL 1200 EX transmission electron microscope (JEOL USA Inc., Peabody,
MA, USA).

2.7. Construction of the Integrating pIR-GW Destination Vectors Facilitating Generation of StL
Constructs Using Gateway Site Specific Recombinase

We first assembled a construct bearing a PEX11-MYC ‘loop’ fragment flanked by
inverted Gateway® cassettes; these contain ccdB, a lethal gene that targets DNA gyrase,
and CmR encoding chloramphenicol-resistance, flanked by two attR sequences necessary
for site-specific recombination (attR1-ccdB-CmR-attR2; www.Invitrogen.com (accessed on
26 December 2022). For propagation, all constructs bearing the Gateway cassettes were
propagated in Escherichia coli (E. coli) DB3.1 which contains a gyrA462 mutation conferring
resistance to ccdB toxicity. First, the PEX11-MYC loop was excised from pIR1SAT-GFP65-StL
(B4733) [7,9,10] and inserted into pGEMT yielding pGEMT-stuffer (B5974). The Gateway
cassette (attR1-ccdB-CmR-attR2) was amplified from the pDONR221 (Invitrogen) with
primers S1 and S2, and inserted by blunt end ligation into the NheI site of pGEMT-stuffer
(B5974), yielding pGEMT-stuffer -one GW (B6158). The second GW cassette was inserted
by blunt end ligation into the pGEMT-stuffer -one GW AvrII site, in inverted orientation
to the first cassette (with both in divergent orientation relative to the ccdB/CmR ORFs),
yielding (B6218).

Plasmid pGEMT-stuffer—2 GW divergent contains a 3877 bp SphI/HindIII fragment
bearing the inverted Gateway cassettes and loop. This fragment was blunt-end ligated into
the SmaI site of pIR1SAT (B3451), yielding pIR1SAT-GW (B6223) (Supplemental Table S1).
Similarly, the inverted Gateway/loop fragment inserted into the BglII (B) site of various pIR
vectors by blunt end ligation, yielding the final vectors pIR1SAT-GW (B6223), pIR1HYG-GW
(B6544), pIR1PAC-GW (B6543), pIR1BSD-GW (B6542) pIR2HYG-GW (B6563) (Supplemental
Table S1). The sequence of pIR1HYG-GW is provided in Supplemental File S1.

2.8. Generation of Target Stem-Loop (StL) Constructs for RNAi

The molecular constructs used in this work and their synthesis are summarized in
Table S2. Briefly, for StL constructs the ‘stem’ was obtained by PCR, inserted into the
pCR8/GW/TOPO vector by TA cloning, (Invitrogen # K250020), and their orientation
(same direction as attL2) confirmed by sequencing and restriction digestion. The stems
were transferred from the pCR8/GW/TOPO donor vector to the pIR1-GW or pIR2-GW
destination vectors described above; these contain sequences from the parasite small

www.Invitrogen.com
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subunit rRNA locus to enable integration into the genome, and inverted attR1-ccdB-CmR-
attR2 cassettes. The gene of interest in pCR8/GW/TOPO was transferred to the pIR-GW
vector with LR Clonase II (Thermo Fisher, Waltham MA USA) in an overnight reaction
at room temperature. Reactions were terminated by incubating with proteinase K for 1
h at 37 ◦C (Gateway Technology with Clonase TM II manufacturer’ protocol, Version A:
24 June 2004). Reactions were transformed into E.coli TOP10 TM or DH5α (which select
against both ccdB cassettes). All final stem-loop (StL) constructs named as StL expressers
were confirmed by restriction enzyme digestion and DNA sequencing (Figure 1). Prior
to transfection, constructs were digested with SwaI to expose the SSU rRNA segments
mediating homologous integration.
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Figure 1. Flowchart for generation of entry and StL constructs using Gateway site-specific recombi-
nase technology followed by introduction into Leishmania to express dsRNA. A stem for each GOI
(gene of interest) was amplified by PCR and then cloned into pCR8/GW/TOPO vector (Invitrogen)
to generate an “entry” clone bearing a flanking attL1 and attL2 sites for recombination-based transfer.
The pIR-GW destination vectors bear two opposing ccdB/CmR cassettes, each flanked by attR1 and
attR2 sites. Following site-specific recombination by the Gateway LR reaction, the desired StL for
each GOI was obtained and confirmed. For biological tests, each StL DNA was linearized with SwaI,
electroporated into Leishmania, where it integrated into the small subunit ribosomal RNA locus (SSU).
There it is transcribed by the strong rRNA pol I promoter to generate RNAs whose dsRNA regions
are processed by the RNAi machinery.

3. Results
3.1. Rapid Generation of ‘Stem-Loop’ Constructs as RNAi Triggers

To trigger the RNAi response, dsRNA generating ‘stem-loop’ constructs have been
used in previous studies, often assembled in three steps with two ‘stem’ segments cloned in
opposite orientations, separated by a short spacer/loop [10]. To accelerate this process, we
utilized GatewayTM (Invitrogen) technology, incorporating precise, site-specific recombina-
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tion [22,33]. First we engineered a ‘destination’ expression vector, based on the Leishmania
pIR vector series which achieves high levels of RNA expression following integration into
the ribosomal small subunit RNA locus [10,34]. The final destination vector (pIR-GW
generically) bears two Gateway recipient cassettes, arranged in inverted orientation and
separated by a short segment destined to become the ‘loop’ inserted into one of the strong
expression sites of pIR vectors (Figure 1). Each Gateway cassette contained a positive CmR
and negative ccdB marker, flanked by attR1 and attR2 sites. Then, each stem to be tested was
inserted into an ‘entry’ vector (pCR8/GW/TOPO), where it was flanked by donor attL1 and
attL2 sites (Figure 1). Gateway LR reactions between the destination vector and entry DNAs
were performed in vitro, and transformed into E.coli TOP10 or DH5αTM which selected
against the presence of the target ccdB/CmR cassettes, which could be rapidly confirmed by
loss of chloramphenicol resistance. Typically we obtained numerous recombinants of which
more than 70% bore the expected configuration of the desired StL configuration, and one
correct representative was selected for introduction into Leishmania. Prior to transfection,
constructs were digested with SwaI to expose the SSU rRNA termini to direct integration
into the SSU rRNA locus, where strong expression is driven from the rRNA promoter
(Figure 1).

3.2. Testing the Effect of Stem Length on RNAi Activity Using L. braziliensis HGPRT-StL and
Luciferase-StL Series Constructs

In T. brucei, stem lengths ranging in length between 100 and 1500 bp are effective in
knocking down target genes [35,36], and stem lengths as short as 29–100 nt are active in
other metazoan species [37,38]. To explore this in Leishmania, we varied the stem length in
RNAi constructs targeting an integrated firefly luciferase reporter gene (LUC) as well as
an endogenous cellular gene (HGPRT), assayed following transfection into WT Lbr. For
HGPRT increasing the stem from 494 nt to 1005 nt reduced expression from 55% to 92%
(Figure 2A). No strong differences were seen between similarly sized stems targeting the
HGPRT ORF or 3′ untranslated region (Figure 2A).

For luciferase, we tested LUC StL constructs following introduction into a LbrM2903
transfectant stably expressing high levels of luciferase activity (Figure 2B). As with HGPRT,
the longer luciferase stems resulted in greater reductions in LUC activity (Figure 2B). While
stems of 158 bp or greater showed strong reductions (>93%), stems of 128 or 54 nt showed
much smaller effects (35–32%; Figure 2B). Preliminary analysis did not suggest a strong
association of the activity of the stems tested with siRNA abundance ‘hot spots’, small
regions where siRNA levels greatly exceed the average across a gene, as seen with LUC or
Leishmania Virus 1 (LRV1) in our prior study [19]. We did not observe synergy when two
weak constructs were transfected simultaneously (not shown).

These data together with those shown below for IFT140 (Section 3.6) suggested that
for the strongest effect stem lengths of >500 nt were preferable, with a significant drop-off
below 128 nt. We did not see strong ‘positional’ effects of the location of the stems within
the target gene, however the constructs tested tended to be progressively truncated from
one side so it is possible these may have been overlooked. Importantly, our findings suggest
differences in the dsRNA trigger length dependency in Leishmania relative to trypanosomes
or other organisms. Further studies will be required to explore the basis for this.
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3.3. StL-Mediated Specific RNAi of the Metabolic Target Quinonoid Dihydropteridine Reductase
(QDPR) Interspersed within a Tandem Repeated Gene Array

We examined the efficacy of StL RNAi against the L.braziliensis quinonoid dihydropteri-
dine reductase (QDPR) gene, encoding an enzymatic step of the reduced pteridine pathways
involved in recycling oxidized qH2-biopterin or qH2-folates back to the active tetrahydro
state in Leishmania [29]. In all Leishmania, QDPR genes are interspersed in a tandem array
with two other genes, ORFq (q: a hypothetical protein) and β7-proteasome (β7: 20S protea-
some β7 subunit), the latter gene being essential where tested in other species including
trypanosomes (Figure 3A; [29]). This rendered selective deletion of the interspersed QDPR
targets considerably more challenging, but provided a suitable opportunity for testing the
utility of RNAi in this context.

We introduced a StL construct bearing a 588 nt QDPR stem into WT parasites success-
fully. Relative to WT, QDPR protein was reduced more than 87.4% (Figure 3B) while QDPR
activity was reduced by more than 88% individually in StL knockdowns (Figure 3C). The
Lbr QDPR StL knockdowns grew normally in culture, suggesting that RNAi specifically
targeted QDPR without significantly impacting the flanking essential proteasome subunit,
although a partial reduction in expression cannot be ruled out. Thus RNAi can be used
to successful probe the consequences of metabolic gene expression depletion in this most
challenging context.

One functional consequence of QDPR ablation was shown by the increased sensitivity
of the QDPR StL knockdown to the antifolate compound TQD (5, 6, 7, 8-Tetrahydro- 2,
4-quinazolinediamine) (Figure 3D) [39]. The QDPR knockdown parasite was 20-fold more
sensitive, with an EC50 of 0.15 ± 0.015 vs. 3.49 ± 0.59 µM for WT (p < 0.0006). These data
support the utility of RNAi knockdowns in Lbr as probes of pteridine metabolism and
drug action.
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Proteasome subunits are known to be essential, while the requirement for ORFq has not been tested.
(B) QDPR protein expression in QDPR-StL knockdowns. QDPR was detected with anti-QDPR
antiserum and expression was calculated relative to that of H2A, from Western blots as described
in the methods. (C) QDPR enzymatic activity in QDPR-StL knockdowns. QDPR enzymatic activity
was assayed and normalized to total cellular protein. Data were from three independent experiments
each performed in triplicate. * indicates p < 0.0235. (D) Growth inhibition by inhibitor TQD. WT and
QDPR-StL transfected Lbr were inoculated into media containing 0–50 µM 5, 6, 7, 8-Tetrahydro-2,
4-quinazolinediamine (TQD) at 2 × 105 cells/mL and allowed to grow until WT had reached late
log phase, at which time parasite numbers were determined. The experiment was repeated three
times, with results similar to that shown; the EC50s for the QDPR-StL (red) and WT (blue) lines were
0.15 ± 0.015 vs. 3.49 ± 0.59 µM (p < 0.0006).

3.4. RNAi of an L. braziliensis Gene Important for Amastigote Replication

An important area of Leishmania biology is the study of genes that impact survival
of the amastigote stage in the vertebrate host. Many (not all) Leishmania species can
differentiate to amastigote-like forms in culture (axenic amastigotes), when grown at
conditions resembling those within the parasitophorous vacuole, e.g. elevated temperature
and low pH [40,41]. Here, we made use of a clonal derivative of Lbr M2903 (LbrM2903SA2)
which had been adapted for growth as axenic amastigotes [24].

As a test we focused on the A600 locus, which in L. mexicana comprises four genes
whose deletion had little impact on promastigotes, but precluded axenic amastigote repli-
cation in vitro [42]. The A600 copy number varies amongst species [42], with only two
found in Lbr (A600-1 and A600-4) which show 88% nucleotide identity. We targeted these
sequences simultaneously by a single StL construct using the A600-1 sequence, which
shows long stretches of identity relative to A600-4 (118 nt, 51 nt and 45 nt).

We transfected the LbrA600-StL construct into Lbr SA2 promastigotes, obtaining many
clonal transfectants all of which grew normally. Several were then inoculated into axenic
amastigote growth medium, where they showed a severe growth defect, with 10-fold
fewer amastigotes than WT (Figure 4), similar to the results obtained with L. mexciana
A600 knockouts. These results establish the utility of RNAi knockdowns for the study
L. braziliensis genes involved in amastigote differentiation and proliferation.
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Figure 4. Impact of LbrA600-StL amastigote growth in L. braziliensis. WT or A600-StL transfectants
grew normally as promastigotes; the figure shows parasites inoculated at a density of 5 × 105 /mL
and the cell numbers determined daily for 1 week. WT (�) was repeated three times along with 3
different A600-StL knockdown clonal lines (#1–3; triangles). Across 2 experiments with WT (3 replicas
each) and 7 different A600-StL lines the difference was highly significant (p < 0.0001).

3.5. Targeting Essential Genes of the L. braziliensis Intraflagellar Transport (IFT) Pathway

The Leishmania flagellum plays key roles in the promastigote and amastigote stages,
and previously we reported successful knockdowns of the paraflagellar rod proteins PFR1
and PFR2 which showed phenotypes comparable to complete deletions [10]. We extended
these studies to a set of genes associated with intraflagellar transport (IFT), which mediates
transport of cargo in both anterograde and retrograde directions and is required for proper
flagellar assembly [43].

StL constructs targeting Lbr IFT122, IFT140, IFT172, representing both the anterograde
and retrograde IFT, were transfected into WT Lbr (Table 1). However, we were unable to
recover transfectant colonies, despite multiple attempts and success targeting a nonessential
gene, LbrPFR1-StL (Table 1). To establish that this result was dependent on the RNAi
pathway, we introduced these same constructs into an RNAi-deficient mutant obtained by
homozygous deletion of the AGO1 gene (∆ago1−), an Argonaute family protein encoding
the key ‘slicer’ activity required for RNAi activity in Lbr [10,44]. Now, all LbrIFT StL
constructs successfully yielded transfectants (Table 1), establishing that RNAi of the StL-
derived dsRNA trigger was responsible for the lack of transfectants.

Table 1. RNAi of several IFT genes in Leishmania braziliensis is lethal.

STL Construct No. Transfectants
with WT

No. Transfectants
with ∆ago1−

PFR1-StL 243–360 360

IFT122-StL (retrograde) 0 460

IFT140-StL (retrograde) 0 265

IFT172-StL (anterograde) 0 289

Negative control 0 0

These data are consistent with other studies in trypanosomes and Leishmania showing
that IFT gene ablation displays an array of phenotypes, including essentiality [45–48].

The table shows the number of colonies (per plate) obtained after transfection of
various StL constructs into WT or RNAi-deficient ∆ago1− Lbr. PFR1-StL was used as a
positive control [10].
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3.6. Systematic Generation of Hypomorphic Mutants by Exploiting the Stem Length-Dependency
of RNAi in L. braziliensis

While plus/minus tests of gene essentiality are useful they provide little information
about the role of the encoded protein within the cell. When inducible systems are available,
observations following shutoff and prior to cell death can be informative, however presently
this can only be achieved using conditional degradation domains in Leishmania [49]. The
studies of the stem length-dependency of the efficacy of RNAi described in Section 3.2 above
suggested that it could be possible to engineer partial loss of function mutants through
successively reducing the stem length, until a point was reached where viable cells could
be obtained, which ideally might show informative defects. We tested this with the IFT140
gene, which is essential in trypanosomes and probably Lbr (Table 1). Curiously, viable
deletion mutants with different phenotypes were possible in L. major and L. donovani [47,48]
suggesting there is considerable variation amongst Leishmania species for the consequences
of IFT ablation.

Transfection of a 941 nt IFT140 StL construct yielded no transfectants in WT Lbr
(Table 1), however as the stem length was reduced to 562 nt and further to 131 nt, increasing
numbers of transfectants could be recovered (Figure 5A). Notably, the 562 nt stem yielded
about 10% as many transfectants, and the cells recovered from these colonies grew slowly in
culture (Figure 5A). In contrast, transfectants recovered with constructs with stems shorter
than 562 nt were recovered at normal frequencies, grew like WT, and showed no obvious
differences in flagellar length or motility.
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(B) Transmission EM of WT Lbr showing normal kinetoplast (K) and flagellum (F). (C) Transmission
EM of hypomorphic LbrIFT140-StL (562 nt stem) cells, where defects in the parasite flagellum are
evident (F) along with accumulation of vesicles within the flagellar pocket (P); not shown is that these
cells are more rounded.

This suggested that the 562 StL IFT140 transfectant was a candidate hypomorph, as
it displayed a shortened flagellum and weak motility (not shown). Transmission EM of
one clone showed that these knockdown cells exhibited modified shape and accumulated
vesicles in the flagellar pocket similar to the phenotypes in other trypanosomes, such as T.
brucei where ablation of IFT140 was initiated by conditional RNAi prior to cell death [45],
or in L.mexicana IFT140 knockouts [48] (Figure 5C). These data suggest that the stem-length
dependency of RNAi in L. braziliensis will prove a useful tool in generating informative,
hypomorphic mutants of otherwise essential genes, facilitating inquiries into their cellular
targets and/or mechanism of action.

3.7. A Negative Selection System for Enhancement of RNAi Activity in L. braziliensis

It is often helpful to have screens or selections to monitor the efficacy of RNAi under
various circumstances; for example, in screening for genes acting within the RNAi pathway,
or when RNAi exhibits considerable clonal variability, as in some fungi [50–52]. GFP and
luciferase based screens are commonly used, which both perform well in Leishmania [10],
but here we sought a selectable system which could facilitate other applications.

We tested the 4-aminopyrazolpyrimidine/adenine phosphoryl transferase 1 (APP/APRT1)
system in L. braziliensis. APRT converts APP into a toxic metabolite inhibiting Leishmania
growth, and thus cells with decreasing APRT levels show increasing resistance to APP.
Importantly, APRT1 is not essential in most media due to the alternative salvage route
through adenosine aminohydrolase [53].

First, we introduced an APRT1-StL construct into WT Lbr, where transfectants were
readily obtained and grew normally. Western blot analysis confirmed significant reduction
to undetectable level in APRT1 expression (Figure 6A). Unlike WT parasites whose growth
was completely inhibited by 500 µM APP, LbrAPRT1-StL transfectants were able to grow at
the highest concentration tested, albeit at reduced growth rates (Figure 6B,C). Other studies
showed that the APP EC50s were 50–100 µM for WT and 500–1000 µM for APRT1-StL (not
shown). Thus, RNAi knockdown of APRT1 leads to APP resistance as expected.

We developed a dual stem-loop reporter parasite that simultaneously expresses an
APRT1-StL along with a LUC-StL with a 508 nt stem. This was obtained by transfection an
Lbr line expressing luciferase with a second construct bearing both APRT1-StL and LUC-StL
cassettes (Section 2.2). This reporter line allows manipulations of overall cellular RNAi
activity to be tracked through simple luciferase assays. We chose a mid-sized stem as we
wanted to provide some range for detection of elevated RNAi activity before saturation.

To illustrate its utility, APRT1-StL+LUC-StL/LUC parasites were plated on increas-
ing concentrations of APP, which would select for low APRT1 expression which could
potentially arise through alterations in overall cellular RNAi activity. Colonies were picked
and parasites were grown thereafter in 50% of the selective concentration of APP used
in plating.

In the absence of APP selection, luciferase expression was reduced 122 fold in the
APRT1-StL+LUC-StL/LUC parasites (Figure 7), slightly less than the 200–300 fold reduction
seen previously [10] but greater than the 30–50 fold seen in Figure 2B with similarly sized
stems. These experimental series were performed months or even years apart, and we
suspect small differences in vector design or clonal variation may be a contributing factor.
Since each series of experiments was internally controlled, we consider these differences of
neglible significance in this context.

In the APRT1-StL+LUC-StL/LUC parasites subjected to APP selection, luciferase activ-
ity decreased an additional 2.9 to 6.8 fold, as the APP concentrations were increased from
125 to 1000 µM (Figure 7). Overall relative to WT parasites, the efficacy of LUC silencing
increased from 122- to nearly 830-fold. Thus, in one step we were readily able to identify
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parasite showing elevated levels of RNAi activity against a luciferase reporter. This proof
of principle experiment establishes a useful tool for both monitoring and manipulating
RNAi activity amongst clones or mutants that may prove of great utility in future studies.
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Figure 6. RNAi of the APRT1 gene yields increased APP resistance. (A) Transfection of APRT1-StL
leads to loss of APRT1 expression. The figure shows a Western blot of promastigotes tested against
anti-APRT1 antisera. Lane 1. L. braziliensis WT; lane 2, L.donovani WT; lanes 3–7, Lbr APRT1-StL clones
1 to 5. (B,C) Growth inhibition by APP in the indicated concentrations is shown. (B): WT Lbr; (C): Lbr
APRT1-StL knockdown clone 1. The APRT1-StL line is significantly more resistant to APP than WT at
the concentrations shown (n = 4; p < 0.0001).
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Figure 7. A negative selectable system to identify enhanced RNAi activity in L. braziliensis. Double
StLs (LUC and APRT1) expressed in a single construct were transfected in the Lbr LUC reporter
line and selected on M199 plates containing various concentrations of APP. Colonies were readily
obtained and grown in APP, and luciferase activity was measured from 106 parasites as described in
the methods. The fold reduction of colonies selected in varying concentrations of APP relative to no
drug are shown in brackets above the plotted luciferase activity. The average and standard deviations
calculated from at least 10 transfectant colonies is shown. *** indicates a p < 0.001, ** indicates a
p < 0.01 for comparisons with no APP selection.

4. Discussion

RNA interference has proven a valuable tool for the study of gene regulation in many
eukaryotes including African trypanosomes. While lost in many Leishmania sp., those of
the subgenus Viannia retained a functional pathway, opening up its use as a tool for genetic
analysis. In this work we describe a useful Gateway™ site specific recombination based
system for rapidly and efficiently generating stem-loop constructs suitable for RNAi tests,
and applied it towards a spectrum of Leishmania genes of interest to illustrate its range and
potential. For perspective, Table 2 summarizes the genes and the outcomes obtained in this
or previous studies.

Table 2. Summary of genes targeted by RNAi in L. (Viannia) sp. and their phenotypes.

Gene Gene ID Results Reference

LbrAGO1 LbrM.11.0360 Reduced RNAi activity [10]

LbrLPG1 LbrM.25.0010 Little mRNA change; remains LPG+ [10]

LbrLPG2 LbrM.20.2700 3-fold lower mRNA; remains LPG+ [10]

LbrLPG3 LbrM.29.0780 3-fold lower mRNA; remains LPG+ [10]

LbrHGPRT LbrM.21.0990 Reduced protein This work

LbrPFR1 LbrM.31.0160 Reduced mRNA; abnormal swimming [10]

LbrPFR2 LbrM.16.1480 Reduced mRNA; abnormal swimming [10]
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Table 2. Cont.

Gene Gene ID Results Reference

Leishmania RNA
virus 1

LgyM4147
LbrLEM2700
LbrLEM2780
LbrLEM3874

LRV1 elimination [19]

Lbr δ Amastin Lbr.M20.0160
(gene family)

Reduced mRNA; impaired viability of
intracellular amastigotes [21]

LgyVTC4 Lgy4147 VTC4 Reduced mRNA; polyphosphate levels
decreased; little impact on growth [54]

LbrAPRT1 LbrM.26.0130 Resistant to APP This work

LbrQDPR LbrM.20.3970 Altered drug sensitivity This work

LbrA600 LbrM.20.3230 Growth defect as amastigotes This work

LbrIFT140
(retrograde) LbrM.32.0380 Unable to recover transfectants

of WT Lbr This work

LbrIFT122
(retrograde) LbrM.35.1120 Unable to recover transfectants from

WT Lbr This work

LbrIFT172
(anterograde) LbrM.21.1210 Unable to recover transfectants from

WT Lbr This work

Lbr BBS1, BBS3,
BBS4

LbrM.34.4180
LbrM.16.1430
LbrM.35.2520

No effect on growth or morphology This work

Of the 22 targets listed, 6 (27%) showed changes in survival, growth and/or morphol-
ogy when knocked down (PFR1, PFR2, IFT140, IFT122, IFT172, VTC4). When other criteria
were evaluated phenotypes were detected in a further 9 (41%; APRT1, A600, QDPR, AGO1,
δ-amastin, and 4 LRV1s). In contrast, no phenotypes were detected with the methods
applied with 7 target genes (HGPRT1, LPG1, LPG2, LPG3, BBS1, BBS3 or BBS4). Our
findings can be compared with the more extensive studies from African trypanosomes,
where about 1/3 of genes targeted in chromosomal surveys or genome wide studies show
changes in survival, growth or morphology [16,55]. As in trypanosomes, genes involved in
the synthesis of abundant surface glycoconjugates such as Leishmania lipophosphoglycan
LPG1-3 showed little phenotype, while other genes such as those implicated in the parasite
flagellum (PFR or IFT) yielded readily detected phenotypes. Importantly phenotypes
were obtained in several repetitive gene families, including Lbr A600, PFRs, δ-amastins and
QDPR, the latter having additional complexity as an ‘interspersed’ repetitive gene family.
Similarly we have been able to target cytoplasmic RNA viruses effectively such as the LRV1
totiviruses of Lbr and Lgy. These data suggest that RNAi offers another strong option for
functional genomics in Leishmania.

The specificity of RNAi knockdowns can be assessed in several ways. First, the
dependency of RNAi on a functional Argonaute (AGO1) can be used to support conclusions
about the essentiality of a given RNAi target, as illustrated by studies with several essential
IFT genes (Table 1). Secondly, the highly expressed integrated SSU:IR-StL constructs
used here typically yield very high levels of siRNAs and occasionally dsRNA, both of
which can have off target effects [19]. The specificity for the target gene may be assessed
by reintroduction of a ‘recoded’ RNAi-resistant target gene [21], or by selection for rare
spontaneous excision of the integrated SSU:IR-StL construct from the rRNA gene array [56],
both of which should restore the WT phenotype.

While most studies summarized in Table 2 have been carried out with L. braziliensis,
RNAi was also effective in L. guyanensis (VTC4, LRV1). However, in previous work we
showed in both LUC and LRV1 studies that the efficacy of RNAi was significantly less
than in Lbr [10,19]. The factors responsible have not been studied, and in our previous
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studies we noted that even with strong RNAi induction target RNA levels sometimes did
not decline [10]. Thus, the ‘penetrance’ of RNAi efficacy can vary widely amongst specific
genes, and/or species or strains, something that should be considered in future studies.
Fortunately, the ease by which RNAi constructs may be generated using site-specific
recombinase technology (Figure 1) allows this to be explored with minimal effort.

Interestingly, with the selectable APRT1/APP system we were able to increase the
strength of RNAi nearly 7 fold in Lbr (Figure 7), suggesting it may be possible in the future
to develop lines where the efficacy of RNAi is enhanced. The feasibility of this was shown in
mammalian cells where increased expression of Argonaute-2 enhanced RNAi activity [27].

While the introduction of CRISPR/Cas9 technology provides an attractive alternative
to RNAi for gene ablation, there are some useful applications of RNAi as well. Inducible
RNAi systems are readily reversible, and the stem length dependency shown here offers
the possibility of developing ‘graded’ RNAi responses to yield stable hypomorphic lines.
This was illustrated with the Lbr IFT140 gene, where shorter stems led to viable cells, with
a key one exhibiting reduced transfection efficiency, slower growth and flagellar defects
(Figure 5), allowing further exploration of the impact of RNAi on flagellar biology or cell
physiology. While the data provided here serve as a guide, it is likely that the optimal stem
length (and possibly position) will have to be evaluated empirically for any given gene
and/or phenotype. Nonetheless, the ability to systematically generate stable hypomorphic
mutants adds another dimension to the utility of RNAi in Leishmania.
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