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Abstract: Obesity is a chronic health problem associated with severe complications and with an
increasing prevalence in the Western world. Body-fat composition and distribution are closely asso-
ciated with obesity, but the human body’s composition is a sexually dimorphic trait, as differences
between the two sexes are evident even from fetal life. The effect of sex hormones contributes to
this phenomenon. However, studies investigating gene-by-sex interactions for obesity are limited.
Therefore, the aim of the present study was to identify single-nucleotide polymorphisms (SNPs) asso-
ciated with obesity and overweight in a male population. A genome-wide association study (GWAS)
that included 104 control, 125 overweight, and 61 obese subjects revealed four SNPs associated with
overweight (rs7818910, rs7863750, rs1554116, and rs7500401) and one SNP (rs114252547) associated
with obesity in males. An in silico functional annotation was subsequently used to further investigate
their role. Most of the SNPs were found in genes regulating energy metabolism and homeostasis,
and some of them were expression quantitative trait loci (eQTL). These findings contribute to the
understanding of the molecular mechanisms underlying obesity-related traits, especially in males,
and pave the road for future research toward the improvement of the diagnosis and therapy of
obese individuals.

Keywords: genome-wide association study (GWAS); obesity; overweight; body mass index; sex

1. Introduction

Overweight and obesity are defined according to the World Health Organization
(WHO) as excessive or abnormal fat accumulation that can lead to impaired health, and
they are caused by an energy imbalance between caloric intake and expenditure [1]. Excess
body weight is a global health problem, from which it is estimated that more than two
billion people worldwide suffer. This number accounts for approximately 30% of the
world’s population [2], and it is estimated that between 1980 and 2013, the prevalence of
overweight and obesity increased by approximately 28% [3]. Affected individuals have an
increased risk of comorbidities, such as cardiovascular disease, diabetes mellitus, several
types of cancer, hypertension, etc. [1]. Furthermore, the treatment of obesity and obesity-
related complications accounts for 21% of the total healthcare expenditure in the United
States [4].

Obesity is also considered a complex trait that arises from interactions between the
individual’s genetic background and environmental factors, such as diet, physical activity,
pollutants, sociocultural factors, etc. [5]. For many years, research on the genetics of
obesity mainly focused on genome-wide association studies (GWAS), which led to the
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identification of many associated variants and highlighted genes and pathways contributing
to obesity development [6,7]. Despite this progress, there is an ongoing debate, as most
scientists agree that many more associated single-nucleotide polymorphisms (SNPs) are to
be discovered [6–8]. The identified variants explain only a very small proportion, around
5%, of the total variance in adiposity [9], while simulation studies propose that SNPs
account for approximately 30% of the variance in body mass index (BMI) [10], the most
widely used standard for classifying adiposity and somatotypes associated with overweight
or obesity. Therefore, novel approaches are investigated to discover more SNPs that could
provide a better understanding of the biology of obesity.

Furthermore, sexual dimorphism refers to the traits that are differentiated between the
two sexes, which are widespread in nature [11]. Body composition and fat distribution or
body shape are sexually dimorphic traits, as differentiation is observed between males and
females in both humans and nonhumans [12]. More specifically, sexual dimorphism can
be observed even from birth. Males are heavier than females at birth, have longer bodies,
and have larger head circumferences [12]. The sex difference, however, in fat distribution
is amplified from late puberty to early adulthood [13]. During puberty, the effect of sex-
steroid hormones leads to greater differentiation, as women accumulate fat mass on the
thighs and hips, tending towards an “hourglass” or a “pear” body shape [12,14], while men
mainly accumulate lean muscle and tend towards a body shape characterized by broad
shoulders and a narrow waist [12]. Later in life, sexual dimorphism is also maintained,
as women enter menopause and move towards a more androgenous body shape, which
includes an increase in abdominal fat deposition [12,14]. Males also show an increase in
waist circumference with age, as fat accumulates around the inner organs [12] (Figure 1).
Therefore, it seems that there is an interplay between sex and body composition, and
specific SNPs can be associated with overweight and/or obesity in one sex, but studies
investigating the gene-by-sex interactions in overweight and obesity are limited [6,15,16].
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Figure 1. Sexual dimorphism of body shape during life according to findings of several research 

studies [12–14]. Male babies have larger head circumferences than females, as well as longer bodies, 

and they are heavier. During puberty, sex-steroid hormones differentiate fat distribution between 

the two sexes. Men have increased lean muscle and a body shape characterized by broad shoulders 

Figure 1. Sexual dimorphism of body shape during life according to findings of several research
studies [12–14]. Male babies have larger head circumferences than females, as well as longer bodies,
and they are heavier. During puberty, sex-steroid hormones differentiate fat distribution between the
two sexes. Men have increased lean muscle and a body shape characterized by broad shoulders and
narrow waists. Women have increased fat mass and “hourglass” or “pear” body shapes. Later in life,
men deposit fat around the waist and in inner organs, while women tend towards an androgenous
body shape. Created with Biorender.com.



Genes 2023, 14, 799 3 of 13

Therefore, as most studies report SNPs associated with obesity and/or overweight
in mixed samples of males and females, providing limited information about gene-by-sex
interactions, we aimed to conduct a GWAS for BMI in a Greek male population to identify
SNPs associated with obesity and/or overweight in males. Furthermore, we performed an
in silico functional annotation to assess the biological function of candidate genes, as well
as the potential roles of the SNPs identified. It should also be noted that as the available
information about gene-by-sex interactions in obesity is very limited, our ultimate goal was
to perform a preliminary study in order to provide a valuable reference for future research
about overweight and/or obesity in males.

2. Materials and Methods
2.1. Study Participants

This study included 290 subjects, who were all Caucasian males. Semen and blood
samples were collected in cooperation with the “Embryolab Fertility Clinic” (Thessaloniki,
Greece) for the research program “Spermogene” (grant number T1E∆K-02787), aiming
to study the genetic basis of male infertility. Written informed consent was given by all
participants and, along with the consent form, volunteers also completed a questionnaire to
obtain information about height (m), weight (kg), age, clinical and medical history, health
habits, etc. All these data were used in the present study to investigate genes associated
with obesity and overweight in male subjects.

At first, BMI was calculated for all the individuals as the weight (kg) divided by height
squared (m2), after which subjects were classified as normal weight (18.5 kg/m2 < BMI <
24.9 kg/m2), overweight (25 kg/m2 < BMI < 29.9 kg/m2), and obese (BMI > 30 kg/m2), as
presented in Table 1. More specifically, 104 men with normal weight, 125 overweight men,
and 61 obese men were included in the present analysis. All individuals in the three groups
were approximately the same age and had the same health habits (alcohol consumption,
smoking). Individuals who received medication that could affect their BMI were excluded.
Furthermore, the study was approved by the Ethics Committee of the University of Thessaly
and was carried out in accordance with the guidelines of the Declaration of Helsinki.

Table 1. Male subjects included in the study categorized according to their BMI (m/kg2).

Normal (n = 104) Overweight (n = 125) Obese (n = 61)

BMI (m/kg2)
mean, SD

19.1–24.9
23.14 (1.48)

25–29.9
27.05 (1.41)

30.1–47.6
33.12 (2.94)

Age (years)
mean, SD

19–52
32.3 (7.19)

22–49
36.7 (5.37)

26–53
39.34 (5.65)

Smoking (Yes/No) No, n = 59 (56.7%)
Yes, n = 45 (43.3%)

No, n = 64 (51.2%)
Yes, n = 61 (48.8%)

No, n = 39 (63.9%)
Yes, n = 22 (36.1%)

Alcohol Consumption
(<2 drinks/week,
2 drinks/week,

>2 drinks/week)

<2 drinks/week, n = 64 (61.6%)
2 drinks/week, n = 20 (19.2%)

>2 drinks/week, n = 20 (19.2%)

<2 drinks/week, n = 67 (53.6%)
2 drinks/week, n = 34 (27.2%)

>2 drinks/week, n = 24 (19.2%)

<2 drinks/week, n = 41 (67.2%)
2 drinks/week, n = 13 (21.3%)
>2 drinks/week, n = 7 (11.5%)

2.2. DNA Extraction

The DNA was extracted from the blood and semen samples of volunteers. The
DNA extraction from blood samples was performed using the PureLink Genomic DNA
Mini Kit (Invitrogen, Waltham, MA, USA—Catalog number: K182002) according to the
manufacturer’s instructions. For semen samples, a protocol developed by Weyrich A. [17]
was used. The DNA integrity was assessed with agarose-gel electrophoresis and the amount
of DNA was evaluated spectrophotometrically with a Qubit 2.0 fluorometer using the Qubit
dsDNA BR Assay Kit (Invitrogen, Waltham, MA, USA—Catalog number: Q32850). Purified
DNA was stored at −20 ◦C until use.
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It should be noted that for every volunteer, DNA extracted from blood and semen
samples were not combined; instead, they were used separately for subsequent analyses,
although they produced the same results.

2.3. Genotyping

Once the preparation was completed, the DNA samples were shipped to the Erasmus
MC Human Genomics Facility (HuGe-F, University Medical Centre, Rotterdam, The Nether-
lands), where they were genotyped using the Illumina Infinium® Global Screening Array
(Illumina, San Diego, CA, USA). This chip is of high density, and it examines approximately
756400 SNPs across the human genome.

2.4. Quality Control (QC)

Genotyping data were obtained in .ped and .map files and, subsequently, PLINK
software v1.07 [18] was used for the QC procedures and statistical analyses that followed.

Extensive quality control was performed, and strict criteria were used to generate
reliable results and avoid errors and false-positive results that may have arisen due to
poor quality of DNA samples, poor DNA hybridization, contamination of samples, etc.
Therefore, for quality control, at first, we removed SNPs with missing genotyping data on
more than 10% of the samples, as well as samples with more than 10% missing genotypes.
Furthermore, we discarded SNPs with a minor-allele frequency (MAF) of less than 3%
and checked the Hardy–Weinberg equilibrium to exclude SNPs that deviate from it in
controls (p-value < 0.001). We also excluded additional samples based on heterozygosity
and relatedness tests, and SNPs were pruned to remove these in linkage disequilibrium.

2.5. Association Analysis and In Silico Functional Annotation

The PLINK software v1.07 [18] was used to perform association analyses between
SNP genotypes and phenotypes of interest based on standard linear regression. Obesity
and overweight were considered binary traits according to the categories described above
(normal weight, overweight, obese) and defined by the BMI value. More specifically, two
association analyses were performed. In the first, the control group consisted of individ-
uals with normal BMI (n = 104), and the case group consisted of overweight individuals
(n = 125). In the second association analysis, the control group again included individuals
with normal BMI (n = 104), and the case group included obese individuals (n = 61). For
all the association analyses, the chi-square test was used and the significance threshold
for SNP–trait associations was a p-value < 10−5. Manhattan plots and quantile–quantile
(Q–Q) plots were generated with the qqman package [19]. The Manhattan plots were used
to visualize the association analyses, whereas Q–Q plots showed the observed and the
expected distribution of the statistical tests to assess potential systematic biases.

Finally, to investigate the potential regulatory role of these loci, the SNPs identified as
significant for every association study were annotated to detect candidate genes associated
with obesity and overweight in males. Gene annotation was based on data provided by
Ensembl [20] and using the GRCh38 reference genome. In addition, SNPnexus [21], GTex
(Genotype-Tissue Expression Project) [22], 1000 Genomes [23], Polymorphism Phenotyping
v2 (PolyPhen2) [24], Sorting Intolerant From Tolerant (SIFT) [25], RegulomeDB [26], and
3DSNP [27] databases were used to obtain more biological information about regulatory
elements, population genetics, associations with other phenotypes and diseases, expression
quantitative trait loci (eQTLs), etc. Among these, RegulomeDB [26] is a database classifying
SNPs according to the presence or absence of functional elements, such as protein binding,
motifs, chromatin structure, eQTLs, histone modifications, etc. More specifically, each
SNP was assigned a rank ranging from 1 to 7, with lower values representing SNPs with a
higher probability of having a regulatory function. The 3DSNP [27] is another integrated
database that provides information on 3D-interacting genes, enhancer states, promoter
states, transcription factor binding sites, altered sequence motifs, and conservation, to
calculate a functional score for every SNP. Higher scores indicate a higher likelihood of SNP
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functionality. Finally, the miRNASNP-v3 database [28] was used to investigate whether the
significant SNPs created or destroyed miRNA binding sites, affecting the miRNA binding
affinity with target mRNAs, indicating another regulatory role of SNPs.

3. Results

To identify SNPs associated with overweight, we genotyped 104 controls (normal BMI)
and 125 cases (overweight, 25 kg/m2 < BMI < 29.9 kg/m2) for approximately 756,000 SNPs.
After QC with strict criteria, including, among others, the removal of samples with missing
genotypes, SNPs with very low MAF, the relatedness test, etc., 94 controls, 118 cases, and
362,108 SNPs remained for the association analysis with the chi-square test. For the GWAS
on obesity, we used the same control group (104 individuals with normal BMI) and 61 cases
(obese, BMI > 30 kg/m2). After QC, 94 controls, 57 cases, and 356,016 SNPs remained for
the subsequent analyses.

The first GWAS resulted in four SNPs that surpassed the suggestive-significance
threshold (p-value < 10−5) and were found to be associated with overweight, while only
one SNP passed the threshold in the GWAS for obesity. The SNPs found to be associated
with overweight were found on chromosomes 8, 9, 14, and 16, whereas the SNP associated
with obesity was mapped on chromosome 2. The Manhattan plot and the Q–Q plots
showing the distribution of observed and expected p-values for both association analyses
are presented in Figure 2.
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Figure 2. (A,C) Manhattan plots of genome-wide-association study data show SNPs associated with
overweight (A) and obesity (C). The X axis represents the genomic coordinates of SNPs on respective
chromosomes, while the Y axis represents the significance level on a −log10 scale. The suggestive-
significance threshold is indicated by the blue horizontal line (p-value = 10−5). Four SNPs were found
to be associated with overweight (A) and one SNP with obesity (C); (B,D) quantile–quantile plots
of the association analysis between men with normal BMI and overweight men (B) and between
men with normal BMI and obese men (D). The X axis represents the expected significance level on a
−log10 scale, while the Y axis represents the observed significance level on the same scale.

As also shown in Table 2, two of the significant SNPs identified in the first GWAS were
associated with a higher risk of overweight (rs7818910, OR = 2.81; rs1554116,
OR = 2.529), while the other two SNPs were associated with a lower risk (rs7863750,
OR = 0.2582; rs7500401, OR = 0.3421). The SNP associated with obesity also had a high
odds ratio (15.18), indicating a strong association of the variant with obesity.
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Table 2. Summary of the association results for overweight and obesity, significant SNPs, and their
genomic position; Chr, chromosome; Ref/Alt, reference/altered; OR, odds ratio.

CHR SNP Position Ref/Alt
Allele

Frequency
Cases

Frequency
Controls p-Value OR

SNPs associated with overweight
8 rs7818910 107979407 A/C 0.3686 0.172 8.344 × 10−6 2.81
9 rs7863750 97221463 G/A 0.07203 0.2312 3.356 × 10−6 0.2582
14 rs1554116 90570376 C/A 0.572 0.3457 3.534 × 10−6 2.529
16 rs7500401 8495998 C/T 0.1441 0.3298 5.64 × 10−6 0.3421

SNP associated with obesity
2 rs114252547 234311271 T/G 0.1404 0.01064 3.921 × 10−6 15.18

Next, to perform functional annotation of all the statistically significant SNPs and
investigate their potential role in overweight and obesity, several databases were used, as
explained previously. At first, population genetics data and information about allele fre-
quencies in five populations were obtained using SNPnexus [21] and the 1000 Genomes [23]
databases. As shown in Table 3, one of the SNPs associated with overweight (rs7863750)
had a very low minor-allele frequency, below 0.05, whereas the minor-allele frequency of
the SNP associated with obesity was 0.0157.

Table 3. Allele frequencies in five populations for the SNPs found to be associated with overweight
and obesity; Ref/Alt, reference/altered; MAF, minor-allele frequency; EAS, East Asian; AMR, Ameri-
can; AFR, African; EUR, European; SAS, South Asian.

Variant ID Ref/Alt
Allele MAF EAS AMR AFR EUR SAS

SNPs associated with overweight
rs7818910 A/C 0.48 0.378 0.653 0.272 0.719 0.522
rs7863750 G/A 0.04 0.001 0.032 0.006 0.084 0.071
rs1554116 C/A 0.47 0.535 0.491 0.399 0.528 0.424
rs7500401 C/T 0.36 0.489 0.429 0.194 0.259 0.510

SNP associated with obesity
rs114252547 T/G 0.0157748 0 0.0159 0.0008 0.0328 0.0348

To further investigate the potential roles of the SNPs identified, we used several
other databases for their functional characterization, as described above (Table 4). For
overweight, two of the SNPs were found in intergenic regions and one in an intronic region.
More specifically, rs1554116 was found in an intronic region of KCNK13 that encodes
for a two-pore-domain potassium channel (K2p channels). The K2p channels may play
an important role in thermogenesis and metabolism homeostasis, according to previous
research [29–31]. The rs7863750 is the only significant SNP mapped on a coding region,
and for one gene transcript, it is also considered a non-synonymous mutation. According
to SIFT [25] (tolerated, score: 0.640) and PolyPhen2 (benign, score: 0.00) [24] scores, this
variant does not affect the protein’s function or structure. However, the same SNP is
also an expression quantitative trait locus (eQTL) that affects the expression of MFSD14B
in the adipose tissue, according to GTex [22]. More specifically, this SNP increases the
expression of MFSD14B. Furthermore, none of the SNPs identified had a score indicating
high functionality, according to RegulomeDB [26] and/or 3DSNP [27]. The SNP found
to be associated with the obesity phenotype is an intronic variant mapped on the DGKD
gene and it is not an eQTL. Furthermore, this SNP has a RegulomeDB score of 0.13 and
its RegulomeDB rank is 5. In addition, it has a 3DSNP score of 10. Finally, the significant
SNPs were not found to disrupt regions that interact with miRNAs, according to the
miRNASNP-v3 database [28].
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Table 4. Annotation and functional characterization of the SNPs found to be associated with over-
weight and obesity according to GTex portal [22], RegulomeDB [26], and 3DSNP [27].

SNP Closest Gene SNP–Gene
Distance Annotation eQTL RegulomeDB

Score 3DSNP Score

SNPs associated with overweight

rs7818910 ABRA 196 kb Intergenic No Rank = 7,
Score = 0.18412 1.69

rs7863750 MFSD14B 0 kb Coding
Yes (Adipose

Tissue—Visceral
and Subcutaneous)

Rank = 5,
Score = 0.13454 0

rs1554116 KCNK13 0 kb Intronic No Rank = 4,
Score = 0.60906 1.59

rs7500401 AC018767.1
(lincRNA) 70 kb Intergenic No Rank = 5,

Score = 0.13454 0.79

SNP associated with obesity

rs114252547 DGKD 0 kb Intronic No Rank = 5,
Score = 0.13454 10.49

4. Discussion

In the present study, to systematically investigate the gene-by-sex interactions ob-
served in obesity and overweight, we used GWAS to identify SNPs associated with these
traits in a male population, after which we tried to investigate their potential role, or the
role of candidate genes, in the complex mechanisms involved in body mass composition
and body shape. Our genome-wide search identified four SNPs associated with overweight
and one SNP associated with obesity in Greek males.

More specifically, the first genome-wide association study performed here included
104 males with normal BMI (controls) and 125 males with BMI classifying them as over-
weight (cases). After QC, 94 controls and 118 cases remained for the subsequent analysis.
The SNPs that were significantly (p-value < 10−5) associated with overweight in this study
were rs7818910, rs7863750, rs1554116, and rs7500401. Notably, none of these SNPs were
found to be associated with BMI or other obesity-related traits in previous genome-wide
association studies. Half of these SNPs are risk alleles (rs7818910, rs1554116), while the oth-
ers are protective alleles (rs7863750, rs7500401), according to the OR. Except for rs7863750,
all the SNPs are found in intergenic or intronic regions.

The rs1554116 gene, found in an intronic region of KCNK13, may be a good candidate
for future research as it plays an important role in thermogenesis and obesity, according
to previous research. It encodes for a two-pore-domain potassium channel, and these
channels are highly expressed in brown and beige adipose tissue [29,30]. More interestingly,
Yi Chen et al. (2017) [31] proved that another member of the gene family, KCNK3, acts as a
negative regulator of thermogenesis and energy expenditure by performing experiments
on mice. It seems that the potassium channel limits calcium influx, as it antagonizes
norepinephrine-induced membrane depolarization by increasing potassium efflux in brown
adipocytes. Furthermore, the adipose-specific knockout mice that the scientists used in their
study had increased energy expenditure and were resistant to hypothermia and obesity [31].
It should also be noted that the KCNK3 locus was identified as associated with BMI in
another GWAS study, on humans [32]. These findings suggest that K2p channels may play
a role in the regulation of energy metabolism.

Although rs1554116 is an intronic variant of KCNK13, and intronic variants do not
have a direct effect on protein production, they can still affect the functionality of a gene.
Intronic variants that cause abnormal splicing changes by destroying existing splicing
motifs or by creating new ones are an important class of pathogenic variant, as they can
affect the protein’s function, and they account for 15–60% of human disease variants [33].
Interestingly, however, some intronic variants, despite not being present at splice junctions,
are still considered functional, and they can change the splicing phenotype because they
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are located in an intron splice enhancer or branchpoint site, or because they are activators
of cryptic splice sites [34,35]. Cooper (2010) [36] summarized several of these functional
variants, many of which are located at least ~30 base pairs (bp) from the nearest splice site.
These SNPs are usually overlooked, but in vitro studies have shown their association with
several diseases, and they have proven that they can have an impact on the transcriptional
activity or the splicing efficiency of their host genes; they can also change the expression
of alternative transcripts [36]. Therefore, further research is required to assess whether
rs1554116 is a functional intronic variant that can affect the expression or the function of
KCNK13, as the experimental results from previous studies suggest that changes in its
expression or any other defect in the protein’s function can affect thermogenesis and energy
homeostasis. As the knockout mice in the experiment performed by Chen et al. (2017) [31]
were resistant to obesity due to increased energy expenditure, it is possible that rs1554116,
which is considered a risk allele for obesity, can cause the increased expression of KCNK13
and defective thermogenesis, but further research and functional experiments are required
to support this assumption.

Furthermore, rs7863750 might be another promising variant that was found to be
associated with a lower risk of being overweight (OR = 0.2582) in this study. According
to 1000 Genomes, this SNP also has a very low MAF, below 0.05. In the present study,
its frequency (0.07) was almost equal to that observed in the European population (0.08),
but the frequency observed in individuals with normal BMI was extremely high (0.23).
The rs7863750 is the only SNP identified in the present study to be located in a coding
region. More specifically, it is considered a synonymous mutation for one transcript, but
also a non-synonymous mutation for another transcript of the gene. In both cases, recent
studies indicate that both synonymous and non-synonymous mutations can affect gene
expression and protein function in a variety of ways [37–40]. In this case, however, as the
same variant was characterized as an expression quantitative trait locus (eQTL,) it seems
that rs7863750 has the potential to alter the gene’s expression. Research shows that even
synonymous mutations can contribute to human diseases [37] as they can influence the
stability of mRNA transcripts, e.g., by affecting the mRNA’s secondary structure, which in
turn influences the abundance of mRNAs (less stable mRNAs are easily degraded) and the
levels of the protein produced [37,39]. Similarly, increased levels of protein can be observed
if the mutation affects the mRNA’s structure and, subsequently, the mRNA’s interactions
with specific proteins [40]. The rs7863750 is associated with the increased expression of
MFSD14B in adipose tissues, according to GTex. The MFSD14B is a membrane-bound
transporter that, according to studies on mice, is found in neurons of the central nervous
system and is also involved in energy homeostasis [41]. Furthermore, Mfsd14b is also
expressed in many peripheral tissues in mice, and its highest expression is observed in
the liver. In the same study, the researchers found that nutrient availability induced the
up-regulation of Mfsd14b in primary cortex cells, while its expression was also affected
by starvation [41]. Although the researchers only studied nutrient availability, previous
experiments proved that in these cases, other obesity-related factors are also modified, such
as hyperinsulinemia, hyperglycemia, etc. [42]. Therefore, it seems that the exact mechanism
of action of MFSD14B and its function are not yet fully understood [43], but rs7863750 and
the overexpression of MFSD14B may have a role in obesity, as this protein seems to be
involved in the regulation of glucose metabolism and insulin signaling [41,43]. However,
the role of MFSD14B and the variants mapped in this gene in obesity-related traits should
be further investigated. Future studies may also focus on unraveling its role in adipose
tissue in order to provide conclusive evidence for its association with obesity.

In addition, rs7500401 may also require further research, as it is located near a lncRNA
and, recently, it was suggested that lncRNAs play a regulatory role in adipogenesis and
obesity [44–46], although the available information is still limited.

For the second genome-wide association study, 104 control samples with normal BMI
and 61 cases (obese, BMI > 30 kg/m2) were used. After QC, 94 controls and 57 cases
remained. The analysis showed that only one intronic SNP (rs114252547) of DGKD was
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associated with obesity in men (p-value < 10−5). Interestingly, this specific variant has a
high odds ratio (15.18). More specifically, the frequency in Europe is estimated at 0.03, but
its frequency in the cases in this study was 0.14, almost five times higher. Furthermore,
although the SNP has never been associated with obesity or obesity-related traits in the
past, the gene in which it is found is involved in metabolic regulation. The DGKD encodes
for a diacylglycerol (DAG) kinase (DGK), which plays a unique role in lipid metabolism,
since it acts both as an intermediate product of triglyceride synthesis and as a signaling
molecule [47]. Elevated levels of DAG have been associated with insulin resistance and
the pathogenesis of type 2 diabetes because increased DAG encourages intracellular lipid
accumulation and aberrant signal transduction through the activation of protein kinase
C (PKC) isoforms [48]. In this process, DGKs catalyze the phosphorylation of DAG to
phosphatidic acid (PA), attenuating DAG signaling [49]. Based on this function, scientists
assumed that DGKs can play a role in fat-deposition regulation; therefore, in an attempt to
unravel the role of, Jiang et al. (2016) [50] demonstrated that its reduction affects AMPK
signaling and lipid metabolism by altering DAG content. Previous experiments also
showed that DGKδ+/− mice were obese and developed skeletal-muscle insulin resistance
with age [51]. All these findings suggest that a reduction in DGKδ can lead to obesity
through increases in insulin resistance and metabolic inflexibility. Therefore, the SNP
identified in this study as associated with obesity in males and found in DGKD may be a
promising candidate for future research.

In summary, the research methodology, as well as the results of the present study and
the potential role of the SNPs identified, are presented in Figure 3.
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Figure 3. Summary of the methodology and the results of the present study. In brief, the genome-
wide association study (GWAS) that included 104 control, 125 overweight, and 61 obese subjects
revealed four SNPs associated with overweight (rs7818910, rs7863750, rs1554116, and rs7500401) and
one SNP (rs114252547) associated with obesity in males. The potential role of the identified SNPs in
overweight and obesity is also presented based on previous studies and research [29–32,41,42,47–50].
The figure was created with Biorender.com.

This study has some strengths and limitations. First, the main strength of the study
is the fact that it is one of the few to investigate gene-by-sex interactions in obesity and
body mass. Although sexual dimorphism plays a key role in fat distribution [15], only
a few studies about obesity are designed to explicitly focus on females or males only.
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Thus, this study, conducted exclusively on males, can provide novel insights into human
physiology and the development of obesity, as well as biological clues to aid in disease
prevention and treatment. Second, another strength is the stringent quality-control criteria
used. The SNPs and samples that could have affected the quality of our results and led to
false-positive or false-negative results were excluded through the rigorous quality control,
which included several steps, as described above. Finally, another strength is the genetic
homogeneity of our sample. All the volunteers belonged to the Greek population, accord-
ing to the questionnaire that they completed before their enrolment in the present study.
Genetic heterogeneity can affect the ability to detect associations between genotypes and
phenotypes of interest [52] and, especially in obesity, ethnicity differences have been re-
ported due to genetic background [53,54]. However, some limitations should be considered.
The major limitation of the present study is the small sample size that was used, as only
125 overweight and 61 obese individuals were included in the GWAS. After QC, the number
of individuals included was even lower, indicating that this study was underpowered.
Therefore, more research and large-scale genetic studies are required to assess the role of
the SNPs identified here in obesity and overweight. Furthermore, in the present study, we
did not identify SNPs associated with obesity or overweight in males at the genome-wide
significance level (p-value < 5 × 10−8). Finally, it should be noted that this analysis was
performed on males, and we did not perform the same analysis on females. As our sample
was composed exclusively of males, it is possible that the SNPs identified here are associ-
ated with obesity and overweight in males and thus, have a male-specific effect. However,
we cannot draw definitive conclusions about this sex-specific effect, as we did not study
a female population. Therefore, further research and, potentially, another genome-wide
association study focusing on the female population are suggested for future study.

Finally, this is a preliminary study aiming at the investigation of SNPs that are po-
tentially associated with overweight and/or obesity in males, and it does not provide
conclusive evidence on specific SNPs and their impact. The results presented here should
be interpreted with caution and validated in larger, independent cohorts, as our study had
several limitations. However, smaller studies such as this are still of importance. Especially
in cases in which the available information is limited, as in gene-by-sex interactions in
obesity and/or overweight, studies such as this can provide roadmaps for future research,
enlist candidate genes and variants, confirm the roles of genes that have been studied in
the past in obesity and/or overweight, and contribute to our understanding of the genetics
of complex diseases and traits.

5. Conclusions

In conclusion, we assayed a sample collection of obese and overweight cases and
controls with normal BMI, all of whom were male, and performed two association analyses
to identify SNPs associated with overweight and obesity. We identified five associated SNPs
with p-values < 10−5 that may contribute to obesity and/or overweight in a sex-specific
manner. It should also be noted that although most of the genes in which the significant
SNPs were found play a role in energy metabolism and homeostasis, the identified SNPs
were not previously reported in relevant studies. This indicates that the heritability of
obesity-related traits is not attributable to only a few genetic variants. Therefore, the find-
ings presented in the present study can help guide future research on the characterization of
the genetic risks of obesity-related traits and on the unraveling of the molecular mechanisms
of obesity and/or overweight, helping to better prevent and treat these conditions.

Author Contributions: Conceptualization, Z.M., M.-A.K. and T.S.; data analysis, M.-A.K. and T.G.;
data interpretation, T.G., M.-A.K., Z.M. and T.S.; data acquisition, A.C. and N.C.; writing—original
draft preparation, M.-A.K.; writing—review and editing, Z.M., T.S. and T.G.; supervision, Z.M.; fund-
ing acquisition, Z.M. All authors have read and agreed to the published version of the manuscript.



Genes 2023, 14, 799 11 of 13

Funding: This research was supported by the Spermogene project, which is co-financed by the
European Regional Development Fund of the European Union, and Greek national funds, through the
Operational Program Competitiveness, Entrepreneurship, and Innovation, under the call RESEARCH–
CREATE–INNOVATE (grant number T1E∆K-02787).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the ethics committee of the Medical Faculty of the University of Thessaly
on 20 April 2016, with approval code 20.04/2016, in response to request number 1, 15.04.2016.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors wish to thank all the volunteers for their participation in this study.
We would also like to thank Maria Markantoni for sample handling and support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Smith, K.B.; Smith, M.S. Obesity Statistics. Prim. Care Clin. Off. Pract. 2016, 43, 121–135. [CrossRef] [PubMed]
2. Caballero, B. Humans against Obesity: Who Will Win? Adv. Nutr. 2019, 10, S4. [CrossRef] [PubMed]
3. Ng, M.; Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C.; Mullany, E.C.; Biryukov, S.; Abbafati, C.;

Abera, S.F.; et al. Global, Regional, and National Prevalence of Overweight and Obesity in Children and Adults during 1980–2013:
A Systematic Analysis for the Global Burden of Disease Study 2013. Lancet 2014, 384, 766–781. [CrossRef]

4. Cawley, J.; Meyerhoefer, C. The Medical Care Costs of Obesity: An Instrumental Variables Approach. J. Health Econ. 2012,
31, 219–230. [CrossRef] [PubMed]

5. Nicolaidis, S. Environment and Obesity. Metabolism 2019, 100S, 153942. [CrossRef] [PubMed]
6. Goodarzi, M.O. Genetics of Obesity: What Genetic Association Studies Have Taught Us about the Biology of Obesity and Its

Complications. Lancet Diabetes Endocrinol. 2018, 6, 223–236. [CrossRef]
7. Speakman, J.R.; Loos, R.J.F.; O’Rahilly, S.; Hirschhorn, J.N.; Allison, D.B. GWAS for BMI: A Treasure Trove of Fundamental

Insights into the Genetic Basis of Obesity. Int. J. Obes. 2018, 42, 1524–1531. [CrossRef]
8. Müller, M.J.; Geisler, C.; Blundell, J.; Dulloo, A.; Schutz, Y.; Krawczak, M.; Bosy-Westphal, A.; Enderle, J.; Heymsfield, S.B. The

Case of GWAS of Obesity: Does Body Weight Control Play by the Rules? Int. J. Obes. 2018, 42, 1395–1405. [CrossRef] [PubMed]
9. Locke, A.E.; Kahali, B.; Berndt, S.I.; Justice, A.E.; Pers, T.H.; Day, F.R.; Powell, C.; Vedantam, S.; Buchkovich, M.L.; Yang, J.; et al.

Genetic Studies of Body Mass Index Yield New Insights for Obesity Biology. Nature 2015, 518, 197–206. [CrossRef]
10. Yang, J.; Bakshi, A.; Zhu, Z.; Hemani, G.; Vinkhuyzen, A.A.E.; Lee, S.H.; Robinson, M.R.; Perry, J.R.B.; Nolte, I.M.; Van Vliet-

Ostaptchouk, J.V.; et al. Genetic Variance Estimation with Imputed Variants Finds Negligible Missing Heritability for Human
Height and Body Mass Index. Nat. Genet. 2015, 47, 1114–1120. [CrossRef]

11. Williams, T.M.; Carroll, S.B. Genetic and Molecular Insights into the Development and Evolution of Sexual Dimorphism. Nat. Rev.
Genet. 2009, 10, 797–804. [CrossRef] [PubMed]

12. Wells, J.C.K. Sexual Dimorphism of Body Composition. Best Pract. Res. Clin. Endocrinol. Metab. 2007, 21, 415–430. [CrossRef]
[PubMed]

13. Taylor, R.W.; Grant, A.M.; Williams, S.M.; Goulding, A. Sex Differences in Regional Body Fat Distribution from Pre- to Postpuberty.
Obesity 2010, 18, 1410–1416. [CrossRef] [PubMed]

14. Kuk, J.L.; Saunders, T.J.; Davidson, L.E.; Ross, R. Age-Related Changes in Total and Regional Fat Distribution. Ageing Res. Rev.
2009, 8, 339–348. [CrossRef]

15. Pulit, S.L.; Karaderi, T.; Lindgren, C.M. Sexual Dimorphisms in Genetic Loci Linked to Body Fat Distribution. Biosci. Rep. 2017,
37, BSR20160184. [CrossRef]

16. Winkler, T.W.; Justice, A.E.; Graff, M.; Barata, L.; Feitosa, M.F.; Chu, S.; Czajkowski, J.; Esko, T.; Fall, T.; Kilpeläinen, T.O.; et al.
The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale Genome-Wide Interaction
Study. PLOS Genet. 2015, 11, e1005378. [CrossRef]

17. Weyrich, A. Preparation of Genomic DNA from Mammalian Sperm. Curr. Protoc. Mol. Biol. 2012, 1, 2.13.1–2.13.3. [CrossRef]
[PubMed]

18. Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; De Bakker, P.I.W.; Daly, M.J.;
et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007,
81, 559–575. [CrossRef]

19. Turner, S.D. Qqman: An R Package for Visualizing GWAS Results Using Q-Q and Manhattan Plots. J. Open Source Softw. 2018,
3, 731. [CrossRef]

20. Howe, K.L.; Achuthan, P.; Allen, J.; Allen, J.; Alvarez-Jarreta, J.; Ridwan Amode, M.; Armean, I.M.; Azov, A.G.; Bennett, R.;
Bhai, J.; et al. Ensembl 2021. Nucleic Acids Res. 2021, 49, D884–D891. [CrossRef]

http://doi.org/10.1016/j.pop.2015.10.001
http://www.ncbi.nlm.nih.gov/pubmed/26896205
http://doi.org/10.1093/advances/nmy055
http://www.ncbi.nlm.nih.gov/pubmed/30721956
http://doi.org/10.1016/S0140-6736(14)60460-8
http://doi.org/10.1016/j.jhealeco.2011.10.003
http://www.ncbi.nlm.nih.gov/pubmed/22094013
http://doi.org/10.1016/j.metabol.2019.07.006
http://www.ncbi.nlm.nih.gov/pubmed/31610854
http://doi.org/10.1016/S2213-8587(17)30200-0
http://doi.org/10.1038/s41366-018-0147-5
http://doi.org/10.1038/s41366-018-0081-6
http://www.ncbi.nlm.nih.gov/pubmed/29795468
http://doi.org/10.1038/nature14177
http://doi.org/10.1038/ng.3390
http://doi.org/10.1038/nrg2687
http://www.ncbi.nlm.nih.gov/pubmed/19834484
http://doi.org/10.1016/j.beem.2007.04.007
http://www.ncbi.nlm.nih.gov/pubmed/17875489
http://doi.org/10.1038/oby.2009.399
http://www.ncbi.nlm.nih.gov/pubmed/19893501
http://doi.org/10.1016/j.arr.2009.06.001
http://doi.org/10.1042/BSR20160184
http://doi.org/10.1371/journal.pgen.1005378
http://doi.org/10.1002/0471142727.mb0213s98
http://www.ncbi.nlm.nih.gov/pubmed/22470062
http://doi.org/10.1086/519795
http://doi.org/10.21105/joss.00731
http://doi.org/10.1093/nar/gkaa942


Genes 2023, 14, 799 12 of 13

21. Oscanoa, J.; Sivapalan, L.; Gadaleta, E.; Dayem Ullah, A.Z.; Lemoine, N.R.; Chelala, C. SNPnexus: A Web Server for Functional
Annotation of Human Genome Sequence Variation (2020 Update). Nucleic Acids Res. 2020, 48, W185–W192. [CrossRef] [PubMed]

22. Lonsdale, J.; Thomas, J.; Salvatore, M.; Phillips, R.; Lo, E.; Shad, S.; Hasz, R.; Walters, G.; Garcia, F.; Young, N.; et al. The
Genotype-Tissue Expression (GTEx) Project. Nat. Genet. 2013, 45, 580. [CrossRef] [PubMed]

23. Auton, A.; Abecasis, G.R.; Altshuler, D.M.; Durbin, R.M.; Bentley, D.R.; Chakravarti, A.; Clark, A.G.; Donnelly, P.; Eichler, E.E.;
Flicek, P.; et al. A Global Reference for Human Genetic Variation. Nature 2015, 526, 68–74. [CrossRef]

24. Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A Method and
Server for Predicting Damaging Missense Mutations. Nat. Methods 2010, 7, 248–249. [CrossRef] [PubMed]

25. Vaser, R.; Adusumalli, S.; Ngak Leng, S.; Sikic, M.; Ng, P.C. SIFT missense predictions for genomes. Nat. Protoc. 2015, 11, 1–9.
[CrossRef] [PubMed]

26. Boyle, A.P.; Hong, E.L.; Hariharan, M.; Cheng, Y.; Schaub, M.A.; Kasowski, M.; Karczewski, K.J.; Park, J.; Hitz, B.C.;
Weng, S.; et al. Annotation of Functional Variation in Personal Genomes Using RegulomeDB. Genome Res. 2012, 22, 1790–1797.
[CrossRef] [PubMed]

27. Lu, Y.; Quan, C.; Chen, H.; Bo, X.; Zhang, C. 3DSNP: A Database for Linking Human Noncoding SNPs to Their Three-Dimensional
Interacting Genes. Nucleic Acids Res. 2017, 45, D643–D649. [CrossRef]

28. Liu, C.J.; Fu, X.; Xia, M.; Zhang, Q.; Gu, Z.; Guo, A.Y. MiRNASNP-v3: A Comprehensive Database for SNPs and Disease-Related
Variations in MiRNAs and MiRNA Targets. Nucleic Acids Res. 2021, 49, D1276–D1281. [CrossRef]

29. Svensson, P.A.; Jernås, M.; Sjöholm, K.; Hoffmann, J.M.; Nilsson, B.E.; Hansson, M.; Carlsson, L.M.S. Gene Expression in Human
Brown Adipose Tissue. Int. J. Mol. Med. 2011, 27, 227–232. [CrossRef]

30. Feliciangeli, S.; Chatelain, F.C.; Bichet, D.; Lesage, F. The Family of K2P Channels: Salient Structural and Functional Properties. J.
Physiol. 2015, 593, 2587–2603. [CrossRef]

31. Chen, Y.; Zeng, X.; Huang, X.; Serag, S.; Woolf, C.J.; Spiegelman, B.M. Crosstalk Between Kcnk3-Mediated Ion Current and
Adrenergic Signaling Regulates Adipose Thermogenesis and Obesity. Cell 2017, 171, 836. [CrossRef]

32. Shungin, D.; Winkler, T.; Croteau-Chonka, D.C.; Ferreira, T.; Locke, A.E.; Mägi, R.; Strawbridge, R.J.; Pers, T.H.; Fischer, K.;
Justice, A.E.; et al. New Genetic Loci Link Adipose and Insulin Biology to Body Fat Distribution. Nature 2015, 518, 187–196.
[CrossRef]

33. Park, E.; Pan, Z.; Zhang, Z.; Lin, L.; Xing, Y. The Expanding Landscape of Alternative Splicing Variation in Human Populations.
Am. J. Hum. Genet. 2018, 102, 11–26. [CrossRef]

34. Kwan, T.; Benovoy, D.; Dias, C.; Gurd, S.; Provencher, C.; Beaulieu, P.; Hudson, T.J.; Sladek, R.; Majewski, J. Genome-Wide
Analysis of Transcript Isoform Variation in Humans. Nat. Genet. 2008, 40, 225–231. [CrossRef]

35. Coulombe-Huntington, J.; Lam, K.C.L.; Dias, C.; Majewski, J. Fine-Scale Variation and Genetic Determinants of Alternative
Splicing across Individuals. PLoS Genet. 2009, 5, e1000766. [CrossRef]

36. Cooper, D.N. Functional Intronic Polymorphisms: Buried Treasure Awaiting Discovery within Our Genes. Hum. Genom. 2010,
4, 284. [CrossRef] [PubMed]

37. Sauna, Z.E.; Kimchi-Sarfaty, C. Understanding the Contribution of Synonymous Mutations to Human Disease. Nat. Rev. Genet.
2011, 12, 683–691. [CrossRef] [PubMed]

38. Chamary, J.V.; Parmley, J.L.; Hurst, L.D. Hearing Silence: Non-Neutral Evolution at Synonymous Sites in Mammals. Nat. Rev.
Genet. 2006, 7, 98–108. [CrossRef]

39. Hunt, R.; Sauna, Z.E.; Ambudkar, S.V.; Gottesman, M.M.; Kimchi-Sarfaty, C. Silent (Synonymous) SNPs: Should We Care about
Them? Methods Mol. Biol. 2009, 578, 23–39. [CrossRef] [PubMed]

40. Edwards, N.C.; Hing, Z.A.; Perry, A.; Blaisdell, A.; Kopelman, D.B.; Fathke, R.; Plum, W.; Newell, J.; Allen, C.E.; Geetha, S.; et al.
Characterization of Coding Synonymous and Non-Synonymous Variants in ADAMTS13 Using Ex Vivo and In Silico Approaches.
PLoS ONE 2012, 7, 38864. [CrossRef] [PubMed]

41. Lekholm, E.; Perland, E.; Eriksson, M.M.; Hellsten, S.V.; Lindberg, F.A.; Rostami, J.; Fredriksson, R. Putative Membrane-Bound
Transporters MFSD14A and MFSD14B Are Neuronal and Affected by Nutrient Availability. Front. Mol. Neurosci. 2017, 10.
[CrossRef] [PubMed]

42. Collins, S.; Martin, T.L.; Surwit, R.S.; Robidoux, J. Genetic Vulnerability to Diet-Induced Obesity in the C57BL/6J Mouse:
Physiological and Molecular Characteristics. Physiol. Behav. 2004, 81, 243–248. [CrossRef] [PubMed]

43. Ceder, M.M.; Lekholm, E.; Klaesson, A.; Tripathi, R.; Schweizer, N.; Weldai, L.; Patil, S.; Fredriksson, R. Glucose Availability
Alters Gene and Protein Expression of Several Newly Classified and Putative Solute Carriers in Mice Cortex Cell Culture and D.
Melanogaster. Front. Cell Dev. Biol. 2020, 8, 579. [CrossRef] [PubMed]

44. Rey, F.; Urrata, V.; Gilardini, L.; Bertoli, S.; Calcaterra, V.; Zuccotti, G.V.; Cancello, R.; Carelli, S. Role of Long Non-coding RNAs
in Adipogenesis: State of the Art and Implications in Obesity and Obesity-associated Diseases. Obes. Rev. 2021, 22, e13203.
[CrossRef] [PubMed]

45. Zhang, B.; Xu, S.; Liu, J.; Xie, Y.; Xiaobo, S. Long Noncoding RNAs: Novel Important Players in Adipocyte Lipid Metabolism and
Derivative Diseases. Front. Physiol. 2021, 12, 840. [CrossRef]

46. Wijesinghe, S.N.; Nicholson, T.; Tsintzas, K.; Jones, S.W. Involvements of Long Noncoding RNAs in Obesity-Associated Inflam-
matory Diseases. Obes. Rev. 2021, 22, e13156. [CrossRef]

http://doi.org/10.1093/nar/gkaa420
http://www.ncbi.nlm.nih.gov/pubmed/32496546
http://doi.org/10.1038/ng.2653
http://www.ncbi.nlm.nih.gov/pubmed/23715323
http://doi.org/10.1038/nature15393
http://doi.org/10.1038/nmeth0410-248
http://www.ncbi.nlm.nih.gov/pubmed/20354512
http://doi.org/10.1038/nprot.2015.123
http://www.ncbi.nlm.nih.gov/pubmed/26633127
http://doi.org/10.1101/gr.137323.112
http://www.ncbi.nlm.nih.gov/pubmed/22955989
http://doi.org/10.1093/nar/gkw1022
http://doi.org/10.1093/nar/gkaa783
http://doi.org/10.3892/ijmm.2010.566
http://doi.org/10.1113/jphysiol.2014.287268
http://doi.org/10.1016/j.cell.2017.09.015
http://doi.org/10.1038/nature14132
http://doi.org/10.1016/j.ajhg.2017.11.002
http://doi.org/10.1038/ng.2007.57
http://doi.org/10.1371/journal.pgen.1000766
http://doi.org/10.1186/1479-7364-4-5-284
http://www.ncbi.nlm.nih.gov/pubmed/20650817
http://doi.org/10.1038/nrg3051
http://www.ncbi.nlm.nih.gov/pubmed/21878961
http://doi.org/10.1038/nrg1770
http://doi.org/10.1007/978-1-60327-411-1_2
http://www.ncbi.nlm.nih.gov/pubmed/19768585
http://doi.org/10.1371/journal.pone.0038864
http://www.ncbi.nlm.nih.gov/pubmed/22768050
http://doi.org/10.3389/fnmol.2017.00011
http://www.ncbi.nlm.nih.gov/pubmed/28179877
http://doi.org/10.1016/j.physbeh.2004.02.006
http://www.ncbi.nlm.nih.gov/pubmed/15159170
http://doi.org/10.3389/fcell.2020.00579
http://www.ncbi.nlm.nih.gov/pubmed/32733888
http://doi.org/10.1111/obr.13203
http://www.ncbi.nlm.nih.gov/pubmed/33443301
http://doi.org/10.3389/fphys.2021.691824
http://doi.org/10.1111/obr.13156


Genes 2023, 14, 799 13 of 13

47. Nakano, T.; Goto, K. Diacylglycerol Kinase ε in Adipose Tissues: A Crosstalk Between Signal Transduction and Energy Metabolism.
Front. Physiol. 2022, 13, 49. [CrossRef]

48. Itani, S.I.; Ruderman, N.B.; Schmieder, F.; Boden, G. Lipid-Induced Insulin Resistance in Human Muscle Is Associated with
Changes in Diacylglycerol, Protein Kinase C, and IkappaB-α. Diabetes 2002, 51, 2005–2011. [CrossRef]

49. Kanoh, H.; Yamada, K.; Sakane, F. Diacylglycerol Kinases: Emerging Downstream Regulators in Cell Signaling Systems. J.
Biochem. 2002, 131, 629–633. [CrossRef]

50. Jiang, L.Q.; de Castro Barbosa, T.; Massart, J.; Deshmukh, A.S.; Löfgren, L.; Duque-Guimaraes, D.E.; Ozilgen, A.; Osler, M.E.;
Chibalin, A.V.; Zierath, J.R. Diacylglycerol Kinase-δ Regulates AMPK Signaling, Lipid Metabolism, and Skeletal Muscle Energetics.
Am. J. Physiol.—Endocrinol. Metab. 2016, 310, E51. [CrossRef]

51. Chibalin, A.V.; Leng, Y.; Vieira, E.; Krook, A.; Björnholm, M.; Long, Y.C.; Kotova, O.; Zhong, Z.; Sakane, F.; Steiler, T.; et al.
Downregulation of Diacylglycerol Kinase Delta Contributes to Hyperglycemia-Induced Insulin Resistance. Cell 2008, 132, 375–386.
[CrossRef] [PubMed]

52. Peterson, R.E.; Kuchenbaecker, K.; Walters, R.K.; Chen, C.Y.; Popejoy, A.B.; Periyasamy, S.; Lam, M.; Iyegbe, C.; Strawbridge, R.J.;
Brick, L.; et al. Genome-Wide Association Studies in Ancestrally Diverse Populations: Opportunities, Methods, Pitfalls, and
Recommendations. Cell 2019, 179, 589–603. [CrossRef] [PubMed]

53. Stryjecki, C.; Alyass, A.; Meyre, D. Ethnic and Population Differences in the Genetic Predisposition to Human Obesity. Obes. Rev.
2018, 19, 62–80. [CrossRef] [PubMed]

54. Young, K.L.; Graff, M.; Fernandez-Rhodes, L.; North, K.E. Genetics of Obesity in Diverse Populations. Curr. Diab. Rep. 2018,
18, 145. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3389/fphys.2022.815085
http://doi.org/10.2337/diabetes.51.7.2005
http://doi.org/10.1093/oxfordjournals.jbchem.a003144
http://doi.org/10.1152/ajpendo.00209.2015
http://doi.org/10.1016/j.cell.2007.12.035
http://www.ncbi.nlm.nih.gov/pubmed/18267070
http://doi.org/10.1016/j.cell.2019.08.051
http://www.ncbi.nlm.nih.gov/pubmed/31607513
http://doi.org/10.1111/obr.12604
http://www.ncbi.nlm.nih.gov/pubmed/29024387
http://doi.org/10.1007/s11892-018-1107-0
http://www.ncbi.nlm.nih.gov/pubmed/30456705

	Introduction 
	Materials and Methods 
	Study Participants 
	DNA Extraction 
	Genotyping 
	Quality Control (QC) 
	Association Analysis and In Silico Functional Annotation 

	Results 
	Discussion 
	Conclusions 
	References

