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Abstract: The transcription factor forkhead box protein 3 (FOXP3) is considered to be a prominent
component of the immune system expressed in regulatory T cells (Tregs). Tregs are immunosuppres-
sive cells that regulate immune homeostasis and self-tolerance. FOXP3 was originally thought to be a
Tregs-specific molecule, but recent studies have pinpointed that FOXP3 is expressed in a diversity of
benign tumors and carcinomas. The vast majority of the data have shown that FOXP3 is correlated
with an unfavorable prognosis, although there are some reports indicating the opposite function of
this molecule. Here, we review recent progress in understanding the FOXP3 role in the immuno-
genetic architecture of lung cancer, which is the leading cause of cancer-related death. We discuss the
prognostic significance of tumor FOXP3 expression, tumor-infiltrating FOXP3-lymphocytes, tumor
FOXP3 in tumor microenvironments and the potential of FOXP3-targeted therapy.

Keywords: FOXP3; regulatory T cells; FOXP3 expression; tumor-infiltrating FOXP3-lymphocytes;
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1. Introduction

Regulatory T cells were initially discovered over two decades ago by Sakaguchi et al.
in a distinct model of murine autoimmunity [1]. In 2001, human Tregs were identified in the
thymus and peripheral blood of healthy individuals [2]. However, they are preferentially
called regulatory cells instead of suppressor T cells; their primary and the most important
function is to suppress or downregulate the induction of effector T cells. Treg cells are able
to control the cell fate of self-reactive T cells and determine long-term tolerance. In humans
and mice, Treg cells are characterized by the high expression of the IL-2 receptor alpha
chain (IL-2Rα and CD25) and the expression of the transcription factor FOXP3, which is
crucial for their development, function and stability [3]. Inactivating mutations in FOXP3
lead to severe autoimmunity with a scurfy phenotype in mice and Immunodysregulation
Polyendocrinopathy Enteropathy X-linked (IPEX) syndrome in humans, which is mani-
fested by immune dysregulation, polyendocrinopathy and enteropathy [4,5]. Moreover, the
ablation of conditional FOXP3 allele Treg cells results in the generation of effector T cells,
which cause inflammatory tissue lesions [6]. On the contrary, enhancing the expression of
endogenous FOXP3 results in the potent regulatory function of CD4+ T cells [7]. Therefore,
stable FOXP3 expression in mature Treg cells is essential for maintaining the transcriptional
and functional program established during Treg development.

FOXP3 has been found to express abnormally in lung squamous cell carcinoma and
lung adenocarcinoma, suggesting that this gene plays an oncogene role [8]. FOXP3+ Tregs
are present in the tumor microenvironment (TME) where they promote tumor development
and progression by the cytokine releasing and suppressing activity of cytotoxic T cells [9].
It was indicated that the high infiltration of FOXP3+ TILs in the TME is associated with an
unfavorable prognosis in lung cancer [10–13].

FOXP3 is an essential element of complex mechanisms that modulate the immune
response and consequently impose tumor behavior. In this review, we summarize the
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recent data regarding FOXP3 expression in lung cancer cells, spatial architecture of tumor-
infiltrating FOXP3+ T cells, prognostic significance of FOXP3+ TILs, FOXP3 impact on lung
cancer stemness and FOXP3+ TILs in the context of cancer therapy.

2. Lung Cancer Epidemiology

Worldwide, lung cancer is the second most common cancer and the leading cause of
cancer-related death. According to the latest GLOBOCAN 2020 estimates, lung cancer was
diagnosed among 2.2 million new cases and caused 1.8 million deaths in 2020. Lung cancer
is the leading cause of cancer morbidity and mortality in men, whereas, in women, it ranks
third for incidence [14,15] (Figure 1). According to its histologic characteristics, lung cancer
is divided into two categories, i.e., small-cell lung cancer (SCLC) and non-small-cell lung
cancer (NSCLC), the latter of which is further divided [16]. NSCLC accounts for more than
80% of all lung cancer cases. As reported by the Surveillance, Epidemiology and End Results
registry in the US, the incidence of NSCLC is 42.6/100,000 of the population [17]. The three
main subtypes of NSCLC include adenocarcinoma (40% of lung cancers), squamous cell
carcinoma (25%) and large-cell carcinoma (10%). Adenocarcinoma is the most common
histologic subtype of lung cancer in men and women [18]. Although nowadays there are
many new approaches for lung cancer therapies, the survival of patients with lung cancer
at 5 years after diagnosis is only 10% to 20% in most countries among those diagnosed from
2010 to 2014 [14]. The 5-year relative survival rate varies markedly for patients diagnosed
at the local stage (61%), regional stage (34%) or distant stage (7%) [19]. The prognosis of
NSCLC patients remains poor because the majority of cases are diagnosed at the metastatic
stage. The most frequent sites of lung cancer metastasis are the brain (20–40% of cases), the
bone (39%) and the liver (16.3%). NSCLC contributes to approximately 50% of all brain
metastases that occur in cancer patients [20].
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Figure 1. Lung cancer epidemiology. (A) Lung cancer incidence in 2022, both sexes. Age-Standardized
Rate (ASR) per 100,000. (B) Lung cancer incidence in 2022 (world), both sexes. (C) Mortality caused
by lung cancer in 2022 (world), both sexes. Source: International Agency for Research on Cancer,
GLOBOCAN 2022 database [14,21].

3. Mutations/Genetic Variants in the FOXP3 Gene in NSCLC

Among the most frequently detected oncogenic mutations in NSCLC patients are
EGFR-activating mutations, occurring in 10–20% of Caucasians and above 50% in the
Asian population, based on the COSMIC database [22] and KRAS (Kirsten rat sarcoma
virus) mutations with a frequency of around 30% [23]. The current landscape of driver
mutations in NSCLC comprises alterations in MET (anaplastic lymphoma kinase), c-ROS1
(receptor tyrosine kinase), BRAF (v-raf murine sarcoma viral oncogene homolog B), NTRK1
(neurotrophic receptor tyrosine kinase), HER2 (human epidermal growth factor 2) and
NGR1 (neuregulin-1) [24].

Based on the available literature data, there was not a well-established association
between FOXP3 mutations and NSCLC. It is known that mutations in the FOXP3 gene
can lead primarily to autoimmune disorders, with the most well-known being IPEX syn-
drome [25,26]. For patients with NSCLC, it is thought that FOXP3 as a master regulator
of T cell development and function may modulate susceptibility to NSCLC. Recently, the
analysis of FOXP3, with the usage of the cBioPortal database, revealed that gene alterations
in FOXP3 occurred in 2.2% of the NSCLC samples [27].

Several FOXP3 single-nucleotide polymorphisms (SNPs) were detected and its role
in cancer susceptibility was investigated. The T allele in rs3761549 (T/C) FOXP3 was
correlated with a susceptibility to lung carcinoma among the Iran population [28], whereas
the A allele of rs3761548 significantly increased the NSCLC risk (OR = 2.32 and 95%
CI = 1.736–3.102) in Chinese patients [29]. The association of three FOXP3 functional SNPs
(rs3761548, rs3761549 and rs2280883) and cancer risk was performed by an updated meta-
analysis. It revealed that rs3761548 contributes to an increased risk of cancer in the overall
population, while no significant differences were observed in individual cancer groups,
including breast, lung, hepatocellular, colorectal and thyroid cancer [30]. Another meta-
analysis including the same three SNPs in six cancer groups showed that in the case of
rs3761548 (A/C) polymorphisms, an elevated risk of cancer in the variant AA genotypes
and A allele for the Chinese population was observed. Neither the overall group analyses
nor the subgroup analyses stratified by cancer type, including NSCLC, and ethnicity
showed a significant association of the rs2280883 and rs3761549 polymorphisms with
cancer susceptibility [31]. It appears that the specific genetic variants of FOXP3 and their
impact on susceptibility to NSCLC may vary between populations, and ongoing studies
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may provide more information on this association. Investigating the molecular variants of
FOXP3 associated with NSCLC may be helpful in identifying new diagnostic panels.

4. FOXP3 Expression in NSCLC

Compared to normal tissues, FOXP3 is highly expressed in various cancers, including
gastric cancer, esophageal cancer and breast cancer. The mRNA expression of FOXP3 was
significantly increased among NSCLC cell lines (e.g., NCI-H1299, PC9 and NCI-H226)
compared to a normal human lung epithelial cell line (BEAS-2B) [27]. In the NSCLC
group, FOXP3 is highly expressed in lung squamous cell carcinoma (p < 0.001) and lung
adenocarcinoma (p < 0.001), suggesting that this gene plays a role as an oncogene in lung
cancer [8]. The FOXP3 overexpression was confirmed in NSCLC cells and also tumor-
infiltrating lymphocytes [32]. In the comprehensive analysis of whole FOXP family mRNA
expression, by D. M. Hu et al., the lower FOXP3 expression was correlated with a better
prognosis of lung adenocarcinoma (LUAD) (HR = 1.37 and 95% CI 1.09–1.73) and with
a better prognosis of NSCLC (HR = 1.25 and 95% CI 1.1–1.41) [27]. Additionally, the
transcriptional level of FOXP3 was markedly correlated with the six clinicopathological
stages in LUAD and lung squamous carcinoma (LUSC) patients. The Kaplan–Meier Plotter
showed that the overexpression levels of FOXP2/3 were associated with a poor prognosis of
NSCLC [27]. The expression level of FOXP3 was correlated with its promoter methylation
level in NSCLC. Methylation involved only one CpGs of the FOXP3 promoter in NSCLC
and its level was lower than those in normal samples. A significant prognostic value was
demonstrated for FOXP3, as an association was observed between the DNA methylation
status of the FOXP3 site and patient survival time [27].

A study by F. Dimitrakopoulos et al. showed that the FOXP3 protein is normally
expressed in bronchial epithelial cells but is overexpressed in NSCLC cells and tumor-
infiltrating lymphocytes. The lymphocytic FOXP3 expression was an age-related factor,
whereas tumor FOXP3 expression was correlated with lymph node metastasis [33]. In
another study, the remarkable FOXP3 overexpression in lung adenocarcinoma specimens
(N = 40) was confirmed by immunohistochemical (IHC) staining. The increased FOXP3
expression in cancerous tissues was primarily localized in both the nucleus and the cyto-
plasm of tumor cells [34]. In the study by S. Yang et al., NSCLC patients with the high level
of FOXP3 had a significant decrease in overall survival and recurrence-free survival [35].
However, in the study by X. Wang et al., FOXP3 downregulation was found in NSCLC
compared with normal tissues, which was a predictor of an unfavorable tumor stage and
total and overall survival [36]. In the case of the data extracted from the Human Protein
Atlas database, FOXP3 was not expressed in LUSC cancer cells but mainly in immune cells.
The result of immunofluorescence (IF) staining verified that FOXP3 colocalized with the
T cell marker gene CD3+ in immune cells [8]. A bioinformatics analysis of 1925 patients
with NSCLC from the Kaplan–Meier Plotter database indicated 941 patients with high
expression of FOXP3 and 984 patients with low expression of this gene. Further, the sur-
vival analysis shows that low-expression FOXP3 patients had a median overall survival of
78 months, which was significantly higher than those of high-expression FOXP3 patients
(61.21 months). Additionally, a disease-free survival analysis was performed on patients
with early stage NSCLC, and the FOXP3 could be used as an indicator of DFS prediction [8].

In conclusion, the expression of FOXP3 in NSCLC is not uniform across all patients
or tumor types. Variability in FOXP3 expression may contribute to the diverse outcomes
observed in different studies. It was shown that the expression levels of the FOXP3
had significant effects on the clinical parameters, including patient age, smoking habits,
histological subtypes, cancer stages, nodal metastasis status and TP53 mutation status.
An assessment of FOXP3 mRNA expression levels and an analysis of DNA methylation
provides a new approach to the prognosis of NSCLC. It is worth mentioning that the FOXP3
protein is involved in multiple signaling pathways, which may indirectly influence the
course of the disease. The FOXP3 protein was found to engage in multiple protein–protein
interactions as shown in Figure 2. This STRING interactome [37] indicates that FOXP3 is
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not only a Treg marker but may also play multiple roles in inflammatory processes present
in the TME (Sections 5 and 6) and NSCLC cancer progression (Sections 7 and 8), which will
be discussed later in this manuscript.
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The presented interactome showed that FOXP3 may positively regulate CD4-positive,
CD25-positive, alpha-beta regulatory T cell differentiation, T-helper 17 cell differentiation
and T cell differentiation. FOXP3 may negatively regulate thymocyte apoptosis.

5. Presence of FOXP3 in the TME

FOXP3 is predominantly associated with regulatory T cells [38], and its expression in
lung cancer is often linked to the presence of tumor-infiltrating Tregs [32]. It is known that
FOXP3 mutations impair Treg cell development and cause IPEX syndrome [25]. The deple-
tion of FOXP3+ CD25+ CD4+ Tregs leads to similar autoimmune diseases in rodents [39].
Lung cancer tumors have been shown to harbor a large number of tumor-infiltrating Treg
cells [32]. In patients with NSCLC, it was reported that those with a higher ratio of Tregs to
total T cells infiltrating the tumor had an increased risk of recurrence. In addition, increased
levels of Tregs in the peripheral blood of NSCLC patients compared to healthy controls was
observed [40]. H. Tao et al. indicated that when FOXP3-positive cancer cells were present,
the relationship between Treg accumulation and a worse prognosis was attenuated [35]. In
the context of NSCLC, the presence of tumor-infiltrating Tregs (FOXP3+ Tregs) can have
both positive and negative effects on the immune response [38,41]. The FOXP3+ Tregs are
known for their immunosuppressive functions and their presence in the TME may suppress
the anti-tumor immune response by the inhibition of the activity of cytotoxic T cells and
other effector immune cells, contributing to immune evasion by the cancer cells [38,41]
(Figure 3). The occurrence of an immunosuppressive TME promotes tumor growth and
progression; for this reason, the FOXP3+ Tregs presence has been associated with a poor
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prognosis in various solid tumors [42], including NSCLC (HR: 3.91 and p < 0.001) [43].
In addition, among patients with node-negative NSCLC (N0), tumor-infiltrating FOXP3+
Tregs were positively correlated with intratumor COX-2 expression and were associated
with a worse recurrence-free survival [10].
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Figure 3. FOXP3+ Tregs mediated immune evasion in tumor environment. FOXP3+ regulatory T
cells regulate immune responses by producing inhibitory cytokines, such as TGF-β, IL-4, IL-10 and
IL-35, inhibiting T effector cells (Teff), Antigen-Presenting Cells (APCs) and Natural Killer (NK) cells.
FOXP3+ Tregs promote an immunosuppressive TME that consequently leads to tumor progression
(created with BioRender.com).

Tumor-infiltrating Treg cells directly promote tumor immune evasion in multiple
mechanisms [42]. The most important is the modulation of expression of checkpoint
suppressor molecules, such as CTLA-4 [44], PD-1, TIM-3, LAG-3 and TIGIT [39,41,42]
(Figure 2). It was shown that CTLA-4 is constitutively expressed on Treg cells [44]. FOXP3+
Treg cell-mediated immunosuppression is also implemented by the release of a variety
immunosuppressive cytokines, e.g., IL-10, IL-35 and TGF-β [42,45]. The mechanisms
described above demonstrate that FOXP3+ Treg cells promote immune escape from cancer.

Treg lymphocytes can also strongly suppress cancer-associated inflammation. Gen-
erally, Tregs are thought to play a dual role in cancer, as they can suppress anti-tumor
immune responses but also inhibit inflammation, which may have both pro- and anti-tumor
effects. However, the presence of Tregs with pro-inflammatory features has been reported
in NSCLC [46]. Recently, most of the data appreciated that Treg cells present a great phe-
notypic and functional heterogeneity resulting in distinct Treg cell subsets [47]. It was
shown that Treg cells can adopt the transcriptional program and functional characteristics
of lineage-specific T effector cells under inflammatory conditions [48]. A number of factors
have been described to induce functional instability of Treg cells in the TME, e.g., Treg cell
lineage-specific molecules, TCR/CD28 signaling, metabolism and inflammatory cytokines
are all factors that have been implicated in the induction of both fragile and former Treg
cells in cancer, resulting in the abrogation of the highly immunosuppressive TME and
effective control of tumor growth by the immune system [47,48]. The exact mechanisms of
this phenomenon have not been fully elucidated.

6. Spatial Architecture of Tumor-Infiltrating FOXP3+ T Cells in TME

A growing amount of evidence demonstrates that an intercellular network plays an
important role in the regulation of immune cell function in a TME. The development of

BioRender.com
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artificial intelligence resulted in machine learning-based analysis, which is an excellent tool
to determine the spatial architecture of a TME.

The machine learning-assisted image analysis was applied to tissue microarrays from
1116 tissue sites of 279 IA-IIIB NSCLS patients, stained by multiplex immunofluorescence
for CD8, CD103, PD-1, Tim3, GZMB, CD4, Foxp3, CD31, αSMA, Hif-1α and pan-CK
markers [49]. The authors observed a higher density of dysfunctional CD8+ T cells in the
invasive margin compared to the tumor center. An evaluation of the mean nearest neighbor
distance (mNND) revealed a stronger immunomodulatory network in NSCLC patients
with lymph node metastases (LNMs) [49]. The mNND between regulatory CD4+ and
intratumoral CD8+ T cells was shorter in patients with LNM compared to those without
LNM. The shorter distance between regulatory CD4+ and intratumoral CD8+ T cells was
associated with a worse prognosis. In addition, the density of regulatory CD4+ T cells in
the tumor center is predominant over those in the invasive margin; however, the difference
was not statistically significant [49]. To conclude, the NSCLC patients with lymph node
metastases are characterized by the high density of intratumoral-infiltrating CD8+ T cells
and more immunosuppressive TME-approaching CD8+ T cells [49].

Multiplex immunofluorescence was also implemented by Peng et al. in 681 NSCLC
cases classified from stage IA to IIIB. The analysis indicated close interactions between
intrastromal neutrophils and intratumoral Tregs (r2 = 0.439 and p < 0.001) and intrastromal
CD4+ CD38+ T cells and CD20-positive B cells (r2 = 0.539 and p < 0.001) [50]. In addition,
three immune subtypes that were correlated with distinct immune characteristics were
identified using the unsupervised consensus clustering approach. The immune-exempted
subtype with the highest levels of neutrophils and FOXP+ Tregs was mainly enriched
in the advanced stage of NSCLC [50]. Regulatory T cells produce immunosuppressive
molecules, such as transforming growth factor (TGF)-β and interleukin (IL)-10 [51,52].
Therefore, the presence of Tregs inhibits the activation and function of CD4+ CD38+ T
cells, CD8+ T cells and M1 macrophages and consequently promotes tumor progression.
The authors pinpointed intratumoral CD68-positive macrophages, M1 macrophages and
intrastromal CD4+ cells, CD4+ FOXP3- cells, CD8+ cells and PD-L1+ cells to be the most
robust prognostic biomarkers for DFS in lung cancer [50].

Subsequently, the group of Peng H. et al., utilizing the StarDist depth learning model,
determined the spatial location of CD20+ B cells, CD4+ T cells and CD38+ T cells in tissue
slices of primary tumors from 553 IA∼IIIB NSCLCs [53]. The distribution of regulatory T
cells, marked by FOXP3, was associated with decreased infiltration levels of CD20+ B cells
and CD4+ CD38+ T cells (r2 = −0.45). In addition, the spatial proximity between the CD66+
neutrophils and FOXP3+ Tregs was associated with decreased infiltrating levels of CD20+ B
cells and CD4+ CD38+ T cells (r2 = −0.45) [53]. Because CD20+ B cells and CD4+ CD38+ T cells
promote cytotoxic T cells for killing tumor cells, the observed distribution pattern indicates
that FOXP3+ Tregs and CD66+ neutrophils might synergistically attenuate this process [53].
With an increased number of regulatory T cells and a longer distance between neutrophils
and CD20+ B cells, CD4+ T cells were associated with shorter disease-free survival [53].

7. FOXP3 Modulates NSCLC Proliferation and Metastatic Potential of NSCLC Cells

FOXP3 overexpression has been shown to facilitate NSCLC invasion and metastasis.
However, the underlying mechanism of FOXP3 remains unclear. F. Dimitrakopoulos
et al. demonstrated that FOXP3 expression was correlated with lymph node metastasis
in patients with NSCLC [33]. In addition, FOXP3 expression was also associated with
TNM-stage and lymph node metastasis, which was correlated with the interaction of
FOXP3 and TLR4 in tumor cell escape and subsequent tumor progression [54]. It was also
demonstrated that FOXP3 promotes tumor growth and metastasis in tumor cells in NSCLC
by activating the Wnt/β-catenin signaling pathway [35] and epithelial–mesenchymal
transition (EMT) [35,36,55]. The study by S. Yang et al. [35] confirmed that FOXP3 can
function as an oncogene in NSCLC. They observed that FOXP3 overexpression significantly
induced A549 and NCI-H460 NSCLC cell proliferation, migration and invasion, while
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its inhibition attenuated its oncogenic function, as confirmed by in vivo studies. FOXP3
increased the luciferase activity of the Topflash reporter and upregulated the Wnt signaling
target genes (c-Myc and Cyclin D1) in NSCLC cells. Further co-immunoprecipitation
results indicated that FOXP3 interacted with β-catenin/TCF4 to enhance β-catenin and
TCF4 function, inducing the transcription of Wnt target genes to promote cell proliferation,
invasion and EMT induction [35].

It was also shown that FOXP3 may facilitate the invasion and metastasis of NSCLC
cells via regulating VEGF, the EMT and the Notch1/Hes1 pathway [55]. In a study by X.
Wang et al., FOXP3 silencing promoted the proliferation, migration and invasion capacity
of NSCLC cells and affected the expression level of EMT markers. Furthermore, a marked
upregulation of phosphorylated NF-κB was observed in NSCLC cell lines (A549 and H520)
after FOXP3 silencing. It was suggested that FOXP3 inhibited NSCLC cell metastasis through
NF-κB signaling [36]. Li Cho et al. showed that FOXP3 knockdown significantly inhibited
the migratory and invasive capacity of cells and decreased the levels of MMP-2, MMP-9,
VEGF, EMT markers (e.g., vimentin and N-cadherin) and Notch1/Hes1. Furthermore, FOXP3
expression was positively associated with CD31+ vascular endothelial cells and negatively
correlated with E-cadherin in NSCLC tissues. The study revealed that the pro-metastatic effect
of FOXP3 may be linked to the Notch1/Hes1 pathway in NSCLC cells [55].

A novel regulatory axis of MALAT1-FOXP3-GINS1 was unraveled by Li M et al. [56].
The clinicopathological significance of MALAT1 and GINS1 in NSCLC is well known.
MALAT1 was shown to mask the protein interaction domain and inhibit FOXP3 ubiquiti-
nation by STUB1. The authors showed that MALAT1 plays an important modulatory role
in the post-translational modifications of FOXP3, which affects GINS1 transcription and
drives the nature of proliferation in NSCLC [56].

8. FOXP3 Impact to NSCLC Cancer Stemness

Previously, the expression of FOXP3 has been reported to be associated with the
maintenance and survival of stem cells [57]. Q. Haolong et al. found that the smoking
carcinogen 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK) decreased the
expression of EGFR-AS1 in the long term but increased the expression of HIF2A and
FOXP3 to stimulate lung cancer cell stemness. In addition, the authors confirmed that the
enhancement of lung cancer stemness by FOXP3 was partially stimulated via Notch1 [58].
These results prompted the authors to continue this topic, and in another study, they
observed that glioma-associated oncogene homolog 1 (GLI1) promotes the growth of
NSCLC by enhancing lung cancer stem cells via stimulating FOXP3 [59]. GLI1 expression
was positively correlated with FOXP3. The upregulation of FOXP3 and GLI1 increased the
expression lung cancer stem cell markers (e.g., ALDH1A1 and OCT4) and the formation
of tumor spheres. In the same study, the involvement of Notch1 activation in the GLI1-
mediated FOXP3 pathway was confirmed [59].

9. Prognostic Significance of Tumor-Infiltrating FOXP3+ T Lymphocytes

Tumor-infiltrating lymphocytes have crucial prognostic values in solid tumors, con-
sidering the ability of the immune response and predicting patients’ response to anticancer
therapy. The association between the presence of FOXP3+ CD4+ T cells in TILs has been
extensively studied in all subtypes of lung cancer [60–63].

In patients with stage IA primary LUAD who had undergone surgery, the high levels
of FOXP3 TILs were associated with a worse prognosis of overall survival [61]. In addition,
CD8-Low/FOXP3-High was significantly associated with a poor prognosis in both overall
survival and disease-free survival [61]. The study demonstrated the prognostic value of
FOXP3+ and CD8+ for stage IA LUAD. The number of FOXP3+ cells in TILs within the
primary lesion was associated with number of extratumoral lymphatic permeation (ly-ext)
foci that has been reported as an independent poor prognostic factor for LUAD [62]. The
group of Niimi et al. observed a significantly higher number of FOXP+ T cells in LUAD
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patients with an abundance of ly-ext foci [62]. Hence, an immunosuppressive environment
in LUAD might be additionally defined by extratumoral ly-ext foci.

Expression of FOXP3 in tumor-infiltrating lymphocytes in the context of a prognos-
tic marker is extensively studied in NSCLC. The meta-analysis of 45 studies, including
11,448 NSCLC patients, confirmed that FOXP+ TILs in the tumor stroma are poor prognos-
tic markers associated with worse relapse/recurrence-free survival (pooled HR = 1.9) [63].
In contrast, the high densities of CD3+, CD4+, CD8+ and CD20+ in the TILs of the tumor
nest are favorable prognostic biomarkers for NSCLC [63].

A strong correlation between the FOXP3 and CD134 (OX40) molecules was observed
in I-III NSCLC specimens (rho = 0.691, p < 0.0001) [64]. OX40, a member of the TNF receptor
family, is involved in T cell co-stimulation and T cell-dependent antibody production [65].
The OX40 receptor suppresses tumor growth by increasing the effector T cell differentiation
and proliferation. In addition, CD134 diminished the regulatory T cell activity and as a
consequence is a favorable prognostic factor of overall survival in NSCLC [64].

In the stroma of patients with NSCLC, the expression of FOXP3+ tumor-infiltrating
lymphocytes was associated with expression of YTHDF1 and YTHDF2 [66]. The hu-
man YTH domain family (YTHDF) proteins are RNA-binding proteins that recognize
N6-methyladenosine (m6A), facilitating various biological processes via m6A RNA mod-
ification [67]. The expressions of both YTHDF1 and YTHDF2 were also independent,
favorable prognostic factors for recurrence-free survival (HR, 0.745; 95% CI, 0.562–0.984
for YTHDF1; HR, 0.683; 95% CI, 0.503–0.928 for YTHDF2) [66]; however, the molecular
mechanism of acting these molecules in NSCLC is unclear.

The prognostic value and promising clinical application of FOXP3+ was highlighted
in SCLC [68]. In TILs, the FOXP3 status was statistically associated with immune markers
(CD3, CD4 and CD8) and the immune checkpoint, including PD-1 and PD-L1. This
observation, based on an XGBoost machine learning analysis, indicates a strong interaction
between FOXP3 and the immune biomarkers in the TME. High FOXP3 expression showed
longer relapse-free survival than the low-level group of SCLC (41 months, 95% CI 26.937 to
55.463, vs. 14 months, 95% CI 8.133 to 19.867; p = 0.008) [68].

The deep-learning based model was also applied by the group Klein et al. to eval-
uate different markers of M2 macrophages (CD163 and CD204) together with global im-
munologic markers (CD4, CD8, CD68, CD38, FOXP3 and CD20) and characterized their
intratumoral density in 45 SCLC tumors [69]. The study did not confirm the prognostic
relevance of FOXP3. Only the CD163 marker of the M2 macrophages presented significant
intratumoral abundance and were associated with an unfavorable outcome in the SCLC
cohort. The FOXP3 marker, likewise for CD8, CD4 and CD20, did not reach statistical
significance; however, there were increased infiltrates of CD8 and CD20 and a trend for
FOXP3-positive cells [69].

10. Impact of Cancer Therapy on FOXP3+ TILs

Therapy with immune checkpoint inhibitors, such as nivolumab, pembrolizumab,
atezolizumab and durvalumab, has become a standard treatment option for lung cancer,
with the TME attracting significant attention [70–73]. Taking into account the critical role of
tumor-infiltrating lymphocytes in the TME, there is an emerging need to identify immune
biomarkers of the response to this treatment.

FOXP3 is indicated as one of the promising immune phenotype markers. The immuno-
histochemistry of CD3+, CD8+, CD68+, CD20+ and FOXP3+ cells from NSCLC treated
with ICI revealed that expression of FOXP3+ was associated with shorter progression-free
survival (14.8 vs. 1.8 months, p = 0.003, HR 8.7 and 95% CI 1.55–48.7) and worse overall
survival (22.0 vs. 8.3 months, p = 0.035, HR 3.86 and 95% CI 1.01–14.8) [32]. Therefore, the
elevated FOXP3+ expression in TILs might be a negative predictive value for (programmed
death 1) PD-1 inhibitor therapy in lung cancer [32].

In addition, the TRME2+ macrophages might enhance differentiation toward FOXP3+

Tregs, thus facilitating immune evasion of NSCLC [74]. Patients with an elevated number
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of immunosuppressive TRME2+ macrophages presented a low response rate to anti-PD1
immunotherapy (14.29%) compared to those with low TREM2+ macrophages (31.58%) [74].

The limitations of monoclonal antibodies targeting PD-1 and the PD-1 ligand are the
cost of producing, impoverished tumor penetration and the risk of autoimmune side effects.
A small-molecule antagonist of PD-1/PD-L1 interactions demonstrated potent anti-tumor
activity in vitro and in vivo by relieving T cell exhaustion [75]. Incubation of ex vivo
activated human T cells with the PDI-1 small molecule enhanced their cytotoxicity toward
the human lung by the production of granzyme B, perforin and inflammatory cytokines.
PDI-1 decreased the abundance of infiltrating FoxP3+ CD4+ T cells and consequently
reduced the growth of the tumor [75]. The small-molecule inhibitors PD-1/PD-L1 hold
promise as an alternative or complementary anti-cancer therapeutic agent.

In NSCLC patients carrying an EGFR mutation, the EGFR tyrosine kinase inhibitors
(EGFR-TKIs) are the front-line treatment. Several phase III studies have demonstrated the
superiority of gefitinib, erlotinib (first generation of TKIs) or afatinib (second generation) to
chemotherapy in progression-free survival and response rates [76]. It was indicated that
EGFR-TKIs impact the tumor immune microenvironment. The density of FOXP3+ TILs was
significantly lower after EGFR-TKI therapy than before (249.6→150.4/mm2, p < 0.0001) [77].
In addition, the changes in the FOXP3+ T cells were related to PD-L1 expression. The
FOXP3+ TIL density was increased in PD-L1-strong-positive tumor specimens before and
after EGFR-TKI treatment compared with the corresponding PD-L1-negative or -low-
positive tumor specimens [77]. Therefore, EGFR-TKI therapy complementary with immune
checkpoint inhibitors might greatly improve the therapeutic outcome in NSCLC.

Recently published data demonstrated that an intranasal KRAS peptide vaccine is a
promising therapeutic approach in KRAS-mutated NSCLC [78]. The immunization of a
mutant KRAS-mouse lung tumor model resulted in a decrease in CD4+FoxP3+ T cells in
both the lymph nodes and spleen. The cytotoxicity of CD8+ T cells toward KRAS-specific
Th1 and Th17 responses was enhanced and persisted 3 months after the last vaccination.
The immunized animals had significantly decreased tumor incidence compared to the
control animals [78].

11. Conclusions

More evidence has recently emerged revealing the carcinogenic effects of FOXP3 in
lung cancer. FOXP3 may act as a coactivator to facilitate key signaling pathways, such
as WNT, inducing EMT and tumor growth and metastasis in NSCLC. Nevertheless, the
prognostic role of FOXP3 needs to be clarified, as it strongly correlates with tumor location,
molecular subtype and tumor stage. Overall, understanding the prognostic significance of
FOXP3 in NSCLC tumors and its involvement in therapy resistance may help to develop
more effective targeted therapeutic strategies to improve clinical outcomes in patients with
lung cancer. In addition, it is noteworthy that FOXP3-expressing Tregs play a crucial role in
modulating the immune response in lung cancer, promoting tumor immune evasion and
contributing to disease progression. Therefore, targeting FOXP3 regulatory T cells may
hold promise as a therapeutic approach, and assessing their levels could provide valuable
prognostic information for lung cancer patients.
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Abbreviations

DFS disease-free survival
EMT epithelial–mesenchymal transition
EGFR epidermal growth factor receptor
EGFR-TKI EGFR tyrosine kinase inhibitors
FOXP3 forkhead box protein 3
HR hazard ratio
ICI immune checkpoint inhibitors
IF immunofluorescence staining
IHC immunohistochemical staining
IL interleukin
IPEX Immunodysregulation Polyendocrinopathy Enteropathy X-linked
KRAS Kirsten rat sarcoma virus
LNM lymph node metastases
LUAD lung adenocarcinoma
LUSC lung squamous carcinoma
Ly-ext extratumoral lymphatic permeation
m6A N6-methyladenosine
NND nearest neighbour distance
NSCLC non-small-cell lung cancer
Nrp-1 neuropilin-1
PD-1 programmed death-1 receptor
PD-L1 programmed death-1 receptor ligand
r2 coefficient of determination
rho Spearman’s correlation coefficient
SCLC small-cell lung cancer
SNPs single-nucleotide polymorphisms
Tregs regulatory T cells
FoxP3+ Tregs tumor-infiltrating Tregs
TGF transforming growth factor
Th1 T helper 1 cell
Th17 T helper 17 cell
TME tumor microenvironment
TNF tumor necrosis factor
TRME2 triggering receptor expressed on myeloid cells 2
YTHDF YTH domain family protein
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