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Abstract: The mitochondrial genome (mitogenome) of Actinidia macrosperma, a traditional medicinal
plant within the Actinidia genus, remains relatively understudied. This study aimed to sequence
the mitogenome of A. macrosperma, determining its assembly, informational content, and develop-
mental expression. The results revealed that the mitogenome of A. macrosperma is circular, spanning
752,501 bp with a GC content of 46.16%. It comprises 63 unique genes, including 39 protein-coding
genes (PCGs), 23 tRNA genes, and three rRNA genes. Moreover, the mitogenome was found to
contain 63 SSRs, predominantly mono-nucleotides, as well as 25 tandem repeats and 650 pairs of
dispersed repeats, each with lengths equal to or greater than 60, mainly comprising forward re-
peats and palindromic repeats. Moreover, 53 homologous fragments were identified between the
mitogenome and chloroplast genome (cp-genome), with the longest segment measuring 4296 bp.
This study represents the initial report on the mitogenome of the A. macrosperma, providing crucial
genetic materials for phylogenetic research within the Actinidia genus and promoting the exploitation
of species genetic resources.

Keywords: mitogenome; Actinidia macrosperma; repetitive elements; codon usage; phylogenetic analysis

1. Introduction

Actinidia macrosperma, a naturally wild kiwi, is commonly referred to as “Cat Ginseng”
due to its ability to attract cats to exploit it as a natural stimulant and as a remedy for
healing wounds [1]. A. macrosperma is native to eastern and southern China, mainly found
in Zhejiang, Jiangsu, Jiangxi, Guangxi, and Hubei Provinces. The plant material for this
study was collected from Desheng Town, Yizhou City, Guangxi Province, on the southern
coast of China (108◦24′ E, 24◦65′ N).

A. macrosperma is a medium-sized, deciduous climbing shrub that produces white
blooms during spring (April–May) and yields orange fruits in late September. It grows wild
on slopes, mountain fronts, moist forest edges, or streams below 800 m above sea level [2].
Along with A. macrosperma, there are six other kiwi fruit species rich in beneficial substances
such as vitamin C, phenolic compounds, carotenoids, and antioxidant activity (AAC) [3].
Flavonoids in kiwi fruit have health-promoting properties, and certain flavonoids can
inhibit the activity of the angiotensin-converting enzyme (ACE), which plays a key role in
regulating arterial blood pressure [4].

In China, A. macrosperma is also considered a traditional medicinal plant [5], and the
roots and stems are widely utilized in treating a spectrum of ailments, including rheuma-
tism, abscesses, joint inflammation, leprosy, jaundice, and abnormal vaginal discharge [6].
Additionally, they have been found to be useful in the management of malignancies, partic-
ularly those affecting the digestive system, liver, and lung [7]. However, due to its high
medicinal value, excessive excavation has led to a sharp decline in the wild population
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of this species, and it has even become extinct in some areas. Therefore, it is imperative
to closely observe sustainable development and effective protection of A. macrosperma.
Furthermore, the complete cp-genome of A. macrosperma has been sequenced, assembled,
and characterized [1].

The mitochondrion is a semi-autonomous organelle in eukaryotic cells, characterized
by a small genome known as the mitochondrial genome. It interacts with nuclear and cyto-
plasmic genetic material to facilitate energy conversion, serving as a biochemical apparatus.
Mitochondria synthesize adenosine triphosphate (ATP) through the tricarboxylic acid cycle
and oxidative phosphorylation, thereby supplying energy to cells [8]. Additionally, mi-
tochondria play roles in information transmission, cell differentiation, and apoptosis [9].
Research indicates that mitochondria are implicated in cytoplasmic male sterility (CMS),
which is maternally inherited [10]. Modern plant breeders are devoted to rearranging
mitochondrial genomes to restore plant fertility [11].

The plant mitochondrial genome, despite its complexity and sequencing challenges
compared to the chloroplast genome, continues to thrive [12]. By November 2023, the
National Center for Biotechnology Information (NCBI) had published 397 chloroplast
genomes, 2515 mitochondrial genomes, and 34 plastid genomes (source: https://www.
ncbi.nlm.nih.gov/genome/browse#!/organelles/; clicked on 30 November 2023). Al-
though plant mitogenomes typically exhibit a circular genome structure [13], their physical
organization still manifested various sub-genomic structures generated by fragments and
repeat sequences [14] of linear, circular, and branched structures, along with homologous
recombination [15]. Recombination is vital process in DNA replication [16–18] for all or-
ganisms, even viruses, as it plays a role in the repair and restart of damaged replication
forks. Recombination could be classified into two main types, homologous recombina-
tion (HR) and non-homologous recombination (NHR), based on its mechanism and the
molecules involved [19]. HR serves as the primary route for repairing plant mitochondrial
DNA [20], relying on sequences with high similarity for identification and repair. The non-
homologous recombination route utilizes limited or non-sequence similarities, potentially
resulting in deletions or duplications, particularly in eukaryotes [21,22]. Understanding
HR and the factors associated with its regulation contribute to preventing DNA damage
and maintaining the stability of the mitochondrial genome. According to the endosym-
biosis theory, mitochondria have their origins in an endosymbiotic α-proteobacterium
residing within a host cell derived from archaea, eventually evolving into organelles of
eukaryotic cells [23]. Therefore, plant mitochondrial HR shares similarities with bacte-
rial HR [24–26]. Mitochondrial HR is believed to involve recurrent and interchangeable
recombination events with large repeats. The changes that did not affect mitochondrial
function were retained, leading to an overall increase in mitochondrial genome size [27].
Plant mitogenomes exhibit significant evolutionary diversity in terms of size, structure,
content, intracellular gene transfer (IGT), and interspecific horizontal gene transfer [28].
Nonetheless, the synonymous substitution rates of mitochondrial protein-coding genes
display a comparatively greater level of conservation when juxtaposed with those observed
in chloroplast and nuclear genomes [29].

Actinidiaceae, composed of three genera, Actinidia, Clematoclethra, and Saurauia [30].
In the past half-century, the Actinidiaceae family has sequenced more than four nu-
clear genomes (https://www.ncbi.nlm.nih.gov/genome/?term=Actinidia, clicked on 30
November 2023) and over 56 complete chloroplast genomes (https://ngdc.cncb.ac.cn/
cgir/genome?input_text=actindiaceae, clicked on 30 November 2023). However, previ-
ous reports have only documented a minimal number of complete mitogenomes within
this family.

In this study, the assembly and annotation of the mitogenome of A. macrosperma were
completed, revealing its genomic characteristics and structural features. Repeat sequences
were analyzed, and the potential for transfer of chloroplast DNA into the mitogenome
was discussed. Additionally, synonymous codon usage (RSCU) was investigated, and
the phylogenetic relationships were explored. The results reported in this study offer a
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distinctive perspective into the mitochondrial evolution of an Actinidia species. Moreover,
they provide a solid foundation for the effective utilization of available genetic resources
and the integration of molecular marker-assisted breeding techniques in the cultivation of
A. macrosperma.

2. Materials and Methods

Plant materials, genomic DNA extraction, and sequencing. The A. macrosperma
materials were originally collected from Desheng Town, Yizhou City, Guangxi Province,
China (108◦24′ E, 24◦65′ N). Genomic DNA was extracted from fresh leaves using the CTAB
method [31], followed by quantification using the Qubit fluorescence assay (Invitrogen,
Carlsbad, California, USA) and NanoDrop 2000 spectrophotometer (ThermoFischerScien-
tific, Waltham, Massachusetts, USA). DNA degradation and contamination were assessed
through agarose gel electrophoresis. The DNA that passed the quality check was frag-
mented using an ultrasonic water bath. The fragmented DNA was then used to prepare
libraries for sequencing. The DNA underwent sequencing using the Nanopore platform
(PromethION, Oxford Nanopore Technologies, Oxford, UK) and Illumina HiSeq 2500 plat-
form (Illumina, San Diego, CA, USA). The ONT long-reads generated 20.7 Gb sequencing
data. Regarding the NGS short-reads, Illumina PE150 (paired-end 150 bp) sequencing was
employed, resulting in 12.69 Gb of raw data, which included 84,576,750 raw reads. Both of
the ONT and NGS raw reads were submitted to NCBI (SRR27379599 and SRR27379600).

Mitogenome assembly and annotation. The mitochondrial genomes were assembled
from ONT reads using SMARTdenovo with its default settings [32]. In order to enhance
the precision and efficacy of the mitochondrial genome sequences, the ONT and NGS
clean reads underwent refinement through the utilization of minimap2/miniasm [33].
BWA (v0.1.19) [34], SAMtools (v0.1.19) [35], Racon (v1.4.20) [36] and Pilon (v1.23) [37]
were utilized for aligning the ONT reads to the assembled mitogenomes. The annotation
of the mitochondrial genomes was performed using Geseq (https://chlorobox.mpimp-
golm.mpg.de/geseq.html; clicked on 23 October 2023) online with A. arguta’s mitogenome
(GenBank:MH559343) [38] serving as the reference. Circular maps of the mitochondrial
genomes were generated using Ogdraw [39]. Additionally, the assembled sequences of
A. macrosperma deposited in GenBank under the accession number: OR466481 (https:
//www.ncbi.nlm.nih.gov/nuccore/OR466481.1/ clicked on 30 November 2023).

Repeat Sequences. The analysis of simple sequence repeats (SSRs) was conducted
using MISA [40] (https://webblast.ipk-gatersleben.de/misa/, clicked on 30 November
2023) with the parameters set to ‘1-10 2-5 3-4 4-3 5-3 6-3’. Tandemly repeated sequences were
identified utilizing the Repeats Finder [41] (v4.09, https://tandem.bu.edu/trf/trf.html,
clicked on 30 November 2023) software with default configurations. Dispersed repeats
were predicted employing REPuter [42] (https://bibiserv.cebitec.uni-bielefeld.de/reputer,
clicked on 30 November 2023) with the following parameters: ‘Hamming Distance 3,
Maximum Computed Repeats 5000, Minimal Repeats Size 30′, and ‘e-value cut-off of
1 × 10−5’ for filtering criterion.

Chloroplast-mitochondrion-DNA transfer. The cp-genome of A. macrosperma
(MN520000.1) was acquired through the NCBI Organelle Genome Resources Database
(https://www.ncbi.nlm.nih.gov/genome/browse#!/organelles/, uploaded on 16 August
2020). Detection of transferred DNA fragments between chloroplast and mitochondrion
genome was carried out using BLASTN, employing specified criteria: a matching rate
of ≥80%, E-value of ≤1 × 10−10, and a minimum length of ≥40 [43]. Visualization
of the results was conducted utilizing the software Tbtools [44] (version: 2.041, https:
//github.com/CJ-Chen/TBtools-II/releases clicked on 30 November 2023), leveraging its
advanced circos module.

Synteny Analyses. The software MUMmer [45] (version: 3.23, http://mummer.
sourceforge.net/ clicked on 30 November 2023) was employed to align the target genome
to the reference genome, establishing a broad spectrum of linear relationship between the
genome. To confirm the relative positional arrangement of specific regions, BLASTN was
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employed with the following parameters: a matching rate of ≥85%, E-value of ≤1 × 10−5,
and a minimum length of ≥100. The creation of a parallel figure was achieved through the
utilization of a custom Perl script.

Phylogenetic Analyses. Phylogenetic tree construction based on the core genes
of mitogenomes involved clustering protein sequences from multiple samples. The cd-
hit [46,47] (version 4.6.1, https://www.bioinformatics.org/cd-hit/ clicked on 30 November
2023) was utilized for clustering, considering parameters such as identity and comparison
length. The clustering of protein sequences was performed according to the software’s
analysis results. Pairwise sequence alignment was conducted using criteria including an
identity threshold of ≥0.4 and alignment lengths equal to or greater than * 0.4. Identification
of single-copy core genes was followed by protein sequence alignment using software
MUSCLE [48] (version: 3.8.31, http://www.drive5.com/muscle). The resulting data were
then utilized in constructing evolutionary trees using the NJ method (Neighbor-Joining
method) through TreeBeST [49] (version: 1.9.2), with 1000 bootstrap replicates. Visualization
of the phylogenetic trees was achieved using the web-based tool iTOL [50] (https://itol.
embl.de/ clicked on 30 November 2023).

Substitution Rate Calculation. To predict the nonsynonymous substitution rate (Ka)
and synonymous substitution rate (Ks) value, the MA algorithm was employed to estimate
the Ka/Ks ratios of genes in each reference species compared to A. macrosperma. Subse-
quently, then the Ka/Ks value for the same gene was calculated. Detection of the Ka/Ks
ratios for 14 protein-coding sequences obtained from the mitogenomes were detected
utilizing KaKs_calculator [51] (V2.0, https://sourceforge.net/projects/kakscalculator2/
clicked on 30 November 2023).

Codon usage bias analysis. The CodonW software (version: 1.4.4, https://codonw.
sourceforge.net/ clicked on 30 November 2023) was employed to conduct codon bias
analysis on the mitogenomes, generating parameters such as the effective number of codon
(Nc), GC and GC3, relative synonymous codon usage (RSCU). R with ggplot2 package [52]
was employed to create a box plot illustrating the Ka/Ks values and a bar plot representing
the RSCU values.

3. Results
3.1. The Mitogenome Characteristics of Actinidia macrosperma

The mitogenome of A. macrosperma was reconstructed as a circular molecule com-
prising 752,501 base pairs (bp) (Figure 1). The annotations revealed a total of 39 protein-
coding genes (PCGs), 23 tRNAs and three rRNAs in the A. macrosperma mitogenome
(Tables S1 and S2). The PCGs of A. macrosperma comprise five ATP synthase genes,
10 small subunits of ribosome proteins’ genes (SSU), four large subunits of ribosome
proteins’ genes (LSU), a maturase, nine NADH dehydrogenase genes (complex I), two
succinate dehydrogenase genes (complex II), four cytochrome c biogenesis genes (complex
III), three cytochrome c oxidase genes (complex IV), a transport membrane protein gene,
and an Apocytochrome b.

3.2. Repeat Analysis

Within plant mitogenomes, a notable characteristic lies in the abundant occurrence
of repetitive sequences, varying in size and dimension. These repetitions are classified
into three categories: small (<50 bp), intermediate (50–500 bp), and large (>500 bp) [53].
Additionally, tandem repeats of DNA, referred to as SSRs or microsatellites, consist of
1 to 6 bp units [54]. Approximately 63 SSRs were identified within the A. macrosperma
mitogenomes (Figure 2; Table S3). Predominantly, the SSRs featured a singular nucleotide
repeated unit, notably A/T, constituting 55.56% of all identified SSR repeats. Nevertheless,
these SSRs were evenly distributed throughout the surveyed mitogenomes. A. macros-
perma harbored 35 mono-, 13 di-, 2 tri-, 11 penta-, and two hexa-repeat units. Furthermore,
25 tandem repeats were identified in the A. macrosperma mitogenomes (Figure 2; Table S4).

https://www.bioinformatics.org/cd-hit/
http://www.drive5.com/muscle
https://itol.embl.de/
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Further investigation may explore the potential utility of these repetitive sequences in DNA
fingerprinting, particularly for applications in molecular marker-assisted breeding.
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Dispersed repeats significantly contributed to the augmentation of genetic diversity,
exerting a crucial influence on genome evolution [55]. Four types of dispersed repeats
were identified: forward, reverse direction, complementary, and palindromic repeats [56].
Within the A. macrosperma mitogenome, forward repeats constituted 49.1% of the total
repeats, while palindromic repeats accounted for 50.9%. The most extended fragments
were 337 bp forward repeats from A. macrosperma (Figure 2; Table S5).

3.3. Sequence Similarity between Mitogenome and Cp-Genome

The analysis of sequence similarity indicated that the 17,783 bp sequences discovered
in the A. macrosperma mitogenome likely originated from the corresponding cp-genome
(Figure 3; Table S6), constituting 2.36% of the mitogenome’s sequence. A total of fifty-three
homologous fragments were identified, with the longest measuring 4296 bp, between
the mitogenome and cp-genome. Furthermore, these sequences’ homologous fragments
encompassed eight chloroplast genes (rpoC1, ndhB, rps7, rps12, rrn16, psbF, psbE, petL)
from A. macrosperma cp-genome and four mitochondrial genes (trnA-UGC, trnI-AGU,
trnV-GAC, trnW-CCA) from A. macrosperma mitogenome.
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Figure 3. An examination was undertaken regarding the transfer of mitogenome sequences from
A. macrosperma cp-genomes. The outer arcs, represented in yellow and green, corresponded to the
mitogenome and cp-genome, respectively, while the inner arcs depicted homologous DNA fragments.
Fragments with alignment lengths exceeding 1000 bp were denoted in dark blue, those below
100 bp were depicted in jade-green, and fragments falling within this range were shown in orange.
The outer arcs exhibited a scale at 50 kb intervals.

3.4. Collinearity Analyses of Mitogenome in Actinidia

The mitogenome sequences from six Actinidia species were retrieved from NCBI’s
available mitogenome resources (Table S7). These genomes demonstrate comparable
GC contents, ranging between 42.0% and 46.2%. However, there exists a notable di-
versity in genome sizes, spanning from 768,883 to 1,020,276 bp. Upon re-annotation of
these mitogenomes, it was noted that certain core protein-coding genes (PCGs) were
present in multiple copies, with four out of seven mitogenomes displaying re-annotated
multiple-copy PCGs.

The investigation into collinearity among Actinidia mitogenomes aimed to assess
genome rearrangements across different lineages. Using A. macrosperma mitogenomes as
reference sequences, collinearity analyses revealed varying lengths of syntenic stretches
across sampled species, ranging from less than 30 kb between A. arguta to more than 50 kb
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between A. valvata (Figure 4). These findings imply that significant rearrangements occur
in mitochondrial genomes of Actinidia species with their divergence, leading to alterations
in mitochondrial genomic synteny.
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Figure 4. The diagrams delineate collinear regions observed among disparate mitogenomes in
additional Actinidia species when compared to A. macrosperma ((A): Actinidia arguta; (B): Actinidia
chinensis; (C): Actinidia deliciosas; (D): Actinidia eriantha; (E): Actinidia latifolia; (F): Actinidia valvata).
The outer frame colors represent the orientation of the mitogenomes sequences (orange indicating
the forward direction and blue indicating the reverse direction), while the fill colors represent the
alignment status (orange indicating forward alignment and blue indicating reverse alignment).

3.5. Phylogenetic Analysis

To explore the evolutionary dynamics of the A. macrosperma mitogenome, phylogenetic
analyses were performed on the mitogenomes of A. latifolia, A. valvata, and 28 other related
species. A set of 12 core genes (atp8, matR, ccmB, ccmFN, nad9, nad3, atp1, atp4, rps12, ccmC,
nad6, cox3) was used for phylogenetic analysis. The trees generated from the core genes
of mitogenomes revealed that A. macrosperma and A. chinensis, along with A. valvata and
A. deliciosa, formed a cluster (Figure 5).
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3.6. Substitution Rates

The investigation into the evolutionary rate of mitochondrial genes in A. macrosperma,
Ka/Ks values were detected for 12 core protein-coding genes (Table S8). Consequently,
positive selection was inferred for atp4 and ccmB due to their Ka/Ks ratios surpassing
1, while genes with lower Ka/Ks ratios were likely under purifying selection (Figure 6).
Particularly, the atp1 gene displayed minimal variation and a low Ka/Ks ratio, underscoring
its high conservation and pivotal role in mitogenome functionality.
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3.7. Codon Usage Bias Analysis

Within the genome of eukaryotic organisms, 20 different amino acids are encoded by
64 codons, with multiple codons coding for each amino acid except for Methionine and
Tryptophan. Codon usage varies significantly across species due to codon degeneracy. An
examination of codon usage was conducted on all mitochondrial protein-coding genes
(PCGs) in A. macrosperma (Figure 7 and Table S9). Codons with a relative synonymous codon
usage (RSCU) exceeding 1 were preferred by amino acids, suggesting a universal preference
for codon usage among mitochondrial PCGs. For instance, Arginine (Arg) prefers AGA
codons, with the maximum RSCU value among A. macrosperma mitochondrial PCGs at
1.60. Serine (Ser) closely follows, showing a preference for UCU (RSCU = 1.53). Addition-
ally, CCA (Pro), GGA (Gly) and UCA (Ser) emerge as the three most common codons in
A. macrosperma, potentially reflecting a preference shaped by long-term evolutionary selec-
tion. Moreover, in comparison to six other Actinidia species (Table S9), the result indicates
that the RSCU values of A. macrosperma’s closely resemble those of A. delicese, while signifi-
cant differences exist in the RSCU values of the other five species.
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4. Discussion

The present investigation achieved the successful assembly of high-quality mitogenomes
for A. macrosperma by integrating sequence datasets obtained from Illumina short-reads
and Oxford Nanopore long-reads. Sequence assembly elucidated that the mitogenome of
A. macrosperma is represented by a single, circular molecule spanning 752,501 base pairs,
displaying a GC content of 46.16% (Figure 1). Notably, the mitogenomes of A. macros-
perma and the other six Actinidia species had 39 PCGs each, whether they contained one or
two molecules, indicating a high conservation of protein-coding gene numbers in Actinidi-
aceae family mitogenomes [57–59]. In addition, 15 introns were found in the mitogenome of
A. macrosperma, compared to the presence of 13–15 introns in the other six Actinidia species
(Table S7). This evidence underscores the relative stability of mitochondrial intron content
across the majority of land plant lineages, despite occasional acquisitions and numerous
convergent losses over evolutionary time [60].

Repetitive elements, characterized by the presence of similar or symmetrical fragments,
manifest at various loci within the genome. This phenomenon extends to both intra-
species genomic regions and inter-species genomic comparisons. Studies have revealed
the prevalent distribution of repeats throughout plant mitogenomes, with these sequences
exhibiting limited conservation across species and a predominance of short repeats [61].
Among these, the majority of simple sequence repeats (SSRs) consist of single-nucleotide
(A/T) repeats, constituting approximately 55.56% of all SSRs, likely influenced by the low
GC content typical of mitochondrial genomes. This trend parallels observations in the
mitogenome of A. latifolia [59]. Moreover, a significant abundance of dispersed repeats,
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comprising primarily forward and palindromic repeats in roughly equal proportions, was
identified within the mitogenome. Similar findings have been reported in the mitochondrial
genomes of Actinidia [59] and other species, such as Gleditsia sinensi [62].

Due to the unique genomic structure and evolutionary dynamics, the plant mi-
togenome displays heightened susceptibility to the integration of exogenous DNA [27].
Concurrently, exogenous DNA is prevalent within plant mitochondria [63]. Several investi-
gations have highlighted notable resemblance between the mitogenome and chloroplast
genome, suggesting occurrences of DNA transfer events [64,65]. These substantial homol-
ogous segments are believed to have played a pivotal role in the extensive evolutionary
processes of eukaryotes, fostering genetic diversity. Additionally, studies have unveiled
a bifurcated origin of tRNA genes in plant mitochondria, with a portion inherited from
mitochondrial ancestors and another acquired via horizontal gene transfer (HGT) from
chloroplasts [66]. The identification of chloroplast-derived tRNA genes in the A. macros-
perma mitogenome has been accomplished. Remarkably, four mitogenome tRNAs, specifi-
cally trnA-UGC, trnI-GAU, trnV-GAC, and trnW-CCA, exhibited significant similarity to
the entire sequence of the chloroplast genome, collectively representing 17.4 percent of
all tRNAs (Table S6). Furthermore, trnW-CCA is widely distributed across angiosperm
mitogenomes, exhibiting homology with chloroplasts [67].

Assessing the level of collinearity between various species can provide insights into
their evolutionary divergence, with genetic relationships often inferred from collinear
patterns. Collinearity analysis was undertaken to investigate mitochondrial genome DNA
rearrangements across different kiwi fruit species (Figure 4). Line diagrams showed that
A. macrosperma were closely related to A. valvata, with the largest collinearity region about
50 kb, while A. arguta has the smallest collinearity region, about 30 kb. The collinearity
of distantly related species was relatively small, potentially resulting from significant
DNA rearrangements occurring in successive generations in the past [68]. Meanwhile,
evolutionary analysis based on 12 core genes also supports this conclusion in which the
relationship of A. macrosperma was closer to A. valvata, A. chinensis, and A. deliciosa, while it
was distantly related to A. arguta of Kiwifruit species (Figure 5). Earlier research findings
was consistent with the primary conclusions mentioned above, as indicated by evolutionary
studies based on the Actinidia mitogenome, showing a closer genetic distance among
A. chinensis, A. deliciosa, and A. valvata, while being more distantly related to A. valvata [59].

Examining the synonymous and nonsynonymous substitution rates offers valuable un-
derstanding regarding the impact and extent of natural selection on protein evolution [69].
Through examination of the correlation between SNPs and gene mutations, comprehensive
insights into genome-wide gene mutations can be obtained, enabling the inference of the
evolutionary trajectory of the entire species and its underlying causes: positive selection for
active adaptation to the environment, negative selection resulting from environmental pres-
sures, or neutral selection to maintain a balance between the two. Consistent with previous
research [52,59,70], the majority of mitochondrial genes underwent neutral evolution under
the influence of negative selection, displaying a high degree of conservation. However,
positive selection may impact genes such as atp4 and ccmB, as indicated by their dN/dS
ratio surpassing 1. The protein encoded by atp4, a component of the F1F0-ATPase subunits,
contributes to the conversion of proton flow into ATP within the matrix, serving as a vital
energy source for cellular activities [71].The ccm gene family encoded by the ccmB gene is
important for the biosynthesis of cytochrome c, which is derived from early prokaryotic
cells from the plant mitotic genome [72]. Previously, it had been reported that the ccmB
gene is positively selected in A. valvata [59] and Scutellaria baicalensis [73], and the gene of
atp4 also exhibited highest Ka/Ks values above one in Diospyros oleifera [52]. However, the
biological process for these observations is still to be explained.

5. Conclusions

The mitogenome assembly and annotation of Actinidia macrosperma, a Chinese tradi-
tional medicine plant belonging to the Actinidiaceae family, were presented for the first
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time. The comparative analysis encompassing gene structure, repeat regions, homologous
fragments with cp-genome, and Ka/Ks codon usage played a crucial role in investigating
the characteristics of the A. macrosperma mitogenome. These analyses yielded essential
insights into the evolutionary history, functional characteristics, and adaptability of the
A. macrosperma mitogenome, facilitating a better understanding of its distinct features.
Comparative analysis, further enhanced our comprehension of the similarities and dispari-
ties between the A. macrosperma mitogenome and other related species, thereby offering
deeper insights into its evolutionary role and mechanisms of ecological adaptation. In
this study, the mitochondrial genome of A. macrosperma was thoroughly explored from
the perspectives of genomic functional structure and genetic evolution, thus contributing
valuable genetic resources for phylogenetic investigations and laying the foundation for
understanding the evolutionary relationships within the Actinidiaceae family.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes15040514/s1, Table S1. Gene composition in the mitogenome
of Actinidia macrosperma. Table S2. Gene information in the mitogenome of Actinidia macrosperma.
Table S3. Microsatellite repeats in the Actinidia macrosperma mitogenome. Table S4. Tandem repeats
in the Actinidia macrosperma mitogenome. Table S5. Dispersed repeats in the Actinidia macrosperma
mitogenome. Table S6. Length of transferred DNA from Actinidia macrosperma cp-genome. Table S7.
Features of seven mitogenomes belonging to the Actinidia. Table S8. The Ka and Ks for 12 core PCGs
with Reference to Actinidia macrosperma. Table S9. The RSCU values with 39 PCGs of the Actinidia.
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