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Abstract: The giant grouper fish (Epinephelus lanceolatus), one of the largest and rarest groupers,
is a fast-growing economic fish. Grouper sperm is often used for cross-breeding with other fish
and therefore sperm cryopreservation is important. However, freezing damage cannot be avoided.
Herein, we performed a transcriptome analysis to compare fresh and frozen sperm of the giant
grouper with frozen storage times of 0, 23, 49, and 61 months. In total, 1911 differentially expressed
genes (DEGs), including 91 in El-0-vs-El-23 (40 upregulated and 51 downregulated), 251 in El-0-
vs-El-49 (152 upregulated and 69 downregulated), and 1569 in El-0-vs-El-61 (984 upregulated and
585 downregulated), were obtained in the giant grouper sperm. DEGs were significantly increased
at 61 months of cryopreservation (p < 0.05). GO and KEGG enrichment analyses of the DEGs
revealed significant enrichment in the pilus assembly, metabolic process, MAPK signaling pathway,
apoptosis, and P53 signaling pathway. Time-series expression profiling of the DEGs showed that
consistently upregulated modules were also significantly enriched in signaling pathways associated
with apoptosis. Four genes, scarb1, odf3, exoc8, and atp5f1d, were associated with mitochondria and
flagella in a weighted correlation network analysis. These genes may play an important role in the
response to sperm freezing. The experimental results show that long-term cryopreservation results
in freezing damage to the giant grouper sperm. This study provides rich data for studies of the
mechanism underlying frozen fish sperm damage as well as a technical reference and evaluation
index for the long-term cryopreservation of fish sperm.

Keywords: Epinephelus lanceolatus; sperm freezing damage; transcriptome analysis

1. Introduction

The giant grouper fish (Epinephelus lanceolatus) is the largest species in the grouper
family. It is also an important and rare mariculture fish in China. However, male and
female grouper development is not synchronized and the number of males is small. Thus,
sperm cryopreservation is very important. In aquaculture, sperm cryopreservation not only
preserves good germplasm but is also conducive to fish breeding and provides year-round
sperm to expand the breeding cycle. Sperm freezing using cryopreservation technology has
been established for several grouper species, including the giant grouper (E. lanceolatus) [1],
potato grouper (E. tukula) [2], and seven-band grouper (E. septemfasciatus) [3].

Under ultra-low-temperature conditions, the protein, enzymes, metabolism, and
biochemical functions of frozen cells themselves are almost completely stagnant, and the
organism is in a stationary state [4]. If the body structure of the organism remains intact, it
will be restored after rewarming. However, cryoinjury is almost impossible to avoid. Sperm
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morphology and motility speed are correlated with the sperm fertilization rate [5]. Ultra-
low temperatures can also cause oxidative stress, resulting in apoptosis and mitochondrial
damage, thereby directly affecting sperm quality [6].

There is evidence that long-term cryopreservation reduces sperm motility, plasma
membrane integrity, and sperm enzyme activity and increases seminal plasma enzyme
activity, which will have a certain impact on the ultrastructure of giant grouper sperm;
furthermore, these effects increase gradually with the extension of the freezing time [7].
These findings are consistent with those of other studies on sperm freezing damage in the
giant grouper species [8]. However, the underlying molecular mechanisms remain unclear.
High-quality sperm is important for actual production. There is also extensive evidence
that cryopreserved freezing not only affects the sperm structure but also affects some
mRNAs, thus damaging related protein function [9]. In an analysis of mRNA and lncRNA
transcriptome sequencing in cryoinjuries in frozen–thawed panda (Ailuropoda melanoleuca)
sperm, one study found that most of the differential genes were correlated with sperm
membrane function, metabolism, and apoptosis, which also verified the various damage of
sperm induced by cryogenic freezing [10]. DE mRNAs and miRNAs are heavily involved
in boar sperm’s response to environment stimuli, apoptosis, and metabolic activities. The
differences in expression also reflect the various structural and functional changes in sperm
during cryopreservation [11]. Therefore, transcriptome analyses of differentially expressed
genes (DEGs) between fresh sperm and sperm subjected to long-term cryopreservation are
important to gain a more comprehensive and systematic understanding of the molecular
mechanisms underlying the effects of ultra-cold freezing.

The contribution of mRNAs to the regulation of the cold response in cryopreserved
giant grouper sperm has yet to be elucidated. Here, we employed a high-throughput
sequencing approach to explore the mRNA expression profiles of fresh and frozen–thawed
giant grouper sperm to investigate the alterations in global gene expression in response
to cryopreservation, with the goal being to better understand the molecular mechanisms
behind fish sperm cryoinjury.

2. Materials and Methods
2.1. Ethics Statement

This study was approved by the Animal Care and Use Committee of the Yellow Sea
Fisheries Research Institute (Qingdao, China).

2.2. Sperm Collection

Giant grouper sperm samples were collected from Laizhou Ming Bo Aquatic Co.,
Ltd. (Laizhou city, China) from a healthy giant grouper male. This giant grouper was
cultivated in indoor recirculation systems at 25–30 ◦C (body length, 1.4 m; body weight,
58 kg). During the giant grouper breeding season from July to September, fresh semen
was collected in August 2022, and sperm were cryopreserved in September 2020, July 2018,
and July 2017. Frozen storage times were 0, 23, 49, and 61 months. After administering
artificial oxytocin, the fish body was wrapped in a clean towel and gently squeezed, and
fresh semen was collected into a 50 mL centrifuge tube by squeezing. The semen needed to
be white or milky white to ensure that there was no feces or urine in the semen. Samples
were refrigerated in a 4 ◦C refrigerator after collection. The sperm samples with a motility
greater than or equal to 85% were selected for the following cryopreservation test.

2.3. Sperm Cryopreservation and Thawing

The cryopreservation protocol used in the sperm freezing and thawing process was
obtained from our laboratory [1]. Frozen semen samples from three time periods were
randomly selected, and three frozen sperm tubes were selected from each time period for
thawing. Meanwhile, fresh semen from mature males was collected as a control group
sample. Semen supplemented with the sperm dilution ELS3 and 15% DMSO + 10% FBS
antifreeze was divided in 2 mL cryovials and equilibrated for 5 min at room temperature
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(20–25 ◦C). The cryovials were placed into cloth bags, suspended in liquid nitrogen at a
height of 10 cm for 10 min, equilibrated for 5 min (−60 ◦C to −80 ◦C) at 5 cm on the surface
of the liquid nitrogen, and finally placed directly into the liquid nitrogen for storage. When
thawing the frozen sperm, the cryovials were quickly removed from the liquid nitrogen,
and put in a 37 ◦C water bath with shaking and thawing until the ice crystals in the cryovials
just melted. Care was taken to avoid local thawing and its impact on sperm quality.

2.4. RNA Extraction, cDNA Library Construction, and Sequencing

According to the manufacturer’s protocol, TRIzol reagent (Invitrogen, Waltham, MA,
USA) was used to extract total RNA from the E. lanceolatus fresh sperm and frozen sperm
(El-0, El-23, El-49, and El-61). The quality of RNA was evaluated using the Agilent 2100
bioanalyzer (Agilent Technologies, Santa Clara, CA, USA), and RNase-free agarose gel was
used for electrophoretic detection. After the total RNA was extracted, eukaryotic mRNA
was enriched with Oligo (dT) beads. The enriched mRNA was fragmented with a buffer
and reverse-transcribed into cDNA by using the NEBNext Ultra RNA Library Prep Kit
for Illumina (New England Biolabs, Ipswich, MA, USA). The purified double-stranded
cDNA fragments were end-repaired, A-base was added, and the fragments were ligated
to the Illumina sequencing adapters. The ligation reaction was purified using AMPure
XP Beads (1.0×), and the size of the ligated fragment was selected through agarose gel
electrophoresis and PCR amplification. RNA samples were sequenced on the Illumina
HiSeqTM 6000 platform by Gene Denovo Biotechnology Co. (Guangzhou, China). All reads
have been deposited at the National Centre for Biotechnology Information and can be
accessed in the SRA database under accession number PRJNA980002.

2.5. Data Analyses

Low-quality reads were filtered to obtain clean reads to ensure the reliability of the
subsequent analyses. For filtering, the following reads were removed: (1) reads containing
adapters; (2) reads containing more than 10% of unknown nucleotides (N); (3) all A-base
reads; (4) low-quality reads containing more than 50% of low-quality (Q-value ≤ 20) bases.
The clean reads after filtering were mapped to the ribosomal RNA (rRNA) database using
Bowtie2 [12]. The rRNA reads were removed. The retained unmapped reads were mapped
to the E. lanceolatus genome [13] using HISAT2 [14]. Based on the expression results for
known mRNA genes in the samples, a principal component analysis was performed and
Pearson correlation coefficients were calculated to evaluate repeatability between samples
and exclude outlier samples. Sample expression was determined according to the FPKM
(reads per kilobase of exon model per million mapped reads). The read count data were
obtained from the analysis of mRNA expression levels. DESeq2 [15] was used for the DEG
analysis, and the screening conditions were FDR < 0.05 and |log2FC| > 2. The DEGs were
then subjected to GO and KEGG functional enrichment analyses.

2.6. Sample Time-Series Analysis

The STEM (short time-series expression miner) was used to analyze and cluster the
DEGs at four time points, providing a visual representation of different gene expression
patterns in the fresh and frozen sperm of E. lanceolatus. The number of modules was set to
20. Using log2 (FPKM), we standardized the data, and p < 0.05 was the screening threshold
for a reliable trend.

2.7. Weighted Gene Co-Expression Network (WGCNA) Construction

Low-quality genes (RPKM value < 1) were filtered out to improve the accuracy of the
results. A total of 18,380 genes were imported into the WGCNA to construct co-expression
modules. Modules and expression correlation coefficients of the genes were calculated, and
GO and KEGG pathway enrichment analyses were further performed. Networks for the
visualization of genes associated with the traits of samples, co-expression patterns, and
gene interactions were constructed using Cytoscape v3.9.1 [16].
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2.8. Experimental Validation Using qRT-PCR

To verify the quantitative gene expression levels in the transcriptome sequencing,
qRT-PCR was used to analyze 14 genes with high expression in the cryopreserved sam-
ples. cDNA was reverse-transcribed from the RNA samples (El-0, El-23, El-49, and El-61)
and then used as a template. β-Actin was used as a reference gene [17]. The primers
were designed using Primer Premier 5, and the primer sequences are shown in Table 1.
The qRT-PCR experiment was conducted using the LightCycler 480II (Roche Diagnostics
GmbH, Mannheim, Germany) with TB Green Premix Ex Taq II (Tli RNaseH Plus) (Takara,
Kusatsu, Japan) according to the manufacturer’s instructions. The reaction system was
20 µL containing 10 µL of TB Green Premix Ex Taq II (Tli RNaseH Plus) (2×), 0.8 µL of
forward primer (10 µM), 0.8 µL of reverse primer (10 µM), 2 µL of template cDNA, and
6.4 µL of ddH2O. Reaction conditions were 95 ◦C for 30 s, 40 cycles (95 ◦C for 5 s and 60 ◦C
for 30 s), and 50 ◦C for 30 s. The relative expression patterns were calculated based on the
2−∆∆Ct method and the data are presented as the mean ± SD (n = 3).

Table 1. qRT-PCR primer sequences.

Symbol Forward Primer Reverse Primer

ids GGATGGTAAACTCCACGCCA ACATCATTGTTGGCCCGACT
junb TTCTACAACCGGGGCATCAC GTAACTCCACCGGCTCCAAG

plekho2 ACTCGATCAAGGCCCAAAGG TCCAAGCGCAGGATACCATC
hsp70 TCAATGACTCCCAGCGACAG TTGTCCAGGCCGTATGCAAT

Ccdc103 CGAGGTTGGAGCGTGATGTC TTTCGCTTCGTTCTCTCGCT
ksr2 TCCCTCAAAGATCACCAAGGA CGTCTGACTGATGTGCAGGT

sema5b TCGTGCTGATCATCTGTTCGT TGGGAGAACTCCGACATCCA
jun AGAAAGCGGATGAGGAACCG GACGCGAGCTCCGAATTTTG

zfp36 GCAGTAAGTGCCAGTTTGCC CGTAGGGGCAGTAGCCAAAG
d10wsu102e AGCCAAAGACTGGCAGATCC GCTGCTGAAGCTTCTCGTTG

mcl1 CGAAGGACTCTCACAACGGG CGGAGGTTCTTGGTCGCATA
lamb1 AACCCCAAGCACTCTTACGG GTCGCATGCGTGACATTTGA
Zfand4 TCGCCTCTTTCGTTCACTCC GAAGGTGGGGAGGGGTCTAT

igll5 GCAGTGGGATCTCTACCAGC CTGGGAGCCCAAAGACACTT
β-actin CTCTGGGCAACGGAACCTCT GTGCGTGACATCAAGGAGAAGC

3. Results
3.1. Transcriptome Sequencing and Assembly

After data filtering and trimming, 9.62 × 108 clean reads were generated from 12 sam-
ples in four groups (3 pseudo replicates per group). The Q20 and Q30 values of each sample
were greater than 96.70% and 92.08%, respectively (Table 2). All summary statistics suggest
that the sequencing quality was high enough for further analyses. The base content and
base mass distribution maps were obtained by sequencing the transcriptomes of three
sperm samples after cryopreservation (Figure 1). The A-T and C-G bases of the four sam-
ples were similar, indicating that the base composition was stable and balanced and the
sequencing quality was high. The base masses of the four groups of samples were stable at
about 40%, and the proportion of low-quality bases was small, indicating good sequencing
quality. The transcriptome results were compared with the whole genome of E. lanceolatus
as the reference, and the proportion of reads mapped to the genome indicated that the
measured species was basically the same as the reference genome (Table 3).
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Table 2. Summary statistics for the raw reads before and after filtering.

Sample Raw Data (bp) Clean Data (bp) Q20 (%) Q30 (%) GC (%)

El-61-1 11,503,797,600 11,260,881,272 97.19% 93.07% 52.88%
El-61-2 12,572,943,600 12,403,629,774 97.01% 92.46% 53.00%
El-61-3 11,964,763,200 11,764,204,113 97.16% 92.77% 52.10%
El-49-1 11,607,607,500 11,310,292,815 97.22% 92.95% 52.59%
El-49-2 12,134,965,800 11,901,108,789 97.20% 92.91% 53.89%
El-49-3 11,793,498,600 11,588,109,505 97.12% 92.74% 54.43%
El-23-1 11,899,454,100 11,501,842,347 96.70% 92.33% 61.06%
El-23-2 11,563,097,700 11,268,692,649 96.94% 92.31% 55.27%
El-23-3 12,992,697,600 12,752,937,675 96.86% 92.08% 55.99%
El-0-1 12,138,655,500 11,919,323,093 97.47% 93.30% 52.50%
El-0-2 12,979,071,300 12,533,244,899 96.99% 92.49% 52.80%
El-0-3 11,868,128,400 11,614,133,308 96.89% 92.13% 53.61%

Note: El-0-1, El-0-2, El-0-3 are the fresh sperm, El-23-1, El-23-2, El-23-3 are the frozen sperm from the 23rd month,
El-49-1, El-49-2, El-49-3 are the frozen sperm from the 49th month, and El-61-1, El-61-2, El-61-3 are the frozen
sperm from the 61st month.

Table 3. Comparison of reference statistics for the reference genomes.

Sample Total Unique_Mapped (%) Multiple_Mapped (%) Total_Mapped (%)

El-61-1 60,355,436 36,288,656 (60.12%) 5,790,104 (9.59%) 42,078,760 (69.72%)
El-61-2 65,623,376 38,386,462 (58.50%) 6,137,785 (9.35%) 44,524,247 (67.85%)
El-61-3 63,992,594 38,520,927 (60.20%) 6,298,505 (9.84%) 44,819,432 (70.04%)
El-49-1 51,620,698 29,550,592 (57.25%) 3,952,694 (7.66%) 33,503,286 (64.90%)
El-49-2 52,834,236 29,249,147 (55.36%) 4,232,201 (8.01%) 33,481,348 (63.37%)
El-49-3 48,739,846 27,147,933 (55.70%) 3,759,760 (7.71%) 30,907,693 (63.41%)
El-23-1 47,965,958 20,982,137 (43.74%) 3,701,637 (7.72%) 24,683,774 (51.46%)
El-23-2 52,571,466 26,721,876 (50.83%) 4,236,098 (8.06%) 30,957,974 (58.89%)
El-23-3 59,635,270 31,264,050 (52.43%) 4,801,141 (8.05%) 36,065,191 (60.48%)
El-0-1 63,585,244 35,390,829 (55.66%) 4,999,935 (7.86%) 40,390,764 (63.52%)
El-0-2 63,890,574 35,368,631 (55.36%) 4,969,086 (7.78%) 40,337,717 (63.14%)
El-0-3 59,705,142 32,478,564 (54.40%) 4,660,800 (7.81%) 37,139,364 (62.20%)

3.2. Analysis of Differentially Expressed Genes

Correlation coefficients for the mRNA levels in the 12 samples in this study were
above 0.93, indicating a good correlation between the samples (Figure 2).
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We used an FDR < 0.05 and a fold change > 2 as the criteria to screen for DEGs in
pairwise comparisons between the fresh sperm and frozen sperm. A total of 1911 differen-
tially expressed mRNAs were identified, including 91 in El-0-vs-El-23 (40 upregulated and
51 downregulated), 251 in El-0-vs-El-49 (182 upregulated and 69 downregulated), and 1569
in El-0-vs-El-61 (984 upregulated and 585 downregulated). Among these, 23 common DEGs
were found, which were mainly enriched in the MAPK signaling pathway, responsible
for regulating physiological processes such as cell growth, differentiation, apoptosis, and
death (Figure 3).
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Figure 3. Differential gene plot. The plot on the left shows the number of DEGs identified from
the fresh sperm and post-thawed sperm of E. lanceolatus. Red indicates upregulated genes and blue
indicates downregulated genes. The right shows a Venn diagram depicting the distribution of DEGs
between the fresh and post-thawed sperm of E. lanceolatus.

3.3. GO and KEGG Analyses of DEGs

According to a GO function annotation analysis, the DEGs were classified into 39 GO
terms in El-0-vs-El-23, including 19 biological processes, 9 molecular functions, and 11 cel-
lular components. The fewest DEGs were obtained in El-0-vs-El-23, and these were mainly
enriched in biological processes, particularly cellular processes, followed by binding, single-
organism processes, and biological regulation. A total of 19 significant terms were screened,
such as biological regulation, pilus assembly, animal organ development, nucleic acid
binding transcription factor activity, and phosphoric ester hydrolase activity.

According to the GO functional annotation analysis, the DEGs were classified into
44 GO terms in El-0-vs-El-49, including 20 biological processes, 9 molecular functions,
and 15 cellular components. These DEGs were mainly enriched in biological processes,
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particularly cellular processes. The DEGs were enriched for binding in the molecular
function category, followed by cellular processes. A total of 20 significant terms were
screened, such as cyclin-dependent protein serine/threonine kinase inhibitor activity,
enzyme inhibitor activity, and cell cycle arrest.

According to the GO functional annotation analysis, the DEGs were classified into
53 GO terms in El-0-vs-El-61, including 22 biological processes, 12 molecular functions, and
19 cellular components. The most DEGs were obtained in El-0-vs-El-23. These genes were
mainly enriched for binding in the molecular function category. A total of 20 significant
terms were screened, such as protein kinase inhibitor activity, kinase inhibitor activity,
and the regulation of metabolic processes. In all comparisons, the DEGs showed the least
enrichment for the cell fraction (Figure 4).
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KEGG is the main public database with pathway information and can provide ad-
ditional insights into the biological functions of DEGs. Therefore, all DEGs in the giant
grouper sperm were evaluated using the KEGG pathway database to predict biological
functions. A total of 132 KEGG pathway terms were enriched in El-0-vs-El-23, including
19 significant terms (p < 0.05). These included the JAK-STAT signaling pathway, apoptosis,
the MAPK signaling pathway, and sulfur metabolism.

A total of 216 KEGG pathways were enriched in El-0-vs-El-49, including 43 significant
terms (p < 0.05). These included the IL-17 signaling pathway, apoptosis, the MAPK signaling
pathway, and the P53 signaling pathway.

A total of 312 KEGG pathways were enriched in El-0-vs-El-61, including 72 significant
terms (p < 0.05). These included the following: osteoclast differentiation, the PI3K-AKt
signaling pathway, the MAPK signaling pathway, and the Hippo signaling pathway. The
MAPK signaling pathway was enriched in all three comparisons (Figure 5).

Genes 2024, 15, x FOR PEER REVIEW  10  of  27 
 

 

 

Figure 5. Cont.



Genes 2024, 15, 523 10 of 25
Genes 2024, 15, x FOR PEER REVIEW  11  of  27 
 

 

 

Figure 5. Cont.



Genes 2024, 15, 523 11 of 25
Genes 2024, 15, x FOR PEER REVIEW  12  of  27 
 

 

 

Figure 5. KEGG pathway enrichment analysis of differentially expressed genes between fresh sperm 

(El-0) and three groups of post-thawed sperm (El-23, El-49, El-61) of E. lanceolatus. (a) KEGG path-

way enrichment analysis of El-0-vs-El-23. (b) KEGG pathway enrichment analysis of El-0-vs-El-49. 

(c) KEGG pathway enrichment analysis of El-0-vs-El-61. 

3.4. Sample Time‐Series Analysis of DEGs 

To comprehensively evaluate the effects of different freezing times on sperm, we an-

alyzed the expression trends of DEGs and selected biologically meaningful target genes 

with p < 0.05 as  the  screening condition.  (Note  that gene expression was expressed as 

FPKM, and log2 normalization was performed according to the expression level in the first 

sample.) The DEGs were assigned to 20 modules, of which 6 modules were significant (p 

< 0.05). The overall gene expression  trend was classified as either rising or  falling. The 

DEGs  in profile 19 were consistently upregulated  (Figure 6). These findings effectively 

revealed the gene expression status of giant grouper sperm after long-term cryopreserva-

tion. 

Figure 5. KEGG pathway enrichment analysis of differentially expressed genes between fresh
sperm (El-0) and three groups of post-thawed sperm (El-23, El-49, El-61) of E. lanceolatus. (a) KEGG
pathway enrichment analysis of El-0-vs-El-23. (b) KEGG pathway enrichment analysis of El-0-vs-El-
49. (c) KEGG pathway enrichment analysis of El-0-vs-El-61.

3.4. Sample Time-Series Analysis of DEGs

To comprehensively evaluate the effects of different freezing times on sperm, we
analyzed the expression trends of DEGs and selected biologically meaningful target genes
with p < 0.05 as the screening condition. (Note that gene expression was expressed as FPKM,
and log2 normalization was performed according to the expression level in the first sample.)
The DEGs were assigned to 20 modules, of which 6 modules were significant (p < 0.05).
The overall gene expression trend was classified as either rising or falling. The DEGs in
profile 19 were consistently upregulated (Figure 6). These findings effectively revealed the
gene expression status of giant grouper sperm after long-term cryopreservation.
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Figure 6. Expression trend analysis for DEGs between fresh sperm (El-0) and three groups (El-23,
El-49, El-61) of post-thawed sperm of E. lanceolatus. The colors indicate significant enrichment; white
indicates no significant enrichment. The number above each box represents different trends. The
p-value is shown in the lower-left corner.

A KEGG enrichment analysis of the DEGs in profile 19 is summarized in Figure 7. A
total of 231 KEGG pathways were enriched in profile 19, and 48 KEGG pathways were
significantly enriched (p < 0.05). These pathways were divided into six classes: human
disease, metabolism, organism system, genetic information processing, environmental
information processing, and cellular processes. Most of the pathways were related to cell
growth and death, the immune system, the endocrine system, and signal transduction.

3.5. Construction of the Co-Expression Network (the WGCNA)

Figure 8 left shows the selected soft threshold of 6, and Figure 8 right shows the
network connectivity for different soft thresholds for the construction of co-expression
networks (Figure 8).

3.5.1. Clustering and Module Cutting of the Co-Expression Networks

A weighted gene co-expression network of DEGs between fresh and frozen E. lanceola-
tus sperm was generated. The genes with RPKM values of <1 were removed, with a total of
18,380 genes remaining in the network after screening, divided into 20 modules (Figure 9).
The turquoise module had the largest number of genes (i.e., 6050), and the smallest gray
module had 3 genes (Figure 9). Finally, in a correlation analysis between all modules and
the freezing length, the dark-green module had a high positive correlation, followed by
the pink module and cyan module, and the light-green module had a negative correlation
(Figure 10).
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Figure 7. KEGG pathway analysis of DEGs showing continuous upregulation in the post-thawed
sperm of E. lanceolatus.
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3.5.2. GO and KEGG Enrichment Analyses of Genes in the Dark-Green Module

To further explore the potential functions of the significantly enriched modules, GO
and KEGG enrichment analyses were used to evaluate genes in the dark-green module. The
GO functional enrichment analysis revealed terms in the following three main categories:
biological processes, molecular functions, and cellular components. In particular, genes
were enriched in cellular processes, metabolic processes, binding, and individual biological
processes (Figure 11).
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Figure 11. GO term enrichment analysis of DEGs between fresh sperm (El-0) and three groups (El-23,
El-49, El-61) of post-thawed sperm of E. lanceolatus in the dark-green module.

The KEGG pathway enrichment analysis of the dark-green module showed that a total
of 231 pathways were detected, of which 23 were significantly enriched (p < 0.05); these
included the P53 signaling pathway, oxidative phosphorylation, cellular senescence, and
other pathways (Figure 12).

3.5.3. Gene Co-Expressed Network of the Dark-Green Module

We used genes with the top 10 module membership (MM) values in the dark-green
module for a network analysis using Cytoscape. The top 150 pairs were selected for the
construction of a co-expression network. The genes with the highest connectivity in the
network were the core genes. The nodes with the top four degree values were selected as
the core genes of the co-expression network of this module. Four genes, scarb1, odf3, exoc8,
and atp5f1d, were found at the core of the network. These genes were mainly involved in
immune regulation, sperm movement, and mitochondrial energy conversion (Figure 13).

3.6. Validation of Gene Expression via qRT-PCR

To reveal the key genes associated with fresh sperm and post-thawed sperm, 14 highly
expressed genes under cryopreservation were selected for verification with RT-qPCR. The
results were similar to those obtained through sequencing, confirming the reliability of the
sequencing data (Figure 14).
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Figure 12. KEGG pathway enrichment analysis of DEGs between fresh sperm and three groups of
post-thawed sperm of E. lanceolatus in the dark-green module.
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quantitative PCR and RNA-seq.
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4. Discussion

In the study of cryodamage to the giant grouper sperm by cryopreservation, we
have previously found that ultra-low-temperature cryopreservation affects sperm motility,
plasma membrane integrity, enzyme activity, and ultrastructural properties, and these
problems increase gradually with the freezing time. These findings suggest that sperm
quality decreases as the storage duration increases. This is likely caused by unstable cry-
opreservation conditions. Sperm inactivation is mainly due to the production of large
amounts of ROS, DNA damage, plasma membrane damage, and mitochondrial dam-
age [18–20]. This is also in agreement with our previous experimental results [7]. There are
few reports of RNA damage in sperm during frozen storage. Conventional views suggest
that sperm are highly differentiated cells with less cytoplasm and condensed nuclei, and
transcription and translation are inactive [21,22]. Various mRNAs in sperm associated
with biological processes, such as sperm motility, fertilization, and early embryonic devel-
opment, have been identified [23]. To elucidate the specific variation in sperm freezing
damage in E. lanceolatus, we used a transcriptome analysis to explore the gene regulatory
network. In this study, we used sperm samples taken from the same fish at different times;
mainly considering the fact that these same-fish sperm samples had a consistent genetic
background, the transcriptome analysis results for samples with different freezing times
were comparable. The giant grouper has a long life span, and our giant grouper was in
its youth when we took the semen samples. At the same time, the sperm vitality was
checked and a sperm vitality of more than 85% was selected for sperm cryopreservation.
Therefore, the fish itself aging would not have had a significant effect on the effect of sperm
cryopreservation. Of note, 12 cDNA libraries at four different freezing time points were
established for transcriptome sequencing.

4.1. Differential Expression between Fresh and Frozen Sperm of E. lanceolatus

Cryopreserved sperm is used for artificial reproduction, seed production, and breed-
ing. In this study, 1911 DEGs were identified, with an increase from 91 to 1569 as the
cryopreservation time increased for the giant grouper sperm. With the extension of the
freezing time, the number of DEGs increased gradually. DEGs in the frozen sperm increased
significantly after freezing for 61 months. These results provide valuable information and a
basis for further studies on fish sperm cryoinjury.

GO enrichment analyses of the DEGs between the fresh and frozen sperm of E. lance-
olatus revealed enrichment for phospholipid hydrolases, enzyme inhibitor activity, cell
cycle arrest, and the regulation of metabolic processes. It is speculated that cryogenic freez-
ing is related to sperm enzyme activity, cell metabolism, and death. A Yunnan semi-fine
wool sheep sperm transcriptome analysis also showed enrichment for similar biologi-
cal processes [24]. Sperm will produce a large amount of ROS after cryopreservation.
Several studies have reported an increase in ROS production after cryopreservation in
different species, impairing cell viability and motility [6,25]. Elevated oxidative stress is
often associated with cell death [26]. Therefore, sperm can regulate ROS production via
metabolic processes.

Our KEGG pathway analysis of the fresh and frozen sperm of E. lanceolatus revealed
that DEGs were involved in the MAPK signaling pathway, the P53 signaling pathway,
the JAK-STAT signaling pathway, and apoptosis. With the prolonged cryopreservation
time, significantly enriched signaling pathways increased gradually. Of note, the DEGs
in the three pairwise comparisons of giant grouper fresh sperm and frozen sperm were
involved in the MAPK signaling pathway. This suggests that the MAPK signaling pathway
plays an important role in the whole process of the long-term freezing of sperm. Mitogen-
activated protein kinase (MAPK) is a crucial part of the cellular signal transduction pathway
and can be activated by environmental stimuli to contribute to the regulation of cell
proliferation, differentiation, growth, and apoptosis [27]. MAPK, together with MAPKK
and MAPKKK, constitute the MAPK signaling pathway [28]. The MAPK signaling pathway
has important effects on cell growth, stress, and the immune response [29]. The MAPK



Genes 2024, 15, 523 20 of 25

signaling pathway contributes to the response to low temperatures in both animals and
plants, such as Larimichthys crocea [30], Solanum tuberosum L. [31], and the pearl gentian
grouper (E. lanceolatus♂× E. fuscoguttatus♀) [32]. In humans, sperm motility is regulated
via the MAPK signaling pathway [33]. In addition, more DEGs involved in the regulation
of the MAPK signaling pathway were detected with the extension of the freezing time,
such as nr4a1, hsp70, and traf2.

hsp70 is important for protein repair and degradation [34], participates in various
metabolic processes in cells [35], enhances antioxidant activity [36], and protects against
stress [37]. In this study, hsp70 gene expression in the fresh sperm differed significantly
from that in the frozen sperm. Expression levels increased initially and then decreased.
It is speculated that the sperm exhibited stress resistance during cryopreservation, with
the stress resistance decreasing over the 61 months. Polymorphism in the hsp70 gene is
significantly correlated with cold tolerance in the GIFT tilapia (Oreochromis niloticus) [38].
The nr4a1 gene is a member of the nucleus receptor family that can regulate various physio-
logical processes, including cell growth, metabolism, and immunity, and participates in
the cell cycle [39]. In this study, nr4a1 gene expression differed significantly between the
fresh sperm and frozen sperm at 61 months. The nr4a1 gene may be involved in sperm
metabolism during cryopreservation. The traf2 gene is involved in the regulation of cell
apoptosis. It is a member of the tumor necrosis factor (TNF) family and can lead to the acti-
vation of the MAPK signaling pathway, thus regulating the biological activities of cells [40].
In this study, traf2 gene expression decreased after sperm cryopreservation. This gene is
clearly involved in the regulation of immune defenses in sperm after cryopreservation. All
three genes have established roles in stress resistance in different species [41–43].

4.2. Time-Series Expression Profiles and Co-Expression Network of Differentially Expressed Genes
between Fresh Sperm and Frozen Sperm of E. lanceolatus

A comparative analysis of different time points combined with a time-series analysis
revealed genes with expression changes over time during sperm cryopreservation, such as
bcl2. The Bcl-2 family genes can lead to irreversible apoptosis [44]. In this study, bcl2 gene
expression differed significantly between the fresh sperm and frozen sperm at 61 months.
With the extension of the freezing time, the freezing damage increased gradually, and sperm
damage reached its maximum at 61 months. Time-series expression profiling revealed
that DEGs that were continuously upregulated were closely related to cell growth and
death, amino acid metabolism, the immune system, the endocrine system, and signaling.
DEGs were involved in the IL-17 signaling pathway, the TNF signaling pathway, the T-cell
receptor signaling pathway, and apoptosis. Cell death is usually divided into three types:
apoptosis, necrosis, and autophagy [45]. Apoptosis is a type of programmed cell death
that can maintain the stability of the intracellular environment and improve adaptation to
environmental conditions. Mitochondrial apoptosis is one of the most common forms of
cell apoptosis and can produce large amounts of energy [46]. Through transmission electron
microscopy of the giant grouper sperm, substantial mitochondrial damage was observed; it
is speculated that the mitochondria play a crucial role in the progression of apoptosis. Low-
temperature stress causes apoptosis, as observed in Rachycentron canadum [47], Ictalurus
furcatus [48], and Marsupenaeus japonicus [49]. These findings indicate that during the
cryopreservation of sperm, low temperatures will stimulate the sperm to activate immune-
related genes for protection, and low temperatures will also cause sperm damage.

Because most genes interact with various other genes, the combination of RNA-seq
and the WGCNA has become a critical, cost-effective approach to discover hub genes and
interactions that might be functionally related to stress [26]. In this study, the WGCNA re-
vealed that the dark-green module was the most significant in terms of the sperm response
to cryopreservation. Our KEGG pathway analysis of genes in the dark-green module
indicated that these genes were involved in the P53 signaling pathway, oxidative phospho-
rylation, and cellular senescence. Four hub genes were found in the network: scarb1, odf 3,
exoc8, and atp5f1d.
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Scarb1 is a key membrane transporter gene encoding a steroid synthesis precursor
and can transport cholesterol efficiently. It is a key regulatory gene participating in many
physiological activities and immune regulation; as a member of the CD36 family, it has been
widely studied in human diseases [50]. Cholesterol is an important structural component in
the maintenance of cell membrane permeability and fluidity and is a precursor for steroid
synthesis, which is essential for normal sperm production [51]. In rat cardiomyocytes
subjected to hypoxia/reoxygenation, we found that scarb1 could be upregulated through
the inhibition of miR-125a-5p, thus exerting a protective effect [52]. In this study, the scarb1
gene had the highest connectivity in the module. Combined with the physiological role
of this gene, we speculate that it plays a key role in steroid metabolism and membrane
transport during sperm freezing.

The integrity of the sperm flagellar structure is a prerequisite for sperm motility. The
odf (outer dense fiber) structure is one of the “9 + 2” microtubule structures produced by
sperm flagella. The odf3 gene encodes one of the major proteins in the odf family; these
proteins make up dense peripheral fibers [53]. The odf protein has some effects on the
formation of the sperm tail structure and sperm motility, and a decrease in its expression
may explain the decrease in sperm motility [54]. Previous research has shown the giant
grouper sperm flagella also shows the “9 + 2” structure, and cryopreservation may influence
the giant grouper sperm flagella.

Exoc8 can transport intracellular vesicles to the plasma membrane for fusion and
plays important roles in several important cellular processes, such as ciliogenesis, cell
autophagy, and cytokinesis [55]. Interestingly, some studies have found that exoc8 is closely
associated with neural development [56]. A transcriptome analysis of cryopreserved kelp
grouper (Epinephelus moara) embryos showed that the expression of some genes encoding
proteins that protect neurons from the toxic effects of high concentrations of extracellular
neurotransmitters decreased significantly, suggesting that cryopreservation influences the
central nervous system of larvae [57]. Therefore, the process of long-term cryopreservation
may have had the same effect on the giant grouper sperm. In addition, exoc8 mutations may
be associated with cilia, which can assemble on different cell types, including sperm [58].
Based on the effect of odf3 on sperm flagella, cryopreservation likely has a substantial effect
on sperm flagella.

ATP synthase is a key enzyme in the mitochondrial energy conversion process, and its
expression level is directly related to the energy metabolism of the mitochondria. atp5f1d is
a member of the ATP synthases, responsible for ATP production and transport; it plays a
key role not only in spermatogenesis but also in sperm capacitation and sperm Ca2+ signal-
ing [59]. It is also related to mitochondrial respiration and the maintenance of the normal
structure and function of the heart [60]. Decreases in ATP synthase protein expression
also affect mitochondrial energy metabolism and fertilization [61]. In previous studies,
we found that the cryopreserved sperm ATP content decreases significantly. Therefore,
cryopreservation may cause damage to the sperm mitochondria, leading to a decrease in
ATP synthase expression and a decrease in the ATP content in the sperm, thus reducing
sperm motility in the giant grouper. In conclusion, functional studies of the four hub
genes revealed that cryopreservation can have certain effects on sperm mitochondria and
flagella, contributing to our understanding of the molecular mechanisms underlying sperm
cryoinjury in the giant grouper species.

5. Conclusions

We investigated, for the first time, gene expression changes in giant grouper sperm
during long-time cryopreservation using RNA-seq. A differential expression analysis
revealed 1911 DEGs, including 1206 upregulated genes and 705 downregulated genes. GO
and KEGG pathway enrichment analyses revealed that the DEGs were mainly related to
pilus assembly and enzyme inhibitor activity and were involved in the MAPK pathway,
the P53 signaling pathway, and apoptosis. All of the DEGs were related to sperm freezing
injury. In a trend analysis, the gene modules showing consistent upregulation were also
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significantly enriched in pathways related to apoptosis and immunity. Finally, using the
WGCNA, the dark-green module was found to be the most significantly associated with
freezing damage. By mapping the gene network within this module, we found that scarb1,
odf3, exoc8, and atp5f1d may play important roles in the response to freezing. These results
provide rich insights into the genetic changes during cryopreservation and the mechanisms
underlying cryodamage.
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