
Genes 2014, 5, 561-575; doi:10.3390/genes5030561
OPEN ACCESS

genes
ISSN 2073-4425

www.mdpi.com/journal/genes

Article

An Efficient Estimator of the Mutation Parameter and Analysis
of Polymorphism from the 1000 Genomes Project
Yunxin Fu 1,2

1 Division of Biostatistics and Human Genetics Center, The University of Texas Health Science Center
at Houston, 1200 Herman Pressler, Houston, TX 77025, USA; E-Mail: yunxin.fu@uth.tmc.edu;
Tel.: +1-713-500-9813; Fax: +1-713-500-0900

2 Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University,
Kunming 650091, China

Received: 27 March 2014; in revised form: 20 June 2014 / Accepted: 24 June 2014 /
Published: 22 July 2014

Abstract: The mutation parameter θ is fundamental and ubiquitous in the analysis of
population samples of DNA sequences. This paper presents a new highly efficient estimator
of θ by utilizing the phylogenetic information among distinct alleles in a sample of DNA
sequences. The new estimator, called Allelic BLUE, is derived from a generalized linear
model about the mutations in the allelic genealogy. This estimator is not only highly accurate,
but also computational efficient, which makes it particularly useful for estimating θ for large
samples, as well as for a large number of cases, such as the situation of analyzing sequence
data from a large genome project, such as the 1000 Genomes Project. Simulation shows that
Allelic BLUE is nearly unbiased, with variance nearly as small as the minimum achievable
variance, and in many situations, it can be hundreds- or thousands-fold more efficient than
a previous method, which was already quite efficient compared to other approaches. One
useful feature of the new estimator is its applicability to collections of distinct alleles without
detailed frequencies. The utility of the new estimator is demonstrated by analyzing the
pattern of θ in the data from the 1000 Genomes Project.
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1. Introduction

The pattern of genetic polymorphism in a population can be influenced by a number of factors, among
which the mutation parameter (commonly denoted by θ) plays a central role. θ is defined as 4Nu and
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2Nu for diploid and haploid genomes, respectively, where N is the effective population size and u is
the mutation rate per sequence per generation. Almost all existing summary statistics for polymorphism
are related to θ. Well-known examples include the number of alleles in a sample [1] the number (K)
of segregating sites (or polymorphic sites) [2], mean number (Π) of nucleotide differences between two
sequences [3] and the number of mutations of various sizes [4].

Due to the fundamental nature of this parameter for understanding both population dynamics, as well
as the mechanism of evolution, it is important that it can be estimated as accurately as possible. Classical
estimators include Watterson’s estimator [2], Tajima’s estimator [3], Ewens’ estimator based on the
number of alleles [5] in the sample and the heterozygosity estimator [6]. Under the assumption of a single
random mating population evolving according to the Wright–Fisher model with constant population
size and neutral mutations, these estimators are all either unbiased or nearly unbiased. However, their
variances, which are the primary measure of accuracy of an estimator, can differ considerably and,
furthermore, are substantially larger than the minimum achievable variance [7]:

Vmin = θ

[
n−1∑
i=1

1

θ + i

]−1
(1)

where n is the sample size. Realizing the limitations of these classical estimators, several new
approaches were developed in the 1990s, all utilizing the fine structural result of coalescent
theory [3,8,9]. Representative are Griffiths and Tavare’s Markov Chain Monte Carlo (MCMC)
estimator [10,11] based on recurrent equations for the probability of the polymorphism configuration,
Knuher and Felsenstein’s MCMC method [12] based on Metropolitan-Hasting sampling and Fu’s
BLUE estimators [13,14] based on linear regression taking advantage of the linear relationship between
mutations in the genealogy of a sample and the mutation parameter. These new groups of estimators can
all achieve substantially smaller variances and may even reach the minimum variance [13]. One common
feature of these estimators is that they are all computationally intensive and, as a result, are suitable for
only relatively smaller samples. Such limitations are particularly serious for the MCMC-based approach.

The potential for genetic research based on population samples has been greatly enhanced by the
steady reduction in the cost of sequencing. As a result, sample sizes in these studies are substantially
larger than before, and the trend will continue with the arrival of next generation sequencers. Already,
it is commonplace to see sequenced samples of many hundreds of individuals and even thousands (such
as the sample in the 1000 Genomes Project [15]). The reduction of sequencing cost also leads to a
larger region of the genome or even the entire genome being sequenced (e.g., 1000 Genomes Project).
Consequently, new approaches that are both highly accurate and efficient in computation are desirable.
This paper presents one such method and demonstrates its utility by analyzing polymorphism from the
1000 Genomes Project.

2. Theory and Method

2.1. The Theory

Assume that a sample of n DNA sequences at a locus without recombination is taken from a single
population evolving according to the Wright–Fisher model and all mutations are selectively neutral.
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The sample genealogy thus consists of 2(n − 1) branches, each spanning at least one coalescent time
(Figure 1). The number of mutations that occurred in a branch is thus the sum of the numbers of
mutations in the coalescent time it spans. Consider one branch, and without loss of generality, assume it
spans the i-th coalescent time. Then, during the i-th coalescent time, the number of mutations occurred
in the branch has expectation and variance equal to:

θ

i(i− 1)
and

θ

i(i− 1)
+

1

i2(i− 1)2
θ2 (2)

respectively. These are consequences of the coalescent time being exponentially distributed and the
number of mutations in a given number of generations following a Poisson distribution. Consider the
number of mutations in another branch that spans the j-th coalescent time. Then, the covariance between
the two numbers of mutations is equal to:

θ2

i2(i− 1)2
(3)

if i = j, and zero otherwise.

Figure 1. A sample genealogy with different coalescent times separated by dashed lines.
Branch 1 spans the third to the sixth coalescent times, χ1(2) = 0, χ1(i) = 1, for i = 3, ..., 6,
while Branch 2 spans the fourth to the sixth coalescent times, χ2(2) = χ2(3) = 0, χ2(4) =

χ2(5) = χ2(6) = 1. Combining Branches 1 and 2 results in φ(2) = 0, φ(3) = 1, φ(4) =

φ(5) = φ(6) = 2.
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For the branch k(k = 1, ..., 2(n− 1)) in the genealogy, define an index χk(i), such that it takes value
one if the branch spans the i-th coalescent time and zero otherwise. Then, mk, the number of mutations,
has its expectation and variance equal to:

E(mk) = θ

n∑
i=2

χk(i)

i(i− 1)
(4)

V (mk) = E(mk) + θ2
n∑
i=2

χ2
k(i)

i2(i− 1)2
(5)
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respectively, and for two different branches a and b:

Cov(ma,mb) = θ2
n∑
i=2

χa(i)χb(i)

i2(i− 1)2
(6)

The previous results are readily generalized. Instead of considering the mutations in different
branches separately, one can combine mutations in several branches. Suppose branches (k1, ..., kt) are
combined. Define for the combined branches a variable φ as:

φ(i) =
t∑

j=1

χkj(i) (7)

Consider a population dynamics model in which the effective population size can change only at the
time a coalescent event occurs. Although such a model does not stem from biological reality, its laddered
changes in population sizes allow a reasonable approximation of reality and makes the mathematics
simpler. Let θi represent the θ during the i-th coalescent period. Suppose the combined branches is
denoted by branch (group) k, thenmk, the number of mutations in branch k has expectation and variance
equal to:

E(mk) =
n∑
i=2

φk(i)θi
i(i− 1)

(8)

V (mk) = E(mk) +
n∑
i=2

φ2
k(i)θ

2
i

i2(i− 1)2
(9)

respectively, and for two such branches a and b, we have:

Cov(ma,mb) =
n∑
i=2

φa(i)φb(i)θ
2
i

i2(i− 1)2
(10)

Suppose that the 2(n− 1) branches of the sample genealogy are divided into M (≤ 2(n− 1)) disjoint
groups (i.e., each branch belongs to one and only one group). Let mk represent the number of mutations
in branch group k and m = (m1, ...,mk)

T . Then, similar to the previous result [13], the relationship
between θ = (θ2, ..., θn)T andm can be expressed by a generalized linear model:

m = αθ + e (11)

where α is a matrix of dimension M × n with: αij = φi(j)
j(j−1) and e a vector of length M representing

error terms. Let Γ(θ) = V ar(m). Then:

Γ(θ) = γ(θ) + β(θ) (12)

where γ and β are both M ×M matrices defined as:

γ(θ) = Diag{α1θ, ...,αMθ} (13)

β(θ) =

{
n∑
k=2

φi(k)φj(k)θ2k
k2(k − 1)2

}
(14)
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where αk represents the k-th row vector of α. Following the previous approach [13,14], a best linear
unbiased estimator of θ can be obtained as the limit of the series:

θ(k+1) = [αTΓ(θ(k))−1α]−1αTΓ(θ(k))−1m (15)

with θ(0) being the initial estimate of θ (for example, setting all θi equal to Watterson’s estimate of θ).
The above formulation allows maximal n−1 different values of θ corresponding to the n−1 coalescent

periods. Although very flexible, such an extreme model may lead to reduced accuracy of estimation for
individual parameters, so some compromise is likely to be useful. When two or more consecutive θ
values are assumed to be the same, the length of the θ vector will be reduced. At the extreme, if all of
the θs are the same, θ is reduced to a single quantity, and when M = 2(n − 1), it further defaults to
BLUE [13]. Since efficient estimators for a single value of θ will continue to be useful in the analysis of
the whole genome polymorphism of large samples, we will focus on developing one such scheme in this
paper.

2.2. Allelic BLUE estimator

In order to take advantage of the BLUE estimator, sample genealogy needs to be inferred.
Furthermore, the key to developing a highly efficient BLUE estimator is to define the M groups of
branches, which not only retains the detail mutational information, but also satisfies the relationship
M << 2(n − 1). Fu’s UPBLUE [13] corresponds to the extreme in which M = 2(n − 1), i.e., each
branch belongs to its own group. While this may retain the maximal mutational information, it leads to
computational inefficiency. Fu’s [14] approach is more or less equivalent to M = n − 1, with groups
defined by the size of mutations. This achieves computational efficiency with the expense of reduced
accuracy due to over condensation of mutational information. Thus, the goal here is to strive for a
balance.

We recognize that much of the phylogenetic information in a sample resides in the pattern of
differences between distinct alleles. The phylogenetic method, UPGMA (e.g., [16]), which was found
to be appropriate in Fu [13], will continue to be used in our new method. Since UPGMA is a sequential
method, which at each step joins two sequences (or two groups of sequences) that differ the least. As
a result, copies of sequences of the same allele will be joined together before any pair of sequences of
distinct alleles. The resulting sample genealogy can be roughly divided into two portions (see Figure 2),
with the bottom portion corresponding to the coalescent within allelic class and the upper portion the
coalescent among allelic classes. Combine all the branches (or segments of branches) underneath the
dashed line into one group, which will be referred to as the within allele branch. Suppose there are L
distinct alleles in the sample; then we have for the within allele branch:

φ(i) =

0, i ≤ L

i, i > L
(16)

Then, the number of mutations in the within allele branch have expectation and variance equal
respectively to:

(an − aL)θ and (an − aL)θ + (bn − bL)θ2 . (17)
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Figure 2. Schematic relationship between sample genealogy and allelic genealogy. The
dark portion is the genealogy of distinct alleles, while the light portion (which is below the
horizontal line) is the coalescent within alleles and contains no mutation or only a few in the
dashed segments of the branches.

Furthermore, we assume that there is no mutation in the within allele branch (which should be a
good approximation, although technically, the assertion may not be true). Since the within allele branch
does not span any coalescent time that overlaps with those of branches in the allelic genealogy, we have
(assumed that the last branch group represents the within allele subtree) that:

α =

(
α∗

an − aL

)
(18)

where α∗ a vector of length 2(L − 1) with the k-th element equal to
∑L

i=2
φk(i)
i(i−1) . The inverse of the

covariance matrix ofm is: (
Γ∗(θ)−1 0

0 [(an − aL)θ + (bn − bL)θ2]−1

)
(19)

where Γ∗ is defined for branch groups of the allelic genealogy. Let m∗ be the vector of mutations in
branches of the allelic genealogy (the dark portion in the genealogy of Figure 2). Then, Equation (15)
becomes:

θ(k+1) =
(α∗)TΓ∗(θ(k))−1

(an − aL)2[(an − aL) + (bn − bL)θ(k)]−1 + (α∗)TΓ∗(θ(k))−1α∗
m∗ (20)

This limit will be referred to as the Allelic BLUE estimator denoted by θab. Since, for large samples,
the number of distinct alleles is typically much smaller than the sample size; thus, the new estimator is
expected to be highly efficient computationally.
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To determine if it is indeed true that merging those branches representing within allele coalescent does
not lead to significant loss of information and, thus, would not reduce the accuracy of estimation, we
compared Allelic BLUE with the original BLUE using simulated samples for a number of combinations
of θ and n. The correlation between the two estimates is around 0.99. Therefore, Allelic BLUE is
expected to be as accurate as BLUE without merging branches.

2.3. Bias-Corrected Allelic BLUE Estimator

Since UPGMA systematically introduces bias in the inferred sample genealogy, the resulting Allelic
BLUE estimate is expected to be biased similar to the BLUE estimator [13]. Therefore, it is necessary
to correct the bias. Similar to Fu [13], we used simulated samples to derive understanding of the
pattern of biases. A total of 550 combinations of θ and n were examined with 25 different θ
values: 0.5, 0.75, 1, 1.5, 2(1)5, 6(2)12, 15(5), 50, 60(10)100 and 150, and 25 different sample sizes n:
10(5)25, 30(10)60, 80, 100(25)200, 250, 300, 400, 500, 750, 1000(1000)5000. For each combination of
the parameters, 1000 samples were simulated, and for each simulated sample, θab was obtained and their
mean value computed over all simulated samples. Similar to those in Fu [13], the estimates in almost all
situations are underestimates of the true θ. In general, the underestimate is the result of systematic bias
of the UPGMA algorithm used to construct the genealogy, because UPGMA leads to early coalescent
for more similar sequences and, thus, has a tendency to place more mutations in branches that are deeper
into the tree. In the current situation, it is further compounded by our simplification that, up to the i+ 1

coalescent, there are no mutations.
Using regression analysis, Fu [13] showed that the relationship:√

θu = −0.0336
√
n− 2 + 1.002

√
θ (21)

summarizes well the BLUE estimate (with M = 2(n − 1)), θ and sample size n, which is not
larger than 100. When larger sample sizes were examined, the above equation is not adequate,
and log transformation, rather than square-root transformation, can lead to a better regression [17].
Therefore, log-transformation was chosen in our regression analysis. Table 1 showed that ln(θab) can be
summarized very well by the following equation:

ln(θab) =− 0.1981 + 0.0080ln(n) + 1.0043ln(θ)

− 0.0019ln(n)ln(θ) + 0.0108ln2(θ)− 0.0012ln(n)ln2(θ) (22)

which leads to an estimate of θ from the solution for the above quadratic equation with regard to ln(θa):

θ̂a = exp

[
−b+

√
b2 − 4ac

2a

]
(23)

where:

a = 0.0108− 0.0012ln(n) (24)

b = 1.0043− 0.0019ln(n) (25)

c = −ln(θab)− 0.1981 + 0.008ln(n) (26)
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Although this estimator in most situations is excellent, we found that regression equations for a narrower
range of sample sizes provides estimates that are more robust in some situations (particularly when θ is
large). As a result, we derive our final estimator θ̂a of θ using Equation (23) with values of a, b and c, as
provided in Table 2.

Table 1. Summary of regression analysis between θab, θ and n.

Source Sum of Squares Degrees of freedom Mean Square
Model 1,715.227 5 343.0454

Residual 0.074 644 0.0001
Total 1,715.301 649 2.6430

Term Coefficient Standard Error t test P > |t|
ln(n) 0.0080 0.0005 16.73 0.000
ln(θ) 1.0043 0.0025 398.16 0.000

ln(n)ln(θ) -0.0019 0.0004 -4.19 0.000
ln2(θ) 0.0108 0.0005 19.80 0.000

ln(n)ln2(θ) -0.0012 0.0001 -12.74 0.000
constant -0.1981 0.0027 -72.99 0.000

Note: Number of points for regression = 650, R2 = 1.000 and MSE = 0.0107

Table 2. Coefficients for estimating θ using Equation (23).

Coefficients (n′ = ln(n))
Sample Size a b c

n < 50 0.0112− 0.0012n′ 1.0076− 0.0026n′ −ln(θa)− 0.2101 + 0.0107n′

50 ≤ n < 500 0.0131− 0.0017n′ 1.0009− 0.0016n′ −ln(θa)− 0.1980 + 0.0088n′

n ≥ 500 0.0069− 0.0007n′ 0.9850− 0.0008n′ −ln(θa)− 0.1581 + 0.0025n′

Figure 3 plots the relationship between θ, sample size (n) and the allelic BLUE estimates (θab) for a
subset of these parameter combinations. It is easy to see that the match between prediction and the mean
value of θa is excellent.

Figure 4 shows the distributions of the estimate θ̂a from simulated samples in the case of n = 500

with θ = 5, and n = 2000 with θ = 50, respectively. It appears in both cases that the normalities
are sufficiently accurate approximations, which is indeed expected from the theory of least squares
estimators.

The ultimate measure of the quality of an estimator is its bias and standard deviation for samples
independent of those used to derive the estimator. Therefore, we simulated another set of samples for
a number of combinations of θ and n and applied θ̂a, as well as UPBLUE to these samples. Table 3
presents the summary of these simulations, particularly the efficiency of the new approach.
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Figure 3. The relationship between Allelic Blue estimate θa, θ and sample size. Solid lines
represents the prediction of θa based on Equation (23) with the coefficients given in Table 2.
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Figure 4. Distribution of θ̂a based on 1000 simulated samples. (Left) n = 500 and θ = 5;
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Table 3. Performance of θ̂a.

θ n mean θ̂a SE SDmin Speed Ratio

2 20 1.97 1.00 0.97 0.00 10
50 1.98 0.84 0.81 0.00 59

100 1.98 0.75 0.74 0.00 280
500 2.00 0.63 0.61 0.02 1,569

1,000 2.00 0.58 0.58 0.27 1,615
2,500 2.00 0.54 0.54 2.59 3,104

5 20 4.93 1.90 1.83 0.00 4.5
50 4.96 1.52 1.48 0.00 23

100 4.99 1.34 1.30 0.00 78
500 5.01 1.08 1.05 0.04 970

1,000 5.00 1.00 0.98 0.47 1,306
2,500 4.91 0.87 0.90 4.90 1,565

20 20 20.33 5.84 5.52 0.00 2.0
50 20.27 4.20 4.05 0.01 4.4

100 20.06 3.47 3.37 0.06 8.7
500 20.04 2.56 2.49 0.18 359

1,000 19.99 2.32 2.26 0.91 727
2,500 19.96 2.07 2.04 16 842

50 20 50.92 12.58 12.51 0.01 1.6
50 50.45 8.68 8.59 0.02 2.5

100 50.09 6.99 6.79 0.07 3.8
500 50.06 4.70 4.58 0.97 72

1,000 49.90 4.15 4.06 3.6 206
2,500 49.80 3.94 3.57 42 356

100 20 100.25 23.47 24.03 0.01 1.5
50 100.20 15.52 15.87 0.15 1.7

100 99.97 12.24 12.08 0.20 2
500 100.38 7.86 7.48 4 22

1,000 99.89 6.59 6.47 16 49
2,500 99.69 5.58 5.54 75 202

Note: Speed is the average CPU time (in seconds) for obtaining θ̂a for a simulated sample in a Linux machine
with a 2.3-Ghz CPU. SDmin is the minimum standard deviation computed as the square root of Equation (28) in
[18]. Ratio is the ratio of speed for UPBLUE [13] and speed of θ̂a.

Table 3 shows that the speed of θ̂a increases with the sample size slowly, while it increases faster with
θ. This is because θ̂a’s speed is dependent on the number of alleles in the sample, which is more closely
related to θ than sample size. In comparison, UPBLUE is considerably less efficient, particularly with
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increasing sample size. Take the case of θ = 100 and n = 5000, it takes on average about one minute
for θ̂a to complete the estimation, while it takes about 6 h for UPBLUE to do the same.

3. Exploring θ in Data from the 1000 Genomes Project

The 1000 Genomes Project generated a very valuable set of genome-wide polymorphism data [15] for
which the newly developed Allelic Blue estimator is applicable. Phase I (May, 2012, release) contains
polymorphism, as well as inferred phases compiled from 1092 individuals from 14 different populations.
The rich information captured by the genome-wide polymorphism deserves to be analyzed from various
angles [20], and our main purpose here is to illustrate that our efficient estimator of θ provides additional
insight into the pattern of polymorphism in addition to the conventional estimates. We chose to report
the analysis for a subset of samples, which consists of the three African samples (YRI, LWKand ASW)
with 246 individuals (thus, a sample size of n = 492).

In our analysis, each of the 22 autosomal chromosomes was divided into non-overlapping consecutive
windows of 2000 bps (within which the average impact of recombination should be negligible), and θ was
estimated for each window. Since the phases of SNPs for each individual were the result of inference,
there are some segments in which the quality of inference appears to be poor due to an unreasonably
larger number of inferred alleles than the number of SNPs. We thus removed all of the segments in
which there is evidence of either recombination or a poor quality of inference, that is, when the number
of alleles is larger than the number of SNPs plus one. It should be noted that the SNPs reported in
the 1000 Genomes Project data set are those that passed various quality controls and filtering. In our
analysis, no further filtering is applied, except for the aforementioned exclusion of segments that are
suspected to be the result of poor phrase inference. A total of 648,903 windows were analyzed. This
analysis required about 3 h to complete the estimates of θ in a desktop computer equipped with an Intel
Xeon CPUs at 3.33 Ghz. In comparison, UBPLUE ran a couple days without being able to finish the
same task.

Since both Watterson’s estimator θ̂W and Tajima’s estimator (θ̂T ) are widely used, we present our
results in terms of the relative values with regard to θ̂W and contrast them with the relative values of θ̂W
to θ̂T . Since testing neutrality is not the purpose, we do not employ testing statistics, such as Tajima’s
test [19] or Fu and Li’s tests [7]. Figure 5 plots the proportional difference between θ̂W = K/an (K
is the number of segregating sites and an is a constant depending on the sample size) and θ̂T . The
overwhelming characteristic of the plot is that θW is, in general, larger than θ̂T , with an average of
1.96-times the value of θ̂T ; similar patterns were observed previously (for example, [20]). In general,
an estimated θ can be viewed as a weighted average of SNPs of various sizes. θ̂T gives on average
more weight to SNPs that occurred long ago than those arisen recently, while θ̂W gives equal weight to
every SNP. Therefore, elevated θ̂W values across the whole genome compared to θ̂T were considered as
evidence of recent population growth. It should be noted that there is no obvious extended regions with
smaller or larger values for θW or θT . In comparison, Figure 6 plots the proportional difference between
θ̂a and θ̂W .
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Figure 5. Plot of (θ̂W−θ̂T )/θ̂T along 22 autosomes with windows of a size of 2000 bps (each
dot represents a mean over 10 consecutive windows). Chromosomes 1 to 22 are presented
from left to right separated by vertical lines. The overall mean value is 0.96.
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Figure 6. Plot of (θ̂a−θ̂W )/θ̂W along 22 autosomes with windows of a size of 2000 bps (each
dot represents a mean over 10 consecutive windows). Chromosomes 1 to 22 are presented
from left to right separated by vertical lines. The overall mean value is 0.20.
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The overwhelming pattern shown in Figure 6 is again that θ̂a in general is larger than θ̂W , which
means that the difference to θ̂T will be more pronounced than that of θ̂T . This is the result that more
weight is given to recent mutations than the old ones in θ̂a. Beside some sporadic large values, there are
regions at either the beginning or the end of some chromosomes that yield considerably elevated values
of θ̂a (for example, for chromosomes 7, 8, 9, 16 and 22). We are not sure how to interpret these patterns,
but suspect that they may partially suggest the decreased quality of phase inference at the beginning and
end of chromosomes.

4. Discussion and Conclusions

The Allelic BLUE estimator of θ presented in this paper is a high quality estimator with little bias
and its variance nearly as small as the minimum achievable variance. Furthermore, it is highly efficient
computationally, because its speed depends on the number of distinct alleles in a sample rather than the
sample size. This later characteristic makes it very useful for estimating θ for large samples and for
situations in which a large region (or the whole genome) is sequenced, while θ needs to be estimated for
successive windows of a genome, such as the case of 1000 Genomes Projects. Since θa and UPBLUE
are both based on the same idea of utilizing phylogenetic information in a sample with generalized linear
regression, their estimates are highly correlated, which are seen in both the simulation and in real data.
However, since θa is computationally much more efficient, it is thus superior to UPBLUE [13] and,
thus, can replace UPBLUE for general use. The analysis of the polymorphism from the 1000 Genomes
Project shows that although UPBLUE is a relatively efficient estimator among sophisticated estimators;
it has nearly reached its limit for exploratory data analysis for large genome projects. Therefore, the new
Allelic BLUE estimator arrival is timely.

One additional utility of the new estimator θ̂a is for estimating θ from a collection of distinct alleles,
which are collected without recording the multiplicity of each allele, as long as the number of alleles
examined is roughly known. Such situations sometime arise when the collection of data is focused on
identifying distinct alleles, such as in the survey of infectious pathogens or when data are collected over
years and pooled from multiple sources. To illustrate this utility, we simulated samples of size 200 with
θ = 10. If only the distinct alleles are recorded (which implicitly assumes that the sample size is the
same as the number of distinct alleles), then θa yields an average value of 22.8, which is more than twice
as large as the true value. However, if the sample size used in the estimation is 20% smaller or larger than
the actual value (thus, 160 and 240, respectively), the corresponding θ̂a are 10.6 and 9.5, respectively,
both of which are quite close to the true θ value.

The Allelic BLUE estimator is developed under the assumption of one single random mating
population evolving according to the Wright–Fisher model with a constant effective population size.
The restriction to constant population size results in an estimator of average θ since the MRCAof a
sample, which is comparable to some classical estimators and, thus, provides an informative contrast to
other estimators (and may be used to construct hypothesis tests in the future). However, the restriction
does make the method unsuitable for exploring historical changes in effective population sizes. On the
other hand, the theoretical foundation for exploring changes in population sizes in the linear regression
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framework has been established in this paper, and we will study its statistical properties, as well as its
application elsewhere.

The Java programs for performing the Allelic Blue estimation can be downloaded from the author’s
web page [21].
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