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Abstract: High-throughput RNA sequencing (RNA-seq) provides a comprehensive picture of
the transcriptome, including the identity, structure, quantity, and variability of expressed transcripts
in cells, through the assembly of sequenced short RNA-seq reads. Although the reference-based
approach guarantees the high quality of the resulting transcriptome, this approach is only applicable
when the relevant reference genome is present. Here, we developed a pseudo-reference-based
assembly (PRA) that reconstructs a transcriptome based on a linear regression function of the
optimized mapping parameters and genetic distances of the closest species. Using the linear model,
we reconstructed transcriptomes of four different aves, the white leg horn, turkey, duck, and zebra
finch, with the Gallus gallus genome as a pseudo-reference, and of three primates, the chimpanzee,
gorilla, and macaque, with the human genome as a pseudo-reference. The resulting transcriptomes
show that the PRAs outperformed the de novo approach for species with within about 10% mutation
rate among orthologous transcriptomes, enough to cover distantly related species as far as chicken
and duck. Taken together, we suggest that the PRA method can be used as a tool for reconstructing
transcriptome maps of vertebrates whose genomes have not yet been sequenced.
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1. Introduction

High-throughput RNA sequencing (RNA-seq) provides unbiased, genome-wide sequencing
of RNA, allowing comprehensive understanding of an entire set of cellular RNAs (called a
transcriptome) from a single cell to the individual level [1–5]. Taking advantage of the RNA-seq
technique [6–10], recent large-scale studies have reported pervasive transcription signals on genomes
in diverse cell-types [11,12] and unprecedented complex transcription structures in genomes [12–21].
A comprehensive map of the transcriptome can be acquired through the computational assembly of
RNA-seq reads [22].

According to the availability of the relevant reference genome, two alternative computational
approaches for transcriptome assembly can be applied, the de novo and reference-based approaches.
The de novo transcriptome approach assembles transcripts by connecting short reads without a reference
genome [22–28]. In contrast, the reference-based approach assembles transcripts by mapping the reads
to a reference genome [29–34]. Compared to the de novo approach, the reference-based approach uses
fewer computational resources and less time, and generally displays greater sensitivity and specificity
in reconstructing previously annotated genes. Better performance is mainly attributed to the fact that
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the reference genome provides guidance for assembly, and is better for detecting low-copy transcripts
and complex isoforms and for avoiding artifacts of transcripts such as chimeric transcripts [2,35].

Accurate assembly of RNA-seq reads helps to construct complex transcriptional and
post-transcriptional events, such as convergent and divergent overlaps of transcripts, sense overlap of
transcripts, alternative promoters, alternative splicing, alternative untranslated regions (UTR), and to
discover novel transcripts [2,35]. The quality of the assembly depends on both the sequencing depth
of RNA-seq and the expression level of genes [2]. In other words, the greater coverage of reads on a
certain gene provides a greater sensitivity in reconstructing transcripts of the gene. However, a gene
with low-copy transcripts is more likely to be covered by a low number of gene reads, resulting in
either failing or wrong assembly. On the other hand, the quality of the transcriptome assembly is also
affected by the uncertainty of genome sequences. In general, a misassembled genome often leads
to erroneous transcriptome assembly. For instance, repeat elements, including simple repeats, short
tandem repeats, and transposons, could allow the reads be mapped to the multi-loci of the genome,
causing ambiguous transcriptome assembly. Thereby, the unique mapping rate of the short reads
could be a pre-indicator for the quality of transcriptome assembly.

In spite of the high performance of the reference-based approach, it has not been used in species
whose reference genomes are not sequenced. Alternatively, the genome of a closely-related species
can be used as a reference [36]. Comparative analyses of genomes and transcriptomes have shown
that a great number of genes are well conserved across vertebrates in transcription units, promoter
usage, alternative splicing and polyadenylations, and gene synteny [37–40]. Particularly, humans
share approximately 97% homologous genes with chimpanzees, greater than 96% with other primates,
and about 95% with other mammals, including mice. Although such closely related genomes may be
a good pseudo-reference for transcriptome assembly, the optimal mapping parameter that gives the
highest unique mapping rate in the pseudo-reference has not been modeled with the genetic distances
from the corresponding reference.

In this study, we propose a pseudo-reference-based assembly (PRA) that utilizes the genome
of a closely related species based on a linear regression model of the optimal mapping parameters
and genetic distance between closely related genomes. Here, we built a model with the genomes of
nine closely related species including five aves and four primates. Given a pseudo-reference within a
certain evolutionary distance, estimated by orthologous transcriptomes, we were able to estimate the
optimal mapping parameter that provides the highest unique mapping rate. Our method provides
high quality gene annotations and facilitates the discovery of novel genes in closely related species
while lacking its own sequenced genome.

2. Materials and Methods

2.1. Dataset and Preprocessing

To perform the PRAs and to evaluate the resulting assemblies, we chose only species where the
respective genome and RNA-seq data across species were both available. Accordingly, four aves
(chicken, turkey, duck, and zebra finch) and a subspecies (WLH) were selected in aves, and four
primate species (human, chimpanzee, gorilla, and macaque) were selected in primates (Supplementary
Table S1). All eight genome sequences were downloaded from the Ensembl database [41] (Galgal4
for chicken and WLH; UMD2 for turkey; BGI_duck_1.0 for duck; taeGut3.2.4 for zebra finch;
hg19 for human; CHIMP2.1.4 for chimpanzee; gorGor3.1 for gorilla; and MMUL_1 for macaque).
All RNA-seq data for transcriptome assembly were downloaded from the NCBI gene expression
omnibus (GEO) and short read archive (SRA) (GSM1419093 for WLH; GSM913024 for turkey;
SRX255710 for duck; SRX493921 for zebra finch; SRX843148 for chimpanzee; GSM1064832 for gorilla;
and SRX724878 for macaque). Before mapping the RNA-seq reads, we first evaluated the sequence
quality of the reads using the FastQC (version 0.10.1), which checks whether the reads contain an
adapter sequence. Based on the results, we trimmed the adapter sequence and nucleotides with
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low-quality using Sickle (version 1.2) [42] and Cutadapt (version 1.9.dev1) [43] with parameters of
minimum base quality at 20 and minimum sequence length after trimming of 20 nt. After the trimming
process, fragments without their paired fragments were removed as the de novo assembler programs
only takes paired-end reads. For marker sequences for phylogenetic analysis, 16s ribosomal DNA and
D-loop sequences of respective species were downloaded from NCBI [44] and one-to-one orthologous
genes were downloaded from OMA [45,46].

2.2. Decision Flowchart for Pseudo-Reference-Based Assembly

To reconstruct the transcriptome in a species whose genome is not available, we developed
a decision flow system for PRA with short RNA reads sequenced from the corresponding species
(Figure 1). The decision flow system first checks the availability of the reference genome of the
interested species. If available, the system recommends that the user pursue the reference-based
assembly. Otherwise, the system next asks whether a closely related species is available within a
genetic distance less than p. If not, the system recommends that the user pursue a de novo assembly.
Otherwise, the pipeline estimates the optimal mapping parameter using three optimal mismatch rate
models, trained from PRA experiments of seven vertebrates, where optimal mismatch rate is defined
as the maximum allowed rate of mismatches in a read while in alignment, which maximizes the
number of uniquely mapped reads (Supplementary Table S1). With an optimal mapping parameter,
the pipeline performs the PRA with the best unique mapping rate. The criterion p is the genetic
distance where the PRA outperformed the de novo assembly in terms of the reconstruction rate, which
is described in the later section.

Figure 1. Decision flow system of transcriptome assembly (de novo, reference-based, and PRA).
Given the RNA-seq from a certain species, if a reference is available, reference-based assembly is
recommended. Otherwise, it asks whether the genome sequence of a closely related species is available
within a certain genetic distance p. If available, the PRA is recommended. Otherwise, the de novo
assembly is recommended.
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2.3. Phylogenetic Analysis of Evolutionary Marker Sequences

DNA sequences of 16s rRNA and D-loop region from mitochondria for each species were
downloaded from the NCBI gene expression omnibus (GEO) (16s rRNA: NC007236 for Gallus gallus;
AP003317 for WLH; NC010195 for turkey; EU755253 for duck; NC007897 for zebra finch; DQ112953
for Homo sapiens; NC001643 for chimpanzee; NC011120 for gorilla; and KJ567053 for macaque. D-loop:
AP003322 for Gallus gallus; AP003317 for WLH; JF275060 for turkey; EU009397 for duck; DQ422742 for
zebra finch; HQ260949 for Homo sapiens; NC001643 for chimpanzee; NC011120 for gorilla; and KJ567053
for macaque). Multiple 16s ribosomal DNA and D-loop sequences from five aves were aligned
using Clustal Omega (version 1.2.1; [47]), respectively. The nucleotide identity of each marker was
calculated from the ratio of nucleotides aligned to the corresponding sequence of the pseudo-reference
(Gallus gallus for aves and human for primates). Pairwise genetic distances were estimated by Clustal
Omega. The phylogenetic trees of the genetic distances were drawn using ClustalW2-Phylogeny v.2.1 [48].

Additionally, to compare genome-wide set of genes, we picked a group of ortholog genes where
only one copy per gene exists in each genome using OMA. For 8602 sets of orthologs for aves
and 13,115 sets for primates, we got nucleotide identity of each gene by pairwise sequence alignment
using Clustal Omega and took a median value as a genetic distance.

2.4. Transcriptome Assembly

2.4.1. Reference-Based Transcriptome Assembly and PRA

To map RNA-seq reads on the reference or pseudo-reference genome sequences, Tophat v.2.0.6 [49]
was used with default parameters except for the maximum allowed gaps in a read (-read-gap-length)
as 2 nt, manual default value to reduce wrong alignment with many indels, and the maximum allowed
mismatch base number in total with variance (–N). Reads that were uniquely mapped to the reference
or pseudo-reference genomes were subjected to the unique mapping rate using our custom script.

2.4.2. De Novo Transcriptome Assembly

We used Velvet [50] and Trinity [51] for de novo assembly of RNA-seq reads with an optimal k-mer
size of 25 nt, a minimum length of assembled contigs of 201 nt, and with the minimum k-mer coverage
(-min_kmer_cov for trinity and the -cov_cutoff for velvet).

2.5. Virtual Chicken Genome with Random Substitution

To correlate optimal mismatch rate with genomic heterogeneity, we made synthetic genomes
from genome of the Gallus gallus by randomly substituting nucleotides. Fifteen virtual genomes
with mutation rate from 1% to 15% for each residue were generated while maintaining the
transition/transversion ratio, which was observed between chicken and others species. To check
the linearity of optimal mismatch rates that we found and the mutation rates, chicken RNA-seqs
were mapped to the virtual chicken genomes and then the observed optimal mismatch rate for each
virtual genome was plotted versus the mutation rate of the virtual genome, followed by regression in
a linear model.

2.6. Quality Evaluation of Transcriptome Assembly

To evaluate the quality of transcriptome assembly, we measured the coverage (or sensitivity) of
each gene, which is the fraction of the exonic region aligned by the resulting transcripts using BLAST
(version 2.2.24) (Supplementary Figure S1). To build standard gene models, we collected Ensembl
genes whose mature transcript was greater than 200 nt in length. To consider only expressed genes in
each RNA-seq sample, isoforms of each gene with reads per million mapped reads (RPM) equal to
or greater than 0.1 were chosen. All exons of the selected isoforms were unified as a standard gene
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model (Supplementary Figure S1). The expression level of each isoform was calculated using Cufflinks
(version 2.1.1) [33].

To evaluate the overall quality of a transcriptome assembly, we next measured the reconstruction
rate, the fraction of genes that have non-zero coverage to total genes, and the reconstruction rate curve,
which is the cumulative fraction of genes with up to a certain coverage. The area under the cumulative
curve also enables us to compare the overall performance of the transcriptome assemblers.

3. Results

3.1. Optimal Mismatch Rates for Aves PRA

A total of about 147 million (M) RNA-seq reads of four aves, including WLH (~34 M reads), turkey
(~17 M reads), duck (~72 M reads), and zebra finch (~24 M reads), were respectively mapped to Gallus
gallus genome (assembly version: Galgal4) using Tophat (version 2.0.6) [49]. To determine the optimal
mapping parameter (mismatch rate) with the best unique mapping rate against a pseudo-reference,
the mapping was repeated by varying the mismatch number (Supplementary Table S1).

Figure 2. Relationship between the genetic distance of pseudo-reference species and optimal mismatch
rates. (A) Shown are genetic distances and identities of 16s ribosomal DNAs, D-loops, and orthologous
transcriptomes between four aves and Gallus gallus; (B) Neighbor-Joining (NJ) trees built with pairwise
genetic distances. The unit genetic distance 0.1 is indicated below the trees and corresponds to
approximately 7 million years ago. The pairwise genetic distance between two species was calculated
by summing all heights in the tree path between the two species. The trees were constructed based
on the genetic distances of 16s ribosomal DNA, D-loop and orthologous transcriptome; (C) The
relationship between the genetic distance from the pseudo-reference (Gallus gallus) to each of the aves
and the optimal mismatch rate (%) with which the unique mapping rate is maximized. The circles
are drawn based on the orthologous transcriptome and the rectangles are drawn based on the 16s
ribosomal DNA and the triangles are drawn based on the D-loop.
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The optimal mismatch rates to achieve the best unique mapping rate were 4.44% for WLH, 10.91%
for turkey, 14.44% for duck, and 18.67% for zebra finch (Supplementary Table S2A–D). The genetic
distances between species were next measured using 16s ribosomal DNAs and D-loops of mitochondria
and orthologous transcriptomes (Figure 2A,B). The genetic distances appeared to be linearly correlated
to the optimal mismatch rates (r2 = 0.972 for orthologous transcriptome; r2 = 0.943 for 16s ribosomal
DNA; r2 = 0.972 for D-loop) (Figure 2C). In addition, the evolutionary time of the D-loop is much faster
than the others in the post-divergence of duck and zebra finch (Figure 2A,B).

3.2. Evaluation of PRAs

To confirm whether the best unique mapping rate actually conveys the PRA with the highest
performance, we measured the gene coverage of the resulting transcripts against a unified gene model
of isoforms with FPM equal to or greater than 0.1 (Supplementary Figure S1). Of all unified genes,
the number of genes with coverage greater than 90% was maximized under the mapping condition
with the greatest unique mapping rate, regardless of species (Figure 3A), suggesting that the PRAs
with the best unique mapping conditions guarantee the best transcriptome assembly.

Figure 3. The PRAs run with the optimal mismatch rate. (A) The best unique mapping rate provides
the transcriptome assembly with the greatest quality. Central points in dotted circles represent
reconstruction rate using default parameter of Tophat, allowing only two mismatches. By varying
mismatch numbers during mapping reads to a pseudo-reference (Gallus gallus), the unique mapping
rate and the reconstruction rate for genes with greater than 90% coverage were obtained in three aves;
(B–E) Gene coverages (sensitivity) of all standard genes were measured as described in the Materials
and Methods and Figure S1. The genes were sorted by the gene coverage by reference-based assembly
(red line), PRA (blue line), and two de novo assemblies (green and purple lines) in WLH (B); turkey
(C); duck (D); and zebra finch (E). The reconstruction rate indicates the percentage of genes with
non-zero coverage.
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We next evaluated all resulting transcripts of the PRA under the best mapping conditions in each
species in terms of the reconstruction rate and compared the results to those of the reference-based
assembler, Cufflinks [33], and two de novo assemblers, Velvet [50] and Trinity [51] (Figure 3B–E). The
PRA of WLH, a subspecies of Gallus gallus, was comparable to that of the reference-based assembly
and outperformed those of de novo assemblies in terms of the reconstruction rate curve and the area
under the curve (AUC) (Figure 3B). The PRA of turkey also performed better than de novo assembly
where the genetic distance of orthologous transcriptome was 0.045 and the optimal mismatch rate was
10.91% (Figure 3C; Supplementary Table S2B). However, the reconstruction rate of PRAs for duck and
zebra finch were worse than the de novo ones (Figure 3D,E), suggesting that the de novo approach is
generally a better choice for remotely-related species in which the genetic distance is greater than 0.101
and the optimal mismatch rate is greater than 14.44%.

3.3. Optimal Mismatch Rates for Vertebrate PRAs

We next performed PRAs to reconstruct transcriptomes of primates including chimpanzees,
gorillas, and macaques using the human genome as a pseudo-reference. To determine optimal
mismatch rate of PRAs, the DNA identity and genetic distance of 16s ribosomal DNA, D-loop and
orthologous transcriptome between humans and other primates were measured (Figure 4A). Similar
to aves, the D-loop region evolved faster than the others, whereas the orthologous transcriptome was
slower than the others (Figure 4B). To correlate the genetic distance to the optimal mismatch rate,
publicly available RNA-seq reads (~58 M for chimpanzee, ~48 M for gorilla, and ~36 M for macaque)
were mapped to the human genome (Supplementary Table S1). Importantly, the optimal mismatch
rates given the genetic distances between humans and other primates excepting gorilla agreed with
the models trained from aves (r2 = 0.863 for orthologous transcriptome; r2 = 0.842 for 16s ribosomal
DNA; r2 = 0.960 for D-loop) (Figure 4C). The higher optimal mismatch rate for the RNA-seq of gorilla
is most likely to be caused by the low quality of reads including many “N”.

Figure 4. Cont.
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Figure 4. The relationship between the genetic distance of pseudo-reference species (human) and the
optimal mismatch rate in primates. (A) Shown are genetic distances and identities of 16s ribosomal
DNA, D-loop and orthologous transcriptome between three primates and the human species; (B) NJ
trees built with pairwise genetic distances. Otherwise, as in Figure 2B; (C) Relationship between the
genetic distance from the pseudo-reference as human to each primate and the optimal mismatch rate
(%) with which the unique mapping rate is maximized; The asterisks indicate the optimal mismatch
rates for gorilla, not agreed with the model. Otherwise, as in Figure 2C (D–F); Gene coverages of all
gold-standard genes were measured with the reconstruction rate in chimpanzee (D); gorilla (E); and
macaque (F). Otherwise, as in Figure 3B–E.

We next evaluated the quality of primate PRAs with the optimal mismatch rate using the
reconstruction rate curves and the AUC. For all chimpanzee, gorilla, and macaque, the PRAs
outperformed the de novo assemblies and were comparable to the reference-based assembly
(Figure 4D–F). Taken together, the genetic distance between humans and macaques, 0.189 for 16s
ribosomal DNA, 0.363 for the D-loop region, and 0.046 for the orthologous transcriptome, were the
greatest where the PRAs outperformed the de novo assembly.

3.4. Expression Level Affects the Quality of Assembled Transcripts

We next sought to evaluate the PRA of each gene groups with different expression levels. PRAs
performed better than did de novo assembly particularly in low-copy genes with fragments per million
mapped reads (FPM) 0.1 to 1, as long as the genetic distance was closer than that between chicken
and duck (Figure 5). Generally, the de novo assembly requires a sufficient read coverage to assemble
short reads without a guide sequence. By contrast, the quality of the PRA was comparable to that
of the de novo approach in medium- and high-copy genes up to the evolutionary distance between
humans and macaques (Figure 5A,B,E–G) but not between chickens and ducks or between chickens
and zebra finches (Figure 5C,D). Thereby, the high quality of the PRA seems to be mostly attributed to
the low-copy genes.
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Figure 5. The relationship between the reconstruction rate and gene expression level. (A–G) Across
genes binned by expression level (FPM), the reconstruction rates of PRA (the blue line) and other
assembly approaches (reference-based assembly, red line; Velvet, green line; Trinity, purple line) were
plotted in WLH (A); turkey (B); duck (C); zebra finch (D); chimpanzee (E); gorilla (F); and macaque (G).
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To examine whether the PRA performs better than the de novo assembly in terms of overall quality
of the resulting transcriptome, we calculated the AUC values of the reconstruction rate curves of the
low-copy genes (with FPM 0.1 to 1) over species, ordered by genetic distance from the pseudo-reference
(Supplementary Figure S2). The PRA enabled us to reconstruct transcripts with a higher or comparable
sensitivity against a unified reference gene model compared to de novo assembly within the genetic
distance of 0.101 (based on the mutation rate of orthologous transcriptomes).

3.5. Building an Optimal Mismatch Rate Model Using Virtual Chicken Genomes

For each virtual chicken genome with mutated sequence by a certain rate, increased by 1% up
to 15%, we measured the optimal mismatch rate by mapping chicken RNA-seq data to the virtual
genome. A linear regression model was built based on the virtual mutation rate and the optimal
mismatch rate with a high coefficient of determination (r2 = 0.985) (Figure 6). The observed values of
six species except gorilla strongly agreed with the linear model (root-mean-square error = 2.40).

Figure 6. A linear regression model (black solid line) of mutation rates of virtual chicken genomes and
corresponding optimal mismatch rates (blue dots). Observed data from six related species were also
drawn (red dots). An outlier data (the gorilla) was indicated as a green dot.

3.6. Required Sequencing Depth for PRA

The quality of transcriptome assembly also depends on the read coverage (sequencing depth) of
each gene. To examine the extent of the sequencing depth influences on PRA quality, we repeatedly
performed PRAs with 20% (1.2 Gb), 40% (2.4 Gb), 60% (3.6 Gb), and 80% (4.8 Gb) reads, randomly
sampled from original RNA-seq reads of WLH (6 Gb), and with 10% (1.2 Gb), 30% (3.6 Gb), 50% (6 Gb),
70% (8.4 Gb) reads, randomly sampled from original RNA-seq reads of chimpanzee (12Gb) (Figure 7).
It turns out that the minimum requirements of the sequencing depth are 3.6 Gb of RNA-seq to acquire
about 75% of reconstruction, and 6.0 Gb to acquire about 80% of reconstruction, similar to the quality
of the reference-based assembly. Despite the genome size of chimpanzees being three times greater
than that of chicken, the similar transcriptome size (50 M for chimpanzees and 42 M for chickens)
results in similar minimum requirement of the sequencing depth. This provides a guideline for the
RNA sequencing depth for the PRA and reference-based assembly.
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Figure 7. (A,B) The effect of the sequencing depth in transcriptome reconstruction. (A) The
reconstruction rates of PRAs given data randomly sampled (20% (1.2 Gb), 40% (2.4 Gb), 60% (3.6 Gb),
and 80% (4.8 Gb)) from the original WLH RNA-seq data were compared to those of the PRA utilizing
all reads and the reference-based assembly (red line); (B) The reconstruction rates of PRAs given
data randomly sampled (20% (1.2 Gb), 30% (3.6 Gb), 50% (6 Gb), and 70% (8.4 Gb)) from the
original chimpanzee RNA-seq data were compared to those of the PRA utilizing all reads and the
reference-based assembly (red line).

4. Discussion

In this study, we developed a new approach for the transcriptome assembly of species for which
reference genomes are not available. Our approach, PRA, takes advantage of closely related species’
genomes as a reference where RNA-seq reads will be mapped with model-based optimization of
mapping conditions. The selection of genetic distance measurements can be determined based
on the data availability and, if all data are available, we prefer orthologous transcriptome, 16s
ribosomal DNA, and D-loop region, in turn. To date, 201 mammalian, 361 vertebrate, 2612 eukaryote,
and 55,175 bacterial genomes have been sequenced and assembled into either at the scaffold or
chromosome level [52]. Since at least one representative species in most genera or families include the
assembled reference genome, the PRA enables us to use these genomes as pseudo-references for the
other species. Although this study focused on transcriptome assembly in aves and primates, PRA is
a general approach to be applied to other vertebrates.
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5. Conclusions

Our linear model of the optimal mismatch rate given a genetic distance between query and
reference species’ genomes made us to utilize the PRA without rigorous read mappings for searching
an optimal mapping parameter. The PRA better performed than the de novo transcriptome assembly
is in low copy genes of closely-related species’ genomes, which lead to an extended usage of the PRA
into the reference-guided genome assembly.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/7/3/10/s1.
Supplementary Figure S1 and Figure S2; Table S1 and Table S2.
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