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Abstract: Various structural and functional constraints govern the evolution of protein sequences.
As a result, the relative rates of amino acid replacement among sites within a protein can vary
significantly. Previous large-scale work on Metazoan (Animal) protein sequence alignments indicated
that amino acid replacement rates are partially driven by a complex interaction among three
factors: intrinsic disorder propensity; secondary structure; and functional domain involvement.
Here, we use sequence-based predictors to evaluate the effects of these factors on site-specific
sequence evolutionary rates within four eukaryotic lineages: Metazoans; Plants; Saccharomycete
Fungi; and Alveolate Protists. Our results show broad, consistent trends across all four Eukaryote
groups. In all four lineages, there is a significant increase in amino acid replacement rates when
comparing: (i) disordered vs. ordered sites; (ii) random coil sites vs. sites in secondary structures;
and (iii) inter-domain linker sites vs. sites in functional domains. Additionally, within Metazoans,
Plants, and Saccharomycetes, there is a strong confounding interaction between intrinsic disorder
and secondary structure—alignment sites exhibiting both high disorder propensity and involvement
in secondary structures have very low average rates of sequence evolution. Analysis of gene ontology
(GO) terms revealed that in all four lineages, a high fraction of sequences containing these conserved,
disordered-structured sites are involved in nucleic acid binding. We also observe notable differences in
the statistical trends of Alveolates, where intrinsically disordered sites are more variable than in other
Eukaryotes and the statistical interactions between disorder and other factors are less pronounced.

Keywords: evolutionary rates; protein sequence; intrinsic disorder; structural prediction; Eukaryotes

1. Introduction

Nucleotide substitutions within protein-coding genes can produce downstream changes
(amino acid replacements) within the sequences of their translated expression products (proteins).
Consequently, protein molecular evolution entails the replacement of amino acid residues at various
positions (sites) within a protein’s primary structure (sequence) over time. The relative rates of amino
acid replacement may vary significantly among sequence sites, and accounting for rate heterogeneity
greatly increases the accuracy of phylogenetic reconstruction based on molecular evolutionary
models [1]. This phenomenon has attracted considerable research examining the relationship between
protein structure/function and site-specific rates of protein sequence evolution (see Echave et al. [2]
for a review).
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Several structural and functional properties of proteins are now known to drive overall rates
of protein sequence evolution as well as site-specific evolutionary rates within a protein sequence.
In particular, sites with a large number of stabilizing contacts (high local packing density) tend to evolve
slowly [3,4], and sites with high solvent exposure tend to evolve faster than buried sites [3,5,6]. At the
whole-sequence level, there is a strong negative correlation between gene expression level and the
rate of protein sequence evolution [7]. Brown et al. [8] also found that proteins with long intrinsically
disordered regions (IDRs) tend to experience higher overall levels of amino acid replacement than
ordered proteins.

Previously, Ahrens et al. [9] used sequence-based predictors to show that site-specific evolutionary
rates in Metazoan (Animal) proteins are partially governed by an interaction among three factors:
intrinsic disorder propensity; secondary structure; and functional domain involvement. A strong
statistical interaction was detected between conserved intrinsic disorder and conserved secondary
structure, and sites which were predicted to be both intrinsically disordered and involved in secondary
structures (“disordered-structured” sites) had lower mean rate scores than any other structural
category [9,10].

Here, we present an evaluation of the structural factors studied by Ahrens et al. [9] across
large-scale protein sequence datasets representing four eukaryotic lineages: Metazoans; Plants;
Saccharomycete Fungi; and Alveolate Protists. We used the sequence-based predictors employed in
Ahrens et al. [9] on hundreds of thousands of sequences to identify protein family alignment sites
with conserved intrinsic disorder, secondary structure and functional domain predictions, and we
applied multifactor statistical analyses to measure the effects of these structural/functional factors on
site-specific rates of sequence evolution. Despite the moderate error inherent in structural prediction,
our results indicate that there are statistically significant, and broadly consistent forces driving
eukaryotic protein evolution. Furthermore, proteins with conserved disordered-structured sequence
sites are found in all four Eukaryote lineages and appear to be important for nucleic acid binding,
as well as various other fold-upon-binding events.

2. Materials and Methods

2.1. Data Collection

We collected protein sequence data from canonical reference proteomes made available by
the UniProt Consortium [11]. These proteomes are useful for evolutionary analysis because,
for alternatively spliced genes, only a single protein isoform is chosen to represent each gene
locus. We used this data to construct four large-scale protein datasets containing important model
organisms from four divergent eukaryotic lineages: Metazoans (Animals), Plants, Alveolate Protists,
and Saccharomycete Fungi (see Supplementary Figure S1). To represent Metazoan proteins, we used
the 24 Metazoan proteomes (plus the Monosiga brevicollis proteome) described in Ahrens et al. [9].
We collected 22 Plant proteomes from the February 2015 release of the UniProt Reference Proteome set,
and downloaded two additional proteomes (Oryza sativa and Volox carteri) directly from UniProt
in April of 2016. All of the 44 Alveolate Protist proteomes, as well as the 49 proteomes from
Saccharomycete Fungi, were taken from the UniProt Reference Proteome set released in July of
2016. In all four datasets, we excluded any protein sequences that (i) were less than 30 amino acids in
length or (ii) contained X characters (indicating missing sequence data) prior to sequence clustering.

2.2. Clustering and Multiple Sequence Alignment

Sequence clustering was accomplished by running the graph-based single-linkage program
BLASTClust from BLAST v2.2.26 [12] on each of the four datasets described above. We used two
criteria (pairwise sequence identity and sequence overlap) to establish linkage: two sequences were
grouped in the same cluster if (i) their pairwise sequence identity was at least 40% and (ii) the length
of their BLAST alignment footprint (the region of sequence overlap) was at least 90% the length of
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the longer sequence. The motivation for this permissive clustering approach was to obtain inclusive
clusters of homologous protein sequences that were suitable for multiple sequence alignment and
subsequent downstream analyses. Clusters containing between 10 and 300 sequences were aligned
with MAFFT v7.123b (Animals) and v7.313 (Plants, Protists, Fungi) using the local pairwise alignment
strategy and a maximum of 1000 iterations [13]. Sequence alignments were used for downstream
evolutionary analysis if the following conditions were met: (i) the minimum pairwise sequence identity
(1 − p-distance) of any two sequences in the alignment was at least 30%; (ii) every sequence was at
least 50% the length of the full sequence alignment; (iii) none of the sequences contained ambiguous
characters or non-standard amino acids; (iv) less than 90% of alignment sites were conserved (invariant)
at the amino acid level; and (v) at least four sequences in each alignment were unique.

2.3. Evolutionary Analysis

We inferred phylogenetic trees using the MPI-enabled version of MrBayes 3.2.2 [14] with
tree-bisection-reconnection (TBR) moves disabled. Each analysis used the mixed-model approach
(substitution matrix treated as a free parameter) and a four-category gamma distribution among site
rates. Analyses were run for 5,000,000 generations, or until the average standard deviation of split
frequencies fell below 0.005. Majority-rule consensus trees were constructed for each alignment,
discarding the initial 25% of trees as burn-in. To infer site-specific rates of sequence evolution,
we used a modified version of the program Rate4site [15] which prints the entire alignment-wide
distribution of rate scores rather than only the values associated with a particular reference sequence.
Multiple sequence alignments and their associated consensus trees were used as inputs and evaluated
under a sixteen-category gamma-distributed model. To more directly measure the values of interest
(i.e., the relative site-wise rates of amino acid residue replacement), and in consideration of recent
developments in the field [16,17], site rates were scored based on the equal-probability matrix proposed
by Jukes and Cantor [18] rather than the default matrix proposed by Jones et al. [19]. We used the
empirical Bayesian method of rate inference implemented in Rate4site, and site rates were normalized
as z-scores with mean = 0.0 so that in all alignments, positive scores indicated faster sites while negative
scores indicated slower sites.

2.4. Structural Prediction

As in Ahrens et al. [9], we predicted the intrinsic disorder propensity, secondary structure and
functional domains of all sequences in each alignment using sequence-based computational tools.
Intrinsic disorder propensity was evaluated using the long disorder prediction method implemented
in IUPred 1.0 [20]. The accuracy of IUPred-long varies from 62% against DisProt [21] to 85% against
IDEAL [22] using the intended cut-off of 0.5 [23]. However, IUPred has greater accuracy against
DisProt using a cut-off of 0.4 [24,25]. Here, sequence sites with a propensity score above 0.4 were
considered intrinsically disordered, in accordance with previous studies [9,24,25]. Secondary structures
(α-helices, β-strands and random coils) were predicted using PSIPRED 3.4 [26] based on sequence
profiles generated with PSIBLAST [27] against a filtered version of the UniRef90 database [28]. Previous
benchmarks indicate that when based on sequence profiles, PSIPRED predicts secondary structure
with >80% accuracy [29,30]. Functional domains were predicted using the Pfam database [31], and all
sequence regions outside of functional domains were considered inter-domain linkers. All binary
predictions were mapped onto their corresponding protein family alignment sites, and only alignment
sites with conserved predictions were considered for statistical analysis.

2.5. Gene Ontology

From each Eukaryote dataset, sequence clusters containing disordered-structured alignment sites
(i.e., sites where every sequence in the alignment was predicted to be intrinsically disordered as well as
involved in either an α-helix or β-strand) were reserved for gene ontology analysis. Sequences
from these alignments corresponding to Homo sapiens (Metazoans), Arabidopsis thaliana (Plants),
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Saccharomyces cerevisiae (Saccharomycetes) or Plasmodium falciparum (Alveolates) were collected and
analyzed using the Panther webserver [32,33].

2.6. Statistical Analysis

Each alignment site was labelled based on the predicted structural properties of all sequences in
the alignment. A site was called “disordered” if the IUPred score for every sequence at that site was
above 0.4, and “ordered” if every score was below 0.4. Similarly, a site was considered “structured”
if PSIPRED indicated that either (i) every sequence fell within an alpha helix or (ii) every sequence
fell within a beta strand, and it was labelled “coil” if all sequences fell within random coils at that
site. Finally, sites were called “domain” sites when all sequences fell within a predicted Pfam domain
and “linker” sites when none of them fell within a Pfam domain. Sites containing any number of gap
characters were excluded from further evaluation.

All statistical analysis and visualization was performed in the R programming language [34,35]
as well as the “matplotlib” module [36] available in the Python programming language [37]. In each of
the four eukaryotic datasets, nonparametric Mann-Whitney tests were used to compare normalized
rates of sequence evolution observed in ordered vs. disordered sites, structured vs. coil sites,
and domain vs. linker sites found across all sequence alignments. Additionally, based on the
above criteria, many alignment sites could be labeled according to all three structural properties
(e.g., disordered/coil/linker). Following a Kruskal–Wallis test, nonparametric multiple pairwise
significance tests (α = 0.05) were performed to compare the rate distributions of all factor-level
combinations (e.g., disordered/coil/linker vs. disordered/coil/domain) in all four datasets via
the “kruskalmc” method available in the “pgirmess” package [38] in R. Using the “car” package
developed by Fox and Weisberg [39], these sites were also incorporated into an unbalanced (type III)
factorial analysis of variance (ANOVA) with zero-sum contrasts to evaluate the statistical interaction
among intrinsic disorder, secondary structure and functional domain involvement. The relationship
between cluster disorder content (fraction of disordered alignment sites) and mean rate scores
within disordered-structured alignment sites was analyzed via Loess regression and visualized in the
“ggplot2” library [40].

3. Results

3.1. Clustering and Phylogenetics

Across all four Eukaryote datasets, single-linkage clustering via BlastClust [12] produced
25,871 clusters containing between 10 and 300 sequences (see Supplementary Figure S1). After multiple
sequence alignment, 22,395 (87%) of these clusters were suitable for downstream phylogenetic inference
and site-wise evolutionary rate inference (Figure 1; see Methods: Clustering and Multiple Sequence
Alignment for suitability criteria). These sequence alignments contained a total of 14,011,483 sites,
of which 9,202,935 (66%) contained no gap characters. Refer to Table 1 for more information relating to
individual datasets.

Nearly all of the 22,395 phylogenetic analyses in MrBayes [14] converged in less than
5,000,000 generations. Only 204 (<1%) of the analyses ran for 5,000,000 generations without reaching an
average standard deviation of split frequencies (ASDSF) of less than 0.01, the convergence diagnostic
value recommended by the program authors [41], while 21,952 (98%) reached an ASDSF of less
than 0.005.
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Figure 1. Scatterplots showing minimum pairwise sequence identity (fraction of matching aligned
characters) and minimum alignment coverage (seq. length/alignment length) for all Metazoan, Plant,
Saccharomycete, and Alveolate clusters used in analyses.

Table 1. Dataset-specific information for nonparametric analysis.

Dataset Metazoans Plants Saccharomycetes Alveolates

Clusters 6938 8266 4494 2697
Sequences 130632 198081 122132 44060

Total Alignment Sites 4677490 4703587 2990109 1640297
Gap-free sites 3217225 2851827 1954761 1179122
Ordered Sites 1819695 1706275 1223656 801629

Disordered Sites 373639 234853 125047 113892
Structured sites 1062380 1014001 722444 417702

Random coil sites 1314563 1064725 670357 424795
Domain sites 1436746 1175745 936813 422813
Linker sites 1368702 1289830 817371 657080

Median Order Rate −0.599 −0.625 −0.6188 −0.605
Median Disorder Rate −0.3155 −0.2916 −0.3271 0.1426
Median Structure Rate −0.5787 −0.6262 −0.5935 −0.605

Median Coil Rate −0.4682 −0.5013 −0.5603 −0.4542
Median Domain Rate −0.62345 −0.6679 −0.6353 −0.629
Median Linker Rate −0.3698 −0.3718 −0.3902 −0.3569

3.2. Structural Prediction

IUPred results [20] indicated that 847,431 of the 9,202,935 gap-free sites were conserved disordered
alignment sites (i.e., sites where every sequence in an alignment was intrinsically disordered) and
5,551,255 were conserved ordered sites. Relative to the number of gap-free sites, the percentages
of conserved disordered alignment sites in Metazoans (11.6%), Plants (8.2%), Saccharomycetes
(6.4%), and Alveolates (9.7%) were consistently low (see Table 1). PSIPRED [26] indicated 3,216,527
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conserved structured sites (sites where every sequence fell within either an α-helix or a β-strand)
and 3,474,440 conserved coil sites, and Pfam [31] indicated 3,972,117 conserved domain sites and
4,132,983 conserved linker sites. Furthermore, 4,206,014 sites could be consistently labeled according
to all three binary factors (e.g., all sequences predicted to be disordered/coil/linker at a particular site),
making them suitable for multiple pairwise comparison and factorial ANOVA.

3.3. Statistical Analysis

Mann-Whitney tests indicated that in all four eukaryotic datasets, disordered sites had higher
median amino acid replacement rate scores than ordered sites (∆median_rate Metazoans: =+0.28, Plants:
+0.33, Saccharomycetes: +0.29, Alveolates: +0.75). Similarly, coil sites had higher median rate scores
than structured sites (∆median_rate Metazoans: +0.11, Plants: +0.12, Saccharomycetes: +0.03, Alveolates:
+0.15) and linker sites had higher median scores than domain sites (∆median_rate Metazoans: +0.25,
Plants: +0.30, Saccharomycetes: +0.25, Alveolates: +0.27). All median differences in all datasets
were highly statistically significant (p < 2.2 × 10−16), but opposing rate distributions (e.g., order vs.
disorder) exhibited large overlaps in their range of values (Figure 2). Notably, Mann-Whitney tests
considering only sites from clusters where opposing structural properties co-occur (e.g., disordered and
ordered sites found within the same alignment) were statistically significant as well (p < 2.2 × 10−16).
Kruskal-Wallis tests comparing the eight factor-level combinations were statistically significant in all
four datasets (p < 2.2 × 10−6), and most of the 28 post hoc multiple pairwise comparisons were also
significant (corrected p < 0.05; see Supplementary Table S2).

In addition to statistically significant main effects (all p < 10−5), parametric factorial analyses
for all four datasets showed statistically significant interaction terms (all p < 2 × 10−16).
First-order interactions were particularly large between disorder and secondary structure where
the effect of disorder was reversed across three of the four datasets: in Metazoans, Plants,
and Saccharomycetes, alignment sites predicted to be both disordered and involved in secondary
structures (disordered-structured sites) have lower mean rate scores than ordered, structured sites
(Figure 3). A similar phenomenon is observed in the disorder x domain interaction in Plants:
disordered sites in functional domains tend to be more conserved than ordered domain sites (Figure 3).
Higher-order interactions (disorder × structure × domain) were also detected in all four datasets (all
p < 2 × 10−16). Correlation coefficients (adjusted R2 values) were low in all four models (Metazoans:
0.04, Plants: 0.03, Saccharomycetes: 0.02, Alveolates: 0.06).

Loess regression indicated a negative correlation between sequence evolutionary rates of
disordered-structured sites and the overall disorder content (fraction of disordered sites) in their
respective alignments (Figure 4). This trend is less pronounced in Alveolate alignments than in the
other three datasets.
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Figure 2. Split violin plots showing differences in normalized site-specific rates of amino acid
replacement in: (a) ordered vs. disordered sites; (b) structured vs. coil sites; and (c) domain vs.
linker sites within four eukaryotic datasets. Middle dashed lines indicate medians and outer dashed
lines indicate quartiles.
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Figure 4. Scatterplot showing the disorder content of clusters (fraction of disordered alignment sites)
against the mean rate of sequence evolution among sites predicted to be both disordered and structured.
Only sequence clusters containing disordered/structured sites are shown. Trend lines were constructed
for each of the four eukaryotic datasets using Loess regression. Note that the Alveolate trend line
(dashed) is consistently higher than other lineages.
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3.4. Gene Ontology of Proteins with Disordered-Structured Sites

Analysis of GO (gene ontology) terms in PantherDB [32,33] revealed similar patterns in
sequences containing conserved disordered-structured sites within all four eukaryotic lineages. Of the
GO annotations found for sequences with conserved disordered-structured sites in Homo sapiens
(Metazoans), Arabidopsis thaliana (Plants), Saccharomyces cerevisiae (Saccharomycetes), and Plasmodium
falciparum (Alveolates), the majority had molecular functions associated with binding (53.3%, 43.0%,
40.5%, and 41.8%, respectively) or catalytic activity (30.8%, 39.5%, 39.6%, and 38.8%, respectively).
Additionally, the majority of identified biological processes within these four taxa were either
cellular processes (30.1%, 35.3%, 35.4%, and 37.6%, respectively) or metabolic processes (23.9%,
34.9%, 32.1%, and 34.3%, respectively) and the majority of associated cellular components were
cell parts (38.9%, 42.0%, 40.2%, and 39.6%, respectively), organelles (30.4%, 32.0%, 30.3%, and 30.8%,
respectively) and macromolecular complexes (17.2%, 20.2%, 24.4%, and 24.8%, respectively). In all four
taxa, a large fraction of protein classes identified for sequences from alignments with conserved
disordered-structured sites were nucleotide-binding proteins (24.3%, 32.1%, 37.5%, and 37.4%,
respectively) compared to sequences from alignments lacking conserved disordered-structured sites
(11.7%, 15.5%, 17.1%, and 24.8%, respectively). Refer to Supplementary Table S1 for GO term results
for sequences with conserved disordered-structured sites from all four representative taxa.

4. Discussion

4.1. Clustering and Phylogenetics

Previous work by Ahrens et al. [9] highlighted the inherent difficulty of taxon sampling
when working with curated molecular datasets—such as the Uniprot Reference Proteome
Database [42]—because the bias toward well-studied model organisms is phylogenetically uneven
(see Supplementary Figure S1). Indeed, there are large percentages of: (i) Vertebrates in the Metazoan
dataset (48%); (ii) Angiosperms (flowering Plants) in the Plant dataset (75%); (iii) Saccharomyces
congeners in the Saccharomycete dataset (20.5%); and (iv) Plasmodium congeners in the Alveolate
dataset (33%). This phylogenetic unevenness can create downstream biases, wherein the sequence
clusters suitable for evolutionary analysis primarily depict relationships among well-represented taxa
(Vertebrates, Angiosperms, etc.).

When considering only a single dataset (e.g., Metazoans), it is difficult to determine whether a
statistical analysis is biased toward trends in well-represented taxa (e.g., Vertebrates) or truly reflective
of more general trends in molecular evolution. By independently analyzing multiple divergent lineages,
our statistical results show that there are broad, generally consistent trends across several eukaryotic
groups (i.e., in the relationship between structural/functional factors and sequence evolutionary rate)
despite the phylogenetic unevenness inherent within the individual datasets.

4.2. Structural Prediction

Previous research has revealed that intrinsic disorder is more prevalent in eukaryotic proteins than
either Bacteria or Archaea [43–46]. Rather than simply acting as flexible linkers, some eukaryotic IDR’s
occur within functional domains and are crucial to the functions of their associated proteins [47],
and many functional IDR’s undergo disorder-to-order transitions in the process of binding to
neighboring proteins or nucleotide molecules [48]. Thus, the three factors evaluated in this study
(intrinsic disorder, secondary structure, functional domains) appear to be intricately connected and
overlapping: intrinsic disorder can occur within functional domains, and transient secondary structures
may form within IDR’s to facilitate interactions with other biomolecules. In this light, the combined
results of conserved intrinsic disorder, secondary structure and functional domain predictions in an
evolutionary context (i.e., multiple sequence alignment sites) appear to be very useful for detecting
biologically important sequence regions within proteins.
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While sequence-based predictors are not perfectly accurate, our in-silico assignment of three
binary states to individual alignment sites (order/disorder, structure/coil, and domain/linker) allowed
us to study a wide range of protein alignments from several eukaryotic lineages, including many
alignments containing sequences where experimentally-determined structural data is not available.
Our analysis workflow (site rate inference, structural prediction, statistical analysis) was applied
consistently, such that data arising from different alignments, and different Eukaryote datasets,
are directly comparable. Furthermore, by limiting statistical analyses to only gap-free alignment
sites with conserved structural predictions, we avoided many error-prone alignment regions as well as
inconsistent (and possibly inaccurate) structural assignments. Also, evaluating all combinations of the
three binary factors inferred by predictors, we have identified an interesting category of evolutionarily
conserved alignment sites (i.e., disordered-structured sites). Notably, such an interplay of structural
factors cannot be readily identified via publicly-available experimental data from the Protein Data
Bank (PDB) [49], since structural assignments are not provided for regions of intrinsic disorder,
where electron density is missing.

4.3. Gene Ontology

In prior work on Metazoan protein alignments, Ahrens et al. [9] proposed that disordered-
structured sites may be involved in the kinds of disorder-to-order transitions commonly associated with
molecular recognition features (MoRFs), wherein the ordered state often adopts secondary structure
upon binding to another protein molecule [50,51]. Similar disorder-to-order transitions are important in
many nucleic acid binding proteins, especially RNA-binding proteins [52–54]. The disorder propensity
of these binding regions is thought to confer high specificity, while still allowing binding partners to
easily dissociate when necessary [52].

Based on protein class GO terms in our four reference taxa, a large percentage of sequences
containing conserved disordered-structured sites are in fact nucleic acid binding proteins (see
Supplementary Table S1). Interestingly, a large number of hydrolase proteins also had conserved
disordered-structured sites, and there is evidence that some hydrolases rely directly on intrinsic
disorder to function. Ubiquitin C-terminal hydrolase activity, for example, is mediated by a
disorder-to-order transition within its active site [55,56].

The low amino acid replacement rates we observed in disordered-structured sites suggest selective
constraint, likely resulting from the functional importance of transient secondary structure within
regions of many eukaryotic proteins [51–54]. Hence, the joint output of intrinsic disorder and secondary
structure predictors in a conserved evolutionary context (i.e., consistent predictions across multiple
related sequences) may be useful for identifying protein sites where transitions between disorder and
secondary structure are required for protein function.

4.4. Intrinsic Disorder in Alveolates

Other researchers have observed that the proteomes of many Alveolate Protists, particularly
multi-host pathogens in the clade Apicomplexa, possess a high abundance of proteins with long
disordered regions [56,57] and a high fraction of disordered residues in general [46]. Mohan et al. [57]
predicted long disordered regions (>30 residues) in most of the protein sequences from the
Apicomplexan pathogens Toxoplasma gondii (87.8–89.8%) as well as members of the genus Plasmodium
(75.3–82.5%). Pancsa and Tompa [46] showed that the overall percentage of disordered sites within
T. gondii proteins was higher than any of the other 193 Eukaryotes they examined, and the disorder
percentages of Plasmodium spp. proteins were more similar to those of multicellular Eukaryotes
(Metazoans, Plants, and Fungi) than other Alveolates. Among the alignment sites containing no gap
characters, we observed percentages of conserved disordered sites (6.4–11.6%) that were markedly
lower than the overall percentages reported in previous studies [46,57]. Such a disparity is expected,
though, since the total number of disordered sites in a given protein sequence exceeds the number of
sites with conserved disorder across several related sequences [58].
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In the case of membrane and secreted proteins, intrinsic disorder in Apicomplexan parasites
has a potential dual function: (i) the reduction of antibody binding affinity and (ii) the facilitation of
promiscuous attachment to various host cells [59]. Many potential vaccine targets in Plasmodium are
intrinsically disordered [60], and the erythrocyte binding-like proteins in P. falciparum appear to lack
transient secondary structures even when recognizing and binding to cell surface receptors during host
invasion [61]. Our results indicate that disordered sites in Alveolate proteins also experience higher
amino acid replacement rates than other Eukaryotes, and disordered-structured sites in Alveolates
are less conserved at the sequence level than in Metazoans, Plants, or Saccharomycetes (Figures 2–4).
However, recent work has shown that increased rates of protein sequence evolution in disordered
regions can result from high positive selection (i.e., an increase in non-synonymous nucleotide
substitutions) rather than relaxed purifying selection [62], so the relatively high replacement rates we
observed in Alveolate disordered sites may actually be driven by increased pressure for innovation
to avoid host recognition and/or to make novel host interactions. Ultimately, these results suggest
that developing effective drugs and vaccines targeting Apicomplexan parasites could prove especially
difficult, and require a deeper understanding of drug interactions within disordered protein regions.

4.5. Statistical Analysis

Across four large-scale molecular datasets, spanning four divergent eukaryotic lineages (Animals,
Plants, Fungi, and Protists), we found mostly consistent, statistically significant relationships between
three structural/functional factors and site-specific rates of amino acid replacement. By using the
equal-probability model from Jukes and Cantor [18] to evaluate rate scores, our results merit a natural,
intuitive interpretation—intrinsically disordered sequence sites are more variable than ordered sites,
sites in random coils are more variable than sites within secondary structures, and sites in inter-domain
linkers are more variable than sites in functional domains. Furthermore, factorial ANOVA indicated
widespread confounding interactions among all pairwise combinations of the three factors we tested,
as well as significant higher-order interactions beyond what can be observed in trace plots (Figure 3).
In fact, the least significant (i.e., highest) p-value observed in any factorial ANOVA corresponded to a
main effect term (intrinsic disorder in Plants: p = 4.13 × 10−6), while all other terms across all analyses
were highly significant (p < 2.2 × 10−16). Nonetheless, the first-order interactions appear to follow
largely similar patterns in each dataset. One notable exception is the disorder x structure interaction
in Alveolates which, although statistically significant, lacks the sign reversal observed in the other
three lineages (i.e., disordered-structured sites are more variable on average than ordered, structured
sites). Additionally, the disorder x domain interaction seen in Plant sites, where disordered sites within
domains tend to be more conserved than ordered domain sites, is less pronounced (but still significant)
in the other datasets.

Importantly, the statistical significance of these results (indicated by p-values) is consistently high,
but the predictive power of the associated factorial models (indicated by correlation coefficients) is
consistently low. The residual variance contributing to low model fit can also be seen in the large
amount of overlap between the opposing distributions of rate scores (order vs. disorder, structure
vs. coil, and domain vs. linker) in every dataset (Figure 2). Hence, it is appropriate to conclude based
on our results that ordered sites, for instance, tend to evolve more slowly than disordered sites, but the
likelihood that a particular conserved site is ordered is not necessarily high, and said likelihood clearly
depends on additional site-specific factors as well (i.e., secondary structure and functional domain
involvement). Future large-scale analyses incorporating additional structural factors (e.g., relative
solvent exposure) may detect stronger statistical interactions with higher correlations to amino acid
replacement rates.

The negative correlation between alignment disorder content (the fraction of disordered sites in
an aligned sequence cluster) and the mean relative rate scores of disordered-structured sites within a
given alignment suggests that latent structural factors at the sequence level also govern observed rates
of amino acid replacement (Figure 4). Such effects are likely nontrivial, considering the unbalanced
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nature of the site-wise factors discussed here. The prevalence of disordered-structured sites is generally
low compared to ordered, structured sites or disordered random coils, and many protein sequences
essentially lack intrinsic disorder entirely. Joint analysis of several sequence-level and site-level factors
(e.g., via hierarchical linear modelling) may provide deeper insight into the forces driving amino
acid replacement.

The complex network of structural and functional properties governing protein (and therefore
gene) sequence evolution is a topic of active research [2,63]. To this end, previous work on intrinsic
disorder has uncovered similar trends regarding protein sequence conservation [8,9], and much
stronger correlations between other protein structural properties and sequence evolutionary rate
(e.g., contact number and packing density) have also been observed [2–4,64]. Nonetheless, to our
knowledge, the results described here represent the most comprehensive evidence for widespread,
large-scale structural and functional drivers of eukaryotic sequence evolution to date (Supplementary
Figure S1 [65,66]). Furthermore, they reinforce the notion that several factors interact, often in subtle
ways, to influence molecular evolution.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/9/11/553/
s1, Figure S1: Dataset information, Table S1: GO Term results, Table S2: Nonparametric Post-Hoc Multiple
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