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Abstract: Inversion models for retrieving the total and tropospheric nitrogen dioxide (NO2) columns
from spaceborne remote sensing data are presented. For total column retrieval, we propose
the so-called differential radiance models with internal and external closure and solve the underlying
nonlinear equations by using the method of Tikhonov regularization and the iteratively regularized
Gauss–Newton method. For tropospheric column retrieval, we design a nonlinear and a linear model
by using the results of the total column retrieval and the value of the stratospheric NO2 column
delivered by a stratosphere–troposphere separation method. We also analyze the fundamentals
of the commonly used differential optical absorption spectroscopy (DOAS) model and outline
its relationship to the proposed inversion models. By a numerical analysis, we analyze the accuracy
of the inversion models to retrieve total and tropospheric NO2 columns.
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1. Introduction

Nitrogen dioxide (NO2) is an important trace gas in the Earth’s stratosphere and troposphere.
The stratospheric NO2 is strongly related to halogen compound reactions and ozone destruction [1].
In the troposphere, nitrogen oxides (NOx = NO2 + NO) serve as a precursor of ozone in the presence
of volatile organic compounds and a precursor of secondary aerosols through gas-to-particle
conversion [2]. As a greenhouse gas, NO2 contributes significantly to radiative forcing locally [3].
As a prominent air pollutant affecting human health and ecosystems, substantial amounts of NO2

are produced in the boundary layer by industrial processes, power generation, transportation,
and biomass burning.

Atmospheric remote sensing measurements in the UV and visible region, for instance,
from nadir-viewing satellite instruments such as the Ozone Monitoring Instrument (OMI) [4]
and Global Ozone Monitoring Experiment-2 (GOME-2) [5,6], have been monitoring global NO2

on a long-term scale. A new generation of instruments like the TROPOspheric Monitoring Instrument
(TROPOMI) [7] aboard the Sentinel-5 Precursor satellite, with high spatial resolution, and geostationary
missions like Sentinel-4 [8], with a fast revisit time, enable the continuous monitoring of NO2

concentrations for the following years. NO2 measurements from satellite instruments have been
thoroughly validated using correlative ground-based measurements [9–11] and have been widely
used to characterize the distribution, evolution, or transport of NO2 [12–14], to estimate NOx

emission [15,16], and to interpret ozone variation [17,18].
Based on a linearity assumption of the log of the radiances on the total column, the differential

optical absorption spectroscopy (DOAS) model [19] is commonly used to derive the NO2

columns [20–25]. In DOAS, the spectral structure of a measured spectrum is separated into
a narrowband absorption structure of trace gases and a broadband contribution approximated by
a low-order polynomial. Effectively, the differential spectrum, used to obtain the trace gas information,
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is distinguished from the smooth background, such as Rayleigh scattering, cloud and aerosol extinction,
and surface reflection.

In this paper, we aim to design inversion models that are more general than the DOAS model,
for the retrieval of total and tropospheric NO2 columns. The underlying nonlinear equations of
the inversion models are solved by using classical regularization methods. The paper is organized as
follows. In Section 2, we describe the regularization methods for stably solving nonlinear ill-posed
problems. In Section 3, we present two nonlinear inversion models for total NO2 column retrieval,
while in Section 4, we design a nonlinear and a linear inversion model for tropospheric NO2 column
retrieval. In Section 5, we analyze the theoretical basis of the DOAS model and outline its relationship to
the general inversion models. The numerical accuracy of the proposed inversion models is investigated
in Section 6.

2. Regularization Methods

In our analysis, we consider the nonlinear data model [26]

yδ = F(x) + δ, (1)

where F : Rn → Rm is the forward model, x ∈ Rn is the state vector, yδ ∈ Rm is the noisy data vector,
and δ ∈ Rm is the measurement error vector. In a deterministic setting, the measurement error vector
δ is characterized by the noise level ∆ (defined as an upper bound for δ, i.e., ||δ|| ≤ ∆), the state vector
x is a deterministic vector, and we are faced with the solution of the nonlinear equation

yδ = F(x). (2)

In a stochastic setting, δ and x are random vectors, and the data Model (1) is solved by means of
a Bayesian approach.

Because the nonlinear Equation (2) is usually ill-posed, a regularization method should be used to
compute a solution with physical meaning. In classical regularization theory, two widely used methods
are the method of Tikhonov regularization and the iteratively regularized Gauss–Newton method.

2.1. Tikhonov Regularization

In the framework of Tikhonov regularization [27], a regularized solution to the nonlinear
Equation (2) is computed as the minimizer of the Tikhonov function

Fα(x) =
∥∥yδ − F(x)

∥∥2
+ α
∥∥L(x− xa)

∥∥2, (3)

where α is the regularization parameter, L is the regularization matrix, and xa is the a priori state vector,
the best beforehand estimate of the solution. The regularization matrix L, controlling the magnitude or
the smoothness of the solution, can be chosen as the identity matrix, a diagonal matrix, the discrete
approximations to the first- and second-order derivative operators, or as the Cholesky factor of
the inverse of an a priori covariance matrix.

The minimization of the Tikhonov function in Equation (3) can be formulated as a
least-squares problem, and the regularized solution can be computed by using optimization methods,
such as step-length and trust-region methods [28,29]. These nonlinear optimization methods are
iterative methods, which compute the new iterate by approximating the objective function around the
actual iterate by a quadratic model.

Belonging to the category of step-length methods, the Gauss–Newton method for least-squares
problems has an important practical interpretation. At the iteration step i, considering a linearization
of F(x) around the current iterate xδ

αi,

F(x) ≈ F(xδ
αi) + Kαi(x− xδ

αi), (4)
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where
Kαi = K(xδ

αi) =
∂F
∂x

(xδ
αi) ∈ Rm×n (5)

is the Jacobian matrix evaluated at xδ
αi, and replacing F(x) in Equation (2) by its linearization (4),

the result is
Kαi(x− xa) = yδ

i , (6)

where
yδ

i = yδ − F(xδ
αi) + Kαi(xδ

αi − xa) (7)

is the linearized data vector at iteration step i. Since the nonlinear problem is ill-posed, its linearization
is also ill-posed. Thus, we solve the linearized Equation (6) by means of Tikhonov regularization with
the penalty term α||L(x− xa)||2.

The Tikhonov function for the linearized equation takes the form

Flαi(x) =
∥∥yδ

i −Kαi(x− xa)
∥∥2

+ α
∥∥L(x− xa)

∥∥2, (8)

and its minimizer, i.e., the new iterate xδ
αi+1, is given by

xδ
αi+1 = xa + K†

αiy
δ
i , (9)

where
K†

αi = (KT
αiKαi + αLTL)−1KT

αi (10)

is the regularized generalized inverse, also known as the gain matrix [30], at iteration step i.
The iterative process is stopped according to

1. the relative X-convergence test [28], when the iterates xδ
αi converge, and/or

2. the relative function convergence test [30,31], when the residuals ||yδ − F(xδ
αi)|| converge.

Therefore, the solution of a nonlinear ill-posed problem by means of Tikhonov regularization
is equivalent to the solution of a sequence of ill-posed linearizations of the forward model about
the current iterate.

The selection of the optimal value of the regularization parameter αopt is a crucial issue of Tikhonov
regularization. With too little regularization, reconstructions deviate significantly from the a priori,
and the solution is said to be underegularized. With too much regularization, the reconstructions
are too close to the a priori, and the solution is said to be over-regularized. Several regularization
parameter choice methods have been discussed in [26,32], including the expected error estimation
method, the maximum likelihood estimation, generalized cross-validation [33], and the nonlinear
L-curve method [34].

The idea of the expected error estimation method is to perform a random exploration of a domain,
in which the exact solution x† is supposed to lie, and for each state vector realization x†

i , to compute
the optimal regularization parameter for error estimation as αopti = arg minα E{||eδ

α(x†
i )||2}, where

E{
∥∥eδ

α(x
†)
∥∥2} =

∥∥esα(x†)
∥∥2

+ E{
∥∥eδ

nα

∥∥2 (11)

is the expected value of the total error vector eδ
α(x†) = x† − xδ

α, esα(x†) = (In − Aα)(x† − xa) is
the smoothing error vector, eδ

nα = −K†
αδ is the noise error vector, xδ

α is the regularized solution,
and Aα = K†

αKα is the averaging kernel matrix at the solution xδ
α. Under the assumption that δ is

white noise with variance σ2, we compute the exponent pi = log αopti/ log σ and choose the optimal
regularization parameter as αopt = σ p̄, where p̄ = (1/Nx)∑Nx

i=1 pi is the sample mean exponent,
and Nx is the sample size.
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2.2. Iteratively Regularized Gauss–Newton Method

Unfortunately, at the present time, there is no fail-safe regularization parameter choice method
that guarantees small solution errors in any circumstance, that is, for any noisy data vector.
An amelioration of the problems associated with regularization parameter selection is achieved
in the framework of the so-called iterative regularization methods, of which the iteratively regularized
Gauss–Newton method [35] is a relevant representative. These approaches, in which the amount of
regularization is gradually decreased during the iterative process, are less sensitive to overestimations
of the regularization parameter but require more iteration steps to achieve convergence.

Essentially, the iteratively regularized Gauss–Newton method relies on the solution of
the linearized equation (cf. Equation (6)) Ki(x − xa) = yδ

i by means of Tikhonov regularization
with the penalty term αi||L(x− xa)||2. The new iterate minimizing the function

Fli(x) =
∥∥yδ

i −Ki(x− xa)
∥∥2

+ αi
∥∥L(x− xa)

∥∥2 (12)

is given by
xδ

i+1 = xa + K†
i yδ

i , (13)

where
K†

i = (KT
i Ki + αiLTL)−1KT

i . (14)

For iterative regularization methods, the number of iteration steps i plays the role of
the regularization parameter, and the iterative process is stopped after an appropriate number of steps
i? in order to avoid an uncontrolled expansion of the errors in the data. In fact, a mere minimization of
the residual ||rδ

i ||, where
rδ

i = yδ − F(xδ
i )

is the residual vector at xδ
i , leads to a semi-convergent behavior of the iterated solution: while the error

in the residual decreases as the number of iteration steps increases, the error in the solution starts to
increase after an initial decay.

A widely used a posteriori choice for the stopping index i? in dependence of the noise level ∆ is
the discrepancy principle [36]. According to this stopping rule, the iterative process is terminated after
i? steps such that ∥∥rδ

i?
∥∥2 ≤ τ∆2 <

∥∥rδ
i
∥∥2, 0 ≤ i < i?, (15)

with τ > 1. Hence, the regularized solution of the iteratively regularized Gauss–Newton method is
xδ

i? . As in many practical problems arising in atmospheric remote sensing, the noise level cannot be
a priori estimated, so we adopt a practical approach. This is based on the observation that the square
residual ||rδ

i ||2 decreases during the iterative process and attains a plateau at approximately ∆2. Thus,
if the nonlinear residuals ||rδ

i || converge to ||rδ
∞|| within a prescribed tolerance, we use the estimate

∆2 = ||rδ
∞||2.

The above heuristic stopping rule does not have any mathematical justification but works
sufficiently well in practice.

At first glance, this method seems to be identical to the method of Tikhonov regularization,
but the following differences exist:

1. the regularization parameters are the terms of a decreasing (geometric) sequence, i.e., αi = qαi−1,
with q < 1;

2. the iterative process is stopped according to the discrepancy principle (15) instead of requiring
the convergence of iterates.

The numerical experiments performed in [26] showed that at the solution xδ
k? , αk? is close to αopt

and so that xδ
k? is close to the Tikhonov solution corresponding to the optimal value of the regularization
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parameter xδ
αopt . Another positive feature of the method is that by decreasing the regularization

parameter at each iteration step, problems that do not require regularization (or a small amount of
regularization) can be handled.

In the following, the method of Tikhonov regularization and the iteratively regularized
Gauss–Newton method will be used to solve the nonlinear equations corresponding to different
inversion models for total and tropospheric column retrievals.

3. Total NO2 Column Retrieval

Consider a discretization of the atmosphere in Nlay layers, and let the stratosphere extend from
layer 1 to layer Nt − 1 and the troposphere extend from layer Nt to layer Nlay. The total column of
a gas g is defined by

Xg =

Nlay

∑
j=1

xg,j, (16)

while the stratospheric and tropospheric total columns are given respectively by

Xsg =
Nt−1

∑
j=1

xg,j, (17)

and

Xtg =

Nlay

∑
j=Nt

xg,j, (18)

where xg,j is the partial column of gas g on later j. Obviously, we have Xg = Xtg + Xsg.
An important task of the retrieval is the computation of the partial derivative of the radiance

I with respect to the total column Xg of gas g. In a radiative transfer model, I is a function of
xg,j, i.e., I = I(xg,1, . . . , xg,Nlay), and the partial derivatives ∂I/∂xg,j, j = 1, . . . , Nlay are computable
quantities (delivered by a linearized radiative transfer model). Under the assumptions that the profile
{xg,1, . . . , xg,Nlay} is a scaled version of an a priori profile {xag,1 . . . , xag,Nlay} and that sg is the scale
factor of gas g, i.e., xg,j = sgxag,j, for all j = 1, . . . , Nlay, we have sg = Xg/Xag and hence the one-to-one
correspondence xg,j = (Xg/Xag)xag,j. Consequently, the partial derivative of I with respect to Xg can
be computed as

Dg =

Nlay

∑
j=1

∂I
∂xg,j

∂xg,j

∂Xg
=

Nlay

∑
j=1

xag,j

Xag

∂I
∂xg,j

.

For the retrieval of the total columns Xg of Ng gases, we regard the radiance I as a function
of X = [X1, . . . , XNg ], i.e., I = I(X). In principle, the retrieval can be performed by considering
the radiance model

ln Iδ
mes(λk) = ln Isim(λk, X) +

Ns

∑
j=1

bjSj(λk), k = 1, . . . , Nλ, (19)

where Iδ
mes(λk) is the Sun-normalized spectral radiance measured by the instrument at wavelength

λk with k = 1, . . . Nλ, Isim(λk, X) is the radiance computed by a radiative transfer model, Sj(λk)

with j = 1, . . . , Ns are the correction spectra describing different kinds of instrumental effects,
such as the polarization correction spectrum, undersampling spectrum, offset correction spectrum,
and more complex physical phenomena (e.g., Ring spectrum), and finally, the wavelength-independent
coefficients bj, encapsulated in the row vector b = [b1, . . . , bNs ], are the amplitudes of the correction
spectra. Another option, which is adopted in our analysis, is to consider the following two differential
radiance models:
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1. the differential radiance model with internal closure (DRMI), relying on the solution of
the nonlinear equation

Rδ
mes(λk) = Rsim(λk, X) +

Ns

∑
j=1

bjSj(λk), k = 1, . . . , Nλ, (20)

for the state vector x = [X, b]T , where

Rδ
mes(λk) = ln Iδ

mes(λk)− Pmes(λk, cmes) (21)

is the differential measured spectrum and

Rsim(λk, X) = ln Isim(λk, X)− Psim(λk, csim(X)) (22)

is the differential simulated spectrum, and
2. the differential radiance model with external closure (DRME), relying on the solution of

the nonlinear equation

Rδ
mes(λk) = ln Isim(λk, X) +

Ns

∑
j=1

bjSj(λk)

− P(λk, c), k = 1, . . . , Nλ, (23)

for the state vector x = [X, b, c]T .

In Equations (21)–(23), the polynomials Pmes(λ, cmes), Psim(λ, csim(X)), and P(λ, c) are intended
to account for the low-order frequency structure due to scattering mechanisms, e.g., by clouds
and aerosols. The coefficients cmes = [cmes1, . . . , cmesN ] and csim(X) = [csim1(X), . . . , csimN(X)] of
the smoothing polynomials Pmes(λ, cmes) and Psim(λ, csim(X)) with degree N − 1, respectively, are
the solutions of the least-squares problems

cmes = arg min
c

Nλ

∑
k=1

[
ln Iδ

mes(λk)− Pmes(λk, c)
]2 (24)

and

csim(X) = arg min
c

Nλ

∑
k=1

[
ln Isim(λk, X)− Psim(λk, c)

]2, (25)

respectively. These coefficients are uniquely determined by ln Iδ
mes(λk) and ln Isim(λk, X), and thus

they are not included in the state vector x. In contrast, the coefficients c = [c1, . . . , cN ] of the smoothing
polynomial P(λ, c) with degree N − 1 in Equation (23) are included in the state vector x.

Comparing the inversion models relying on Equations (20) and (23), we note the following differences:

1. in DRMI, we fit the differential measured and simulated spectra, while in DRME we fit
the differential measured spectrum with a simulated spectrum from which we extract its
smooth component;

2. in DRMI, the dimension of the state vector x is smaller, and possible correlations between
the components of the state vector can be avoided; however, the computational complexity is
higher because the partial derivative of csim(X) with respect to X needs to be computed.
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The regularization matrix is chosen as a diagonal matrix. Specifically, the penalty term
α||L(x− xa)||2 is taken as

α
[ Ng

∑
g=1

wg

Xag
(Xg − Xag)

2 +
Ns

∑
j=1

wbj

baj
(bj − baj)

2
]

(26)

for DRMI and

α
[ Ng

∑
g=1

wg

Xag
(Xg − Xag)

2 +
Ns

∑
j=1

wbj

baj
(bj − baj)

2 +
N

∑
p=1

wcp

cap
(cp − cap)

2
]

(27)

for DRME. Here, the scalars {wg}
Ng
g=1, {wbj}Ns

j=1, and {wcp}N
p=1 give the weight of each component

of the state vector into the regularization matrix. Note that if a weighting factor is very large,
the component is close to the a priori, while for a very small weighting factor, the component is
practically unconstrained.

In the above inversion models, the wavelength shift ∆λ is not included in the retrieval.
To take the wavelength shift into account, we replace Rδ

mes(λk) in the left-hand sides of
Equations (20) and (23) by Rδ

mes(λk + ∆λ) and consider ∆λ as a component of the state vector x.
Therefore, Equations (20) and (23) are nonlinear with respect to the total column X and the wavelength
shift ∆λ but linear with respect to the amplitudes b of the correction spectra and the coefficients c of
the smoothing polynomial (in the case of DRME).

4. Tropospheric NO2 Column Retrieval

The UV-visible NO2 columns measured by satellite instruments consist of stratospheric and
tropospheric contributions, which show comparable magnitudes and contribute to the signal with
different weights, particularly for polluted scenarios. As the nadir-viewing measurements do not
contain information on the vertical distribution, the a priori vertical NO2 profiles are typically obtained
from chemistry transfer models. The models are usually characterized by considerable differences [37],
and currently, there is no consensus in the models on what the vertical profile of NO2 over a given area
is. Therefore a direct retrieval of tropospheric NO2 columns is practically impossible, and a careful
estimation and removal of stratospheric contribution is essential for the determination of tropospheric
NO2 columns.

The retrieval of the tropospheric column of gas g (specifically, NO2) is performed under
the assumption that we have some a priori knowledge about the stratospheric column. More precisely,
we assume that Xsg can be approximated by

Xsg ≈ X?
sg, (28)

where X?
sg is delivered by the reference sector method [38–40] or from data assimilation [41,42],

a procedure we refer to as stratosphere–troposphere separation [43].
For tropospheric column retrieval, we propose a nonlinear and a linear model.

4.1. Nonlinear Model

In principle, considering the approximation

I = I(X) = I(Xtg, Xsg, X−g) ≈ I(Xtg, X?
sg, X−g), (29)

where X−g is the set of all total columns excepting Xg, i.e., X = {Xg} ∪ X−g, the tropospheric column
can be retrieved by solving the nonlinear Equations (20) and (23) with

Isim(λk, X)→ Isim(λk, Xtg, X?
sg, X−g) (30)
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for the state vector x = [Xtg, X−g, b]T and x = [Xt, X−g, b, c]T , respectively. However, our numerical
experiments showed that the accuracy in retrieving Xtg is higher if we fix the columns X−g and
the amplitudes b of the correction spectra to the values computed by a total column retrieval;
following [44], we refer to this inversion step as pre-processing step. In this regard, we compute
Xtg by solving

1. the nonlinear equation of DRMI

Rδ
mes(λk) = Rδ

sim(λk, Xtg, X?
sg, X−g) +

Ns

∑
j=1

bjSj(λk), k = 1, . . . , Nλ, (31)

for the state vector x = [Xtg], and
2. the nonlinear equation of DRME

Rδ
mes(λk) = ln Isim(λk, Xtg, X?

sg, X−g) +
Ns

∑
j=1

bjSj(λk)

− P(λk, c), k = 1, . . . , Nλ, (32)

for the state vector x = [Xtg, c]T .

In summary, this approach involves the following steps.

Step 1. Solve the nonlinear Equation (20) of DRMI for x = [X, b]T or the nonlinear Equation (23) of
DRME for x = [X, b, c]T .

Step 2. With X?
sg delivered by a stratosphere–troposphere separation method and X−g and b

determined at Step 1, solve the nonlinear Equation (31) of DRMI for x = [Xtg] or the
nonlinear Equation (32) of DRME for x = [Xtg, c]T .

4.2. Linear Model

Recalling that X = {Xg} ∪ X−g = {Xtg, Xsg} ∪ X−g, we consider the following linearizations
around the a priori:

ln Isim(λk, X) ≈ ln Isim(λk, Xa) + (Xg − Xag)Wg(λk, Xa)

+
Ng

∑
g=1,g 6=g

(Xg − Xag)Wg(λk, Xa) (33)

and

ln Isim(λk, X) ≈ ln Isim(λk, Xa) + (Xtg − Xatg)Wtg(λk, Xa)

+ (Xsg − Xasg)Wsg(λk, Xa)

+
Ng

∑
g=1,g 6=g

(Xg − Xag)Wg(λk, Xa) (34)

to obtain

(Xg − Xag)Wg(λk, Xa) = (Xtg − Xatg)Wtg(λk, Xa)

+ (Xsg − Xasg)Wsg(λk, Xa) (35)

with

Wg(λk, Xa) =

Nlay

∑
j=1

xag,j

Xag

∂ ln Isim

∂xg,j
(λk, Xa), (36)
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Wsg(λk, Xa) =
Nt−1

∑
j=1

xag,j

Xag

∂ ln Isim

∂xg,j
(λk, Xa), (37)

and

Wtg(λk, Xa) =

Nlay

∑
j=Nt

xag,j

Xag

∂ ln Isim

∂xg,j
(λk, Xa). (38)

For scaled profiles, it can be shown that similar to Equation (35), we have

XgWg(λk, Xa) = XtgWtg(λk, Xa) + XsgWsg(λk, Xa). (39)

Now, if Xg is known from the total column retrieval and Xsg = X?
sg, we may compute Xtg from

Equation (39) at a reference wavelength λ0 = λk0 for some k0 ∈ {1, . . . , Nλ}, i.e.,

Xtg =
XgWg(λ0, Xa)− X?

sgWsg(λ0, Xa)

Wtg(λ0, Xa)
, (40)

or as the solution of a least-squares problem in the spectral domain, i.e.,

Xtg = arg min
Xt

Nλ

∑
k=1

[
XtWtg(λk, Xa) + X?

sgWsg(λk, Xa)− XgWg(λk, Xa)
]2

. (41)

This approach involves the following computational steps.

Step 1. Solve the nonlinear Equation (20) of DRMI for x = [X, b]T or the nonlinear Equation (23) of
DRME for x = [X, b, c]T .

Step 2. With X?
sg delivered by a stratosphere–troposphere separation method and Xg determined

at Step 1, compute Xtg by means of Equation (40) or as the solution of the least-squares
problem (41).

Comparing the two inversion models, the following conclusions can be drawn.

1. In both models, we compute in the pre-processing step the total columns of all gases X and
the amplitudes b of the correction spectra by means of DRMI or DRME.

2. In the nonlinear model, we compute the tropospheric column Xtg of gas g by using X−g and b
determined in the pre-processing step and by solving a nonlinear equation corresponding to DRMI
or DRME. The accuracy in computing Xtg is affected by the accuracy in computing X−g and b.

3. In the linear model, we compute the tropospheric column Xtg of gas g by using Xg determined
in the pre-processing step and by solving a linear equation. The accuracy in computing Xtg is
affected by the accuracy in computing Xg and the linearity assumptions (33) and (34).

5. DOAS Model

In this section, we describe the standard DOAS inversion model [19] for total and tropospheric
NO2 column retrievals.

5.1. Total NO2 Column Retrieval

In the DOAS model, the equation

ln Iδ
mes(λk) = −

Ng

∑
g=1

SgCabsg(λk) +
Ns

∑
j=1

bjSj(λk)

+ PD(λk, cD), k = 1, . . . , Nλ, (42)



Atmosphere 2019, 10, 607 10 of 21

is solved for the state vector x = [S, b, cD]
T , where S = [S1, . . . , SNg ], Sg is the slant column of gas g,

and Cabsg(λk) is the differential absorption cross section of gas g at wavelength λk. The total column
Xg is then computed from the slant column Sg by means of the relation

Sg = A(Xag)Xg, (43)

where A(Xag) is the air-mass factor of gas g. Note that the slant column and the air-mass factor
are assumed to be wavelength-independent and that the air-mass factor is defined with respect to
the a priori. Also note that in the DOAS model, the measured spectrum is fitted by the sum of
a differential component (the first two terms on the right-hand side of Equation (42)) and a smooth
component (the last term in Equation (42)).

In the framework of the DOAS model, the main problem that has to be solved is the computation
of the air-mass factor. Inserting Equation (43) in Equation (42) and comparing the resulting equation
with Equation (19), we deduce that ln Isim(λk, X) is of the form

ln Isim(λk, X) = −
Ng

∑
g=1

A(Xag)Cabsg(λk)Xg + P̃D(λk, c̃D), k = 1, . . . , Nλ, (44)

where the polynomial P̃D(λk, c̃D), extracting the smooth component of ln Isim(λk, X), is close but not
identical with the smoothing polynomial PD(λk, cD), matching the smooth component of ln Iδ

mes(λk)

in Equation (42). The above equation gives recipes for computing the air-mass factor. Two frequently
used methods are described below.

1. Setting X = Xa in Equation (44) gives

ln Isim(λk, Xa) = −
Ng

∑
g=1

A(Xag)Cabsg(λk)Xag + P̃D(λk, c̃D). (45)

From Equations (44) and (45), we obtain

ln Isim(λk, X) = ln Isim(λk, Xa)−
Ng

∑
g=1

A(Xag)Cabsg(λk)(Xg − Xag). (46)

Consequently, by means of the linearization

ln Isim(λk, X) = ln Isim(λk, Xa) +
Ng

∑
g=1

(Xg − Xag)Wg(λk, Xa) (47)

and Equation (46), we find

A(Xag) = −
1

Cabsg(λk)
Wg(λk, Xa), (48)

for any k = 1, . . . , Nλ.
2. Let Isim(λk, Xa) be the radiance for a complete atmosphere with Ng gases and Isim(λk, Xa−g) for

an atmosphere without the gas g. In view of Equation (45), we can write

ln Isim(λk, Xa−g) = −
Ng

∑
g=1,g 6=g

A(Xag)Cabsg(λk)Xag + P̃D(λk, c̃D), (49)
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provided that the smoothing polynomial remains the same. As a result, from Equations (45) and (49),
we get

A(Xag) = −
1

Cabsg(λk)Xag
ln
[ Isim(λk, Xa)

Isim(λk, Xa−g)

]
(50)

for any k = 1, . . . , Nλ.

Several comments are in order.

1. Equation (48) is computed with the scaling approximation for the NO2 vertical profile.
This assumption is not employed in the second method, but it is apparent that Equation (50) can
be interpreted as a finite-difference approximation of Equation (48).

2. Because the right-hand sides of Equations (48) and (50) are wavelength-dependent, we can
compute the air-mass factor at a reference wavelength λ0 or by averaging in the spectral domain.
For example, the computational formulas corresponding to Equation (48) read as

A(Xag) = −
1

Cabsg(λ0)
Wg(λ0, Xa) (51)

and

A(Xag) = −
1

Nλ

Nλ

∑
k=1

1
Cabsg(λk)

Wg(λk, Xa). (52)

3. It is not hard to see that the DOAS model with the A(Xag) as in Equation (48) is in some sense
equivalent with the first iteration step of DRME. Indeed, in this case, we consider a linearization
of ln Isim(λk, X) around the a priori Xa as in Equation (47). Hence, from Equations (21) and (23),
we get

ln Iδ
mes(λk) = ln Isim(λk, Xa) +

Ng

∑
g=1

(Xg − Xag)Wg(λk, Xa)

+
Ns

∑
j=1

bjSj(λk) + Pmes(λk, cmes)− P(λk, c) (53)

(45)
= −

Ng

∑
g=1

A(Xag)Cabsg(λk)Xag

+
Ng

∑
g=1

(Xg − Xag)Wg(λk, Xa)

+
Ns

∑
j=1

bjSj(λk) + Pmes(λk, cmes)− P(λk, c) + P̃D(λk, c̃D)

(48)
= −

Ng

∑
g=1

A(Xag)Cabsg(λk)Xg

+
Ns

∑
j=1

bjSj(λk) + Pmes(λk, cmes)− P(λk, c) + P̃D(λk, c̃D)

(43)
= −

Ng

∑
g=1

SgCabsg(λk) +
Ns

∑
j=1

bjSj(λk) + PD(λk, cD), (54)

where
PD(λk, cD) = P̃D(λk, c̃D) + Pmes(λk, cmes)− P(λk, c).
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Thus, the solution of the linearized Equation (53) for x = [X, b, c]T is equivalent with the solution
of the DOAS Equation (54) for x = [S, b, cD]

T . Note that because Pmes(λk, cmes) is close to P(λk, c),
PD(λk, cD) is also close to P̃D(λk, c̃D).

5.2. Tropospheric NO2 Column Retrieval

Coming to the tropospheric column retrieval, we use Equation (48) to express Equation (39)
in terms of air-mass factors as

Xg A(Xag) = Xtg At(Xag) + Xsg As(Xag) (55)

with
At(Xag) = −

1
Cabsg(λk)

Wtg(λk, Xa) (56)

and
As(Xag) = −

1
Cabsg(λk)

Wsg(λk, Xa) (57)

for any k = 1, . . . , Nλ. If Sg is the solution of Equation (42), then from Equations (43) and (55), we obtain

Sg = Xtg At(Xag) + Xsg As(Xag), (58)

and for Xsg = X?
sg, we end up with

Xtg =
Sg − X?

sg As(Xag)

At(Xag)
. (59)

If At(Xag) and As(Xag) are computed from Equations (56) and (57) at a reference wavelength λ0,
then Equation (59) is the counterpart of Equation (40).

In conclusion, the standard DOAS inversion model for total and tropospheric column retrieval
is entirely based on the linearity assumption of the forward model with respect to the total and
tropospheric columns. More precisely, the model is equivalent to

1. the first iteration step of DRME for computing the total column (see Section 3) and
2. the linear model for computing the tropospheric column (see Section 4).

6. Numerical Analysis

In this section, we analyze the numerical accuracy of the proposed inversion models.
The radiances and the Jacobian matrices are computed by a radiative transfer model based
on the discrete ordinate method with matrix exponential [45,46]. The spectral range is between
425 and 497 nm, the number of spectral points is Nλ = 345, and the average spectral resolution is
∆λ0 = 0.2 nm. The calculations are performed for a mid-latitude summer atmosphere [47] with a solar
zenith angle of 30°, a relative azimuth angle of 180°, and a Lambertian surface with albedo of 0.05.
The atmosphere between 0 and 50 km is discretized with a step of 0.5 km between 0 and 2 km, 1 km
between 2 and 20 km, 5 km between 20 and 30 km, and 10 km between 30 and 50 km. The troposphere
extends to an altitude of 15 km.

The simulations include the absorption of NO2, ozone (O3), oxygen dimer (O4), and water vapor,
the Ring correction spectrum S1(λk) = SR(λk), the offset correction spectrum S2(λk) = SO(λk),
and the wavelength shift ∆λ. The scattering by clouds and aerosols is not taken into account. Vertical
NO2 volume mixing ratio profiles for a clean scenario, which typically shows a larger concentration
at higher altitudes, and a polluted scenario, which typically shows a larger concentration near
the surface, are illustrated in Figure 1. These profiles are taken as a priori partial column profiles and
used to generate the true (exact) partial column profiles.
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Figure 1. Vertical NO2 volume mixing ratio (VMR) profiles for the clean and polluted scenarios.
Note that both profiles have the same stratospheric NO2 column.

Denoting the a priori partial columns of gas g by xag,j, j = 1, . . . , Nlay and choosing cubic
smoothing polynomials (N = 4) and the amplitudes of the correction spectra as b1 = baR = 5× 10−2

and b2 = baO = 10−2, we generate synthetic measurement spectra as follows:

1. we choose x†
g,j = sgxag,j with j = 1, . . . , Nlay and sg = 1.5 (if not stated otherwise) and compute

X†
g = ∑

Nlay
j=1 x†

g,j = sgXag, X†
sNO2

= ∑Nt−1
j=1 x†

NO2,j and X†
tNO2

= ∑
Nlay
j=Nt

x†
NO2,j; thus, the exact total

NO2 column to be retrieved is X†
NO2

= 1.5XaNO2 ;
2. for X† = [X†

NO2
, X†

O3
, X†

O4
, X†

H2O], we compute Isim(λk, X†) by the radiative transfer model;
3. we determine the coefficients csim(X†) of the smoothing polynomial Psim(λk, csim(X†)) by solving

the least-squares problem (25);
4. we compute Iδ

sim(λk, X†) = Isim(λk, X†) + δk, where δk are independent Gaussian random
variables with zero mean and standard deviation

σk =
Isim(λk, X†)

SNR
,

and SNR is the signal-to-noise ratio;
5. we choose b†

1 = b†
R = 2baR, b†

2 = b†
O = 2baO, and4λ† = 0.2∆λ0;

6. for DRMI, we compute the kth component of the noisy data vector as

Rδ
mes(λk) = [ln Iδ

sim(λk +4λ†, X†)− Psim(λk, csim(X†))] +
Ns

∑
j=1

b†
j Sj(λk);

7. for DRME, we choose c† = 0.5 csim(X†) and compute the kth component of the noisy data vector as

Rδ
mes(λk) = ln Iδ

sim(λk +4λ†, X†) +
Ns

∑
j=1

b†
j Sj(λk)− P(λk, c†).

Note that in view of the approximation

ln Iδ
sim(λk, X†)

≈ ln Isim(λk, X†) +
δk

Isim(λk, X†)
,
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the error in ln Iδ
sim(λk, X†) is δln k = δk/Isim(λk, X†), implying σln k = 1/SNR for all k. Thus, the error

vector δln is white noise with covariance matrix σ2
ln kIm, where Im is the identity matrix.

Some parameters characterizing the regularization algorithms are chosen as follows.

1. As usual, the initial guess is taken to be equal to the a priori, i.e., x0 = xa.
2. If not stated otherwise, the regularization parameter of the method of Tikhonov regularization is

chosen as α = σ2
ln k, while for the iteratively regularized Gauss–Newton method, the initial value

of the regularization parameter is α0 = σln k and the regularization strength is gradually decreased
during the iterative process with a constant ratio q = 0.2. Because the iteratively regularized
Gauss–Newton method is less sensitive to the overestimation of the regularization parameter,
the choice of α0 � α should guarantee that the method is able to capture the optimal value of
the regularization parameter, i.e., αk? ≈ αopt.

3. The weighting factors of the state vector in (26) and (27) are given by standard deviations for

{wg}
Ng
g=1 and empirical values for {wbj}Ns

j=1 and {wcp}N
p=1.

4. The control parameter in the discrepancy principle Equation (15) is τ = 1.2.

Figure 2 shows the radiances ln Isim(λ, Xa) and the differential radiances ln Isim(λ, Xa) −
Psim(λk, csim(Xa)) for the clean and polluted NO2 profiles. For optically thin absorbers in the visible
wavelength range, such as the clean NO2 profile, the absorption effect on the overall radiances is small.
In contrast, for the polluted NO2 profile, the absorption is largely enhanced; the radiances decrease
by more than 15% and show a spectral structure linked to the NO2 absorption bands. Due to the lack
of a differential structure, we expect that the inversion models based on the analysis of differential
spectra will have difficulties in handling the clean scenario, and in particular when the signal-to-noise
ratio is small.

(a) (b)
Figure 2. (a) Radiances and (b) differential radiances for the clean and polluted scenarios.

6.1. Total NO2 Column Retrieval

In Figure 3, we illustrate the relative errors in the total NO2 column versus the signal-to-noise ratio
for the clean scenario. The results correspond to DRMI and DRME and the two regularization methods
(Tikhonov regularization and the iteratively regularized Gauss–Newton method). The following
conclusions can be drawn.

1. The relative errors decrease with the increasing signal-to-noise ratio.
2. In general, for small values of the signal-to-noise ratio (SNR < 103), the relative errors obtained by

the iteratively regularized Gauss–Newton method are smaller than those delivered by the method
of Tikhonov regularization. Note that for the clean scenario with SNR < 103 (where the NO2

signal is very low and the noise level is relatively high), the retrieval error is dominated by
the noise error rather than the smoothing error.
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3. For small values of the signal-to-noise ratio (SNR < 103), DRMI equipped with the method
of Tikhonov regularization delivers more reliable results than DRME; when the iteratively
regularized Gauss–Newton method is used as regularization method, the reverse situation occurs.

4. For large values of the signal-to-noise ratio (SNR ≥ 103), the relative errors are within ±0.5% for
all inversion models and regularization methods.

Figure 3. Relative errors in the total NO2 column as a function of signal-to-noise ratio (SNR). The results
correspond to the clean scenario and are computed by means of the differential radiance model
with internal closure (DRMI) and differential radiance model with external closure (DRME) models
using the method of Tikhonov regularization (TR) and the iteratively regularized Gauss–Newton
(IRGN) method.

Figure 4 shows the variation of the square residuals, corresponding to DRMI and DRME
in combination with the iteratively regularized Gauss–Newton method, versus the iteration
step for the clean scenario. In Figure 4b, the variation of the regularization parameter αk
in the case of SNR = 103 is also shown. The results demonstrate the basic features of the iterative
regularization method.

1. The residuals attain a plateau, which is used for estimating the noise level. This plateau is more
pronounced for small values of the signal-to-noise ratio and decreases when the signal-to-noise
ratio increases.

2. At the initial guess, the residual corresponding to the DRMI model is much smaller than that
corresponding to the DRME. The reason is that the discrepancies between the differential spectra
are usually small. However, at the end of the iterative processes, the residuals are comparable.

3. In DRMI, the residual decreases very fast at the first iteration step, while in DRME, there is
a period of stagnation after which the residual decreases very rapidly.

4. For small values of the signal-to-noise ratio (SNR ≤ 103), the iterative process in DRMI terminates
after 3–4 iterations, while 10 iteration steps are required in DRME. However, the final residual
in DRMI is slightly larger than in DRME; this result explains the larger relative errors provided
by DRMI.

5. In DRME and for SNR = 103, the initial value of the regularization parameter is α0 = 10−3, while
the final value, which is an estimate of the optimal value, is approximately equal to 10−6. Thus,
the amount of regularization is small, and the solution coincides practically with the ordinary
least-squares solution.



Atmosphere 2019, 10, 607 16 of 21

(a) (b)
Figure 4. Square residuals computed by means of the (a) DRMI and (b) DRME models as a function of
iteration number. The iteratively regularized Gauss–Newton (IRGN) method is applied, and the results
correspond to the clean scenario. The iteration steps with the estimated optimal regularization
parameter are marked (circles). For DRME and SNR = 103, the history of the regularization parameter
is also shown (green line).

In Figure 5, we plot the absolute errors in the total NO2 column for the polluted scenario.
The results correspond to DRME and the signal-to-noise ratio SNR = 103. In this case,
the regularization parameter of Tikhonov regularization corresponds to the optimal value predicted
by the iteratively regularized Gauss–Newton method. The following observations can be noticed.

Figure 5. Absolute errors in the total NO2 column for different values of the true total column.
The results correspond to the polluted scenario and are computed by means of DRME using the method
of Tikhonov regularization (TR) and the iteratively regularized Gauss–Newton (IRGN) method.
The signal-to-noise ratio is SNR = 103, and the vertical line shows the initial value of the total column.

1. The errors, obtained after one iteration step by the method of Tikhonov regularization, are large,
and in particular when (i) the discrepancies between the values of the true and initial (a priori)
total columns are significant, and (ii) the true values are lower than the initial values. However,
the errors decrease significantly at the second iteration step, when they become comparable
with the errors obtained by the iteratively regularized Gauss–Newton method. Recalling that
the standard DOAS model is equivalent with the first iteration step of the DRME model
(see Section 5), we conclude that the DOAS model can be used when the problem is not
too nonlinear.
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2. An error up to 4% is found for large values of the true total column, likely due to the stronger
interference between the NO2 and Ring effect signatures [48] for polluted cases with deeper
spectral structures (see Figure 2).

6.2. Tropospheric NO2 Column Retrieval

Figure 6 shows the relative errors in the tropospheric NO2 column versus the signal-to-noise
ratio for the clean scenario. The results are computed with (i) the nonlinear model, in which
X−g = [XO3 , XO4 , XH2O] and b are determined in the pre-processing step by using DRMI and DRME,
and (ii) the linear model, in which XNO2 is again determined in the pre-processing step by means of
DRMI and DRME. The regularization methods used in DRMI and DRME are the method of Tikhonov
regularization and the iteratively regularized Gauss–Newton method. The following conclusions can
be drawn.

1. The relative errors of the linear model are smaller than those of the nonlinear model. This means
that in the pre-processing step, the columns X−g of the auxiliary gases and the amplitudes b of
the correction spectra are not accurately retrieved, while the total NO2 column XNO2 is.

2. For the linear model, the relative errors corresponding to the total column XNO2 delivered by
the iteratively regularized Gauss–Newton method are smaller than those delivered by the method
of Tikhonov regularization. This result is not surprising because the first method yields more
accurate total NO2 column retrievals than the second one (see Figure 3).

3. The linear model using DRME in the pre-processing step in conjunction with the iteratively
regularized Gauss–Newton method has the best retrieval performance; the relative errors are less
than 5% for SNR = 102 and less than 2% for SNR ≥ 103.

The plots in Figure 7 illustrate the absolute errors in the tropospheric NO2 column for the polluted
scenario. In the pre-processing step, only DRME is used to determine X−g = [XO3 , XO4 , XH2O] and
b for the nonlinear model and XNO2 for the linear model. The signal-to-noise ratio is SNR = 103.
The results lead to the following conclusions.

(a) (b)
Figure 6. Relative errors in the tropospheric NO2 column as a function of SNR. The results are computed
by means of linear and nonlinear models using in the pre-processing step the DRMI and DRME models
in conjunction with (a) the method of Tikhonov regularization (TR) and (b) the iteratively regularized
Gauss–Newton (IRGN) method.
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Figure 7. Absolute errors in the tropospheric NO2 column for different values of the true tropospheric
columns. The results correspond to the polluted scenario and are computed by means of linear and
nonlinear models and using in the pre-processing step the DRME model in conjunction with Tikhonov
regularization (TR) and the iteratively regularized Gauss–Newton (IRGN) method. The signal-to-noise
ratio is SNR = 103, and the vertical line shows the initial value of the tropospheric column.

1. In contrast to the clean scenario, the errors of the nonlinear model are smaller than those of
the linear model. This means that the problem is nonlinear and that the linearizations (33) and (34)
around the a priori do not describe the forward model accurately. Remember that the same
conclusion has been drawn for the total NO2 column retrieval (see Figure 5).

2. The corresponding errors of the nonlinear model are less than 0.3%, regardless of the regularization
method used in the pre-processing step.

7. Conclusions

NO2 columns retrieved from satellite remote sensing measurements have been successfully
applied in many studies. The NO2 abundance is retrieved from the absorption structures of NO2 by
analyzing the backscattered radiation in the visible spectral region. In this study, we have presented
several inversion models for retrieving the total and tropospheric NO2 columns, which can be
applied on spaceborne remote sensing data from current and upcoming hyperspectral instruments to
characterize the spatial and temporal variation of NO2 concentrations.

For total column retrieval, we proposed the differential radiance models with internal and
external closure, DRMI and DRME, respectively. The underlying nonlinear equations, involving,
in addition to the total NO2 column, the total columns of the auxiliary gases, the amplitudes of
the correction spectra, the coefficients of the smoothing polynomial, and the wavelength shift, are
solved by means of regularization, that is, by using the method of Tikhonov regularization and
the iteratively regularized Gauss–Newton method. Our numerical analysis showed that (i) for
small values of the signal-to-noise ratio, DRMI along with the method of Tikhonov regularization
yields more accurate results than DRME and that the reverse situation occurs when the iteratively
regularized Gauss–Newton method is used as a regularization method, (ii) the iteratively regularized
Gauss–Newton method is superior to the method of Tikhonov regularization because it is less sensitive
to overestimations of the regularization parameter and can handle problems that actually do not
require regularization, and finally, (iii) the best inversion model is DRME equipped with the iteratively
regularized Gauss–Newton method.

The tropospheric column is retrieved in the framework of a nonlinear and a linear model by using
(i) the results of the total column retrieval and (ii) the value of the stratospheric NO2 column delivered
by a stratosphere–troposphere separation method. Specifically, in the nonlinear model, the nonlinear
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equations corresponding to DRMI or DRME are solved, while in the linear model, a linear equation
that is the result of two linearity assumptions around the a priori is solved. Our numerical analysis
revealed that for the clean scenario, when the problem is nearly linear, the linear model is superior to
the nonlinear model, while for the polluted scenario, when the linearity assumption does not hold,
the nonlinear model is better.

In our analysis, we also discussed the standard DOAS inversion model for total and tropospheric
column retrieval and showed that this model is equivalent with the first iteration step of DRME for
computing the total column and the linear model for computing the tropospheric column.
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