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Abstract: This paper presents a viewpoint from computer vision to the radar echo extrapolation task
in the precipitation nowcasting domain. Inspired by the success of some convolutional recurrent
neural network models in this domain, including convolutional LSTM, convolutional GRU and
trajectory GRU, we designed a new sequence-to-sequence neural network structure to leverage
these models in a realistic data context. In this design, we decreased the numbers of channels in
high abstract recurrent layers rather than increasing them. We formulated the task as a problem of
encoding five radar images and predicting 10 steps ahead at the pixel level, and found that using only
the common mean squared error can misguide the training and mislead the testing. Especially, the
image quality of last predictions usually degraded rapidly. As a solution, we employed some visual
image quality assessment techniques including Structural Similarity (SSIM) and multi-scale SSIM
to train our models. Experimental results show that our structure was more tolerant to increasing
uncertainty in the data, and the use of image quality metrics can significantly reduce the blurry image
issue. Moreover, we found that using SSIM was very effective and a combination of SSIM with mean
squared error and mean absolute error yielded the best prediction quality.

Keywords: convolutional LSTM; convolutional GRU; trajectory GRU; precipitation nowcasting;
radar echo extrapolation; image quality assessment

1. Introduction

Precipitation nowcasting is one of the most difficult challenges in meteorology, which forecasts
rainfall situation in a short range of time (usually from 0.5 to several hours) [1]. In the context of
high spatiotemporal resolutions, traditional methods based on the Numerical Weather Prediction
model are said to be computationally expensive, too sensitive to noises, highly dependent on initial
conditions and not able to exploit big data [2]. Meanwhile, extrapolation-based approaches using radar
reflectivity or remote sensing data can provide more accurate prediction [3,4]. Recently, data-driven
approaches that leverage advances in machine learning/deep learning have been used to analyze
radar images and perform precipitation nowcasting with promising results. Two main branches of this
research direction are Radar Echo Extrapolation (REE) and Quantitative Precipitation Forecast (QPF).
The former predicts the movements and changes of shape and intensity of precipitation particles in an
image sequence [5–7], and the latter predicts directly the amount of rainfall in a certain area [8,9]. In the
REE tasks, many approaches based-on deep Convolutional Neural Networks (CNNs) and Recurrent
Neural Networks (RNNs) have been shown to be better than traditional methods based-on optical
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flow, such as ROVER [5], TREC and COTREC [7], and Farneback [9]. However, there remains some
unresolved issues such as the problem of blurry images which is widely reported.

Our study was particularly inspired by the work in [5,6], which led to the emergence
of convolutional RNNs (ConvRNNs), including Convolutional Long-Short Term Memory
(ConvLSTM [5]), Convolutional Gated Recurrent Unit (ConvGRU [10]) and Trajectory Gated Recurrent
Unit (TrajGRU [6]). Their core idea is to replace fully-connected operations in the step-to-step transitions
between traditional RNN cells (1D states) by convolutional operations (2D states). This makes
ConvRNNs ideal to represent and predict sequential image data, especially radar echo images.
Differs from ConvLSTM and ConvGRU, which directly use convolution for the state transitions,
TrajGRU uses convolution to generate flow fields of two steps and calculates new states by a warping
procedure. We noticed that the operation of TrajGRU is quite similar to three steps of the widely
applied numerical McGill algorithm [11–14]: radar echo tracking, radar reflectivity advecting (by a
semi-Lagrangian extrapolation) and error evaluating. However, while this type of traditional method
needs predefined spatial filters and translation vector to detect the motions, deep learning methods can
automatically learn features from data in an end-to-end fashion [5]. Unlike the traditional calibration
with just several events, accessing to a lot of data and patterns can help them to be more tolerant to
noises and even uncertainty. Moreover, one can construct ConvRNN models as sequence-to-sequence
networks with many stacked layers (Figure 1), and use the convolutional downsampling technique in
image processing to build hierarchical structures. This allows ConvRNN models to “see” and predict
radar images at different spatial scales, rather than ignoring scale as TREC models [15]. It also allows
flexibly extending the input length or prediction lead times, as well as utilize precipitation information
from all previous steps rather than using only the current situation like traditional models [16].
Another advantage of deep neural networks is that they can be easily applied for various spatial scales,
image sizes and image resolutions, simply by stacking more layers or changing the convolutional
kernel sizes. Especially, Shi et al. [6] showed that modifying the training loss function appropriately can
increase the accuracy in predicting heavy rainfall events, which is a drawback of McGill models [14].

Figure 1. Vanilla sequence-to-sequence structure with two stacked layers for constructing RNN models
in precipitation nowcasting (adapted from [6]). This design consists of an encoder (white) and a decoder
(gray). The circles are RNNs cells and the solid arrows are the cells’ input and output, while the dotted
arrows are recurrent operations. In the encoder, the outputs are downsampled by convolutional
operations, while, in the decoder, they are upsampled by deconvolutional operations. Thanks to that,
models can predict at different spatial scales.

In this work, we investigated the REE task from a Computer Vision (CV) point of view and
suggested some improvements. We adapted the network structure in [6] and compared different test
metrics of the three aforementioned convolutional RNNs in a real situation. While TrajGRU is argued
to be better than ConvGRU, neither has been studied thoughtfully from an image quality perspective.
In addition, even though the prediction quality of ConvGRU is said to be on par with that of ConvLSTM
but using less computational resources, a direct comparison between them has not been done in the
same context. Our work differs from that in [6] as we estimated the image pixel distribution rather than
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the reflectivity threshold mapped to each pixel, which allowed us to conveniently apply several Image
Quality Assessment (IQA) metrics to guide the training process. We aimed at providing a guidance on
choosing an appropriate one among them for future operational researches, especially when previous
works still suffered the blurry image problem. Previous works often considered this issue as an inherent
uncertainty in the data [5,7]. However, agreeing with Klein et al. [17], we argued that this can be the
impact of the loss functions, which mostly based-on L1 or L2 losses (Mean Absolute Error (MAE) or
Mean Squared Error (MSE), respectively). Following some works in CV, we hypothesized that using
IQA metrics to support the training process could be a very cheap but effective solution. With that
purpose, we were not ambitious to conduct a comprehensive work which is able to serve operational
purposes. The findings of our work can be helpful in several aspects of our daily life such as aviation
management, or prediction of local convective storms, as well as can be used for supporting the QPF
tasks [3,7,9,17].

Our contributions are three folds: (1) From a CV viewpoint, we evaluated three popular ConvRNN
models in the precipitation nowcasting literature, ConvLSTM, ConvGRU and TrajGRU, and argued
that the common practice of using L1/L2 measure for training could mislead the judgment among them.
(2) We proposed a new design of the sequence-to-sequence structure to cope with high uncertainty
in weather data by reducing the numbers of channels in high abstract layers, namely dec-seq2seq.
(3) We investigated the applicability of some IQA metrics and implemented effective loss functions for
solving the blurry image issue. To the best of our knowledge, no work has tried this approach in the
REE literature.

2. Related Work

For detail information of CNNs and RNNs (applied in precipitation nowcasting), we refer the
readers to works by Klein et al. [17] and by Heye et al. [2], Shi et al. [5] and Shi et al. [7], respectively.
Here, we summarize d some works leading to our solutions.

2.1. Deep Learning for Radar Echo Extrapolation Based Precipitation Nowcasting

2.1.1. CNN-Based Models

CNNs are originally proposed for analyzing 2D data, but can be used to learn 3D data
representation. Hence they are able to analyze 2D radar image sequence, by considering the temporal
dimension as the remaining dimension in the 3D representation. Among the first attempts to use
CNNs for the REE task is the work in [17], which predicts the center patch of a radar image using a
dynamic network with dynamic filters generated by convolving the input images. However, it requires
inputting a fixed-length sequence, hence cannot allow flexible sequence length and is not convenient
to predict many steps. Later, Shi et al. [7] used a cyclic CNN structure to convolve the final image with
features extracted from the input sequence to predict one step ahead. It is shown to be better than
traditional methods such as Tracking Radar Echoes by Correlation (TREC) and Continuity of TREC
(COTREC). However, these approaches predict only one step ahead in each prediction operation, while
our requirement is to make multi-step predictions, which is more important [2], and we targeted to
predicting the whole images rather than a certain patch. These approaches can be extended to predict
several steps by feeding the predicted image back into the input sequence, but this would make the
errors on the output layer accumulate step-by-step [6]. Another CNN-based approach for the same
purpose is 3D-CNN [18], but Shi et al. [6] showed that it is not better than their TrajGRU model.

2.1.2. Convolutional RNN-Based Models

The REE task seems to be benefited the most by the family of convolutional RNNs. Firstly,
ConvLSTM is introduced in [5] and has caught the attention from many domains. The traditional
architecture of LSTM works on 1D vectors of cell’s memory and state, and uses fully-connected
operations (matrix multiplication) for operating the gates and state transitions. This is a drawback with
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2D data (image or video frames), because the spatial correlation is not exploited and there are too many
redundant weights (which make the training process expensive but not effective). With convolutional
filters replacing the matrix multiplications, ConvLSTM can preserve and exploit the spatial correlations
while representing the temporal correlations simultaneously. Thanks to that, a sequence-to-sequence
model built from ConvLSTM cells outperforms the Real-time Optical flow by Variational methods for
Echoes of Radar (ROVER) algorithm, which is considered as the state of the art optical flow based
model [19].

This idea can be generalized to perform the state-to-state transitions in any type of RNNs.
Ballas et al. [10] applied it to implement ConvGRU in a video recognition task. These advances
have been applied successfully in other domains such as image/video sequence representation [20,21]
and abnormal event detection [22]. Later, Shi et al. [6] proposed TrajGRU model based-on the network
structure in [10], which outperforms ConvGRU in the same conditions in an REE task. Distinct from
ConvGRU and ConvLSTM, which use one filter for different locations (location-invariant), TrajGRU
uses a location-variant mechanic which tracks a set of neighbouring points between the input and the
previous state. This is done by a sub-network to calculate the optical flow between two consecutive
sets of feature maps (Figure 2). This is able to handle complex variations such as rotation or scaling,
which are not captured well in ConvGRU and ConvLSTM.

[m × m × c]
Conv: k=5, 
c=32, s=1

Curren
input

[m × m × c]
Previous

state

[m × m × 32]

Conv: k=5, 
c=32, s=1 [m × m × 32]

Addition Conv: k=5, 
c=2L, s=1 [m × m × 2L]

Figure 2. The trajectory generation network in a TrajGRU cell for tracking a subset of points between
two steps (drawn from the implementation of Shi et al. [6]). The dotted arrows denote the convolution
operations, where m is the cell’s state size, c is the cell’s number of channels, k is the convolution kernel
size, s is the convolution stride size, and L is the number of neighboring points. In [6], the number of
channels of the feature maps for fusing the two steps is fixed at 32. The output of this block has 2L
channels since it needs to estimate both the horizontal and vertical movements of each point.

To leverage the power of convolutional RNNs, sequence-to-sequence networks built from
stacked multi-layers of cells are usually used to encode an input sequence and produce a predicted
sequence [6,10] (Figure 1). Shi et al. [6] stacked three layers of cells to form an encoding-forecasting
network. In the encoder, feature maps are extracted (from the input or previous layer’s output)
and their sizes are reduced before feeding into the network cells. In the decoder (or forecaster),
deconvolutions are used to construct the expected output. Note that the direction of the layer-to-layer
transitions in the decoder is opposite to that in the encoder. Thanks to that, there is no need to feed a
step output back into the network for predicting the next step, as well as the skip-connection technique.
Hence, one of the strongest properties of this encoder–decoder structure is the ability to represent
sequences of any lengths, and predict multiple steps ahead. Using this design, Shi et al. [6] was able
to use five input steps and predict fifteen consecutive steps ahead. These ConvRNN-based models
have been applied successfully in other precipitation nowcasting tasks [1,2,16,23] and other weather
forecasts, such as storm tracking [24]. For an REE task, Sato et al. [16] modified ConvGRU network to
overcome TrajGRU in [6], but that structure is significantly more complex, and we would leave it for
future applications.

Note that some works use the term “Convolutional RNNs” to describe a unified network that
consists of separated convolution layers and fully-connected recurrent layers. We do not cover those
approaches in this study.
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2.1.3. Loss Functions for Training Neural Networks

Most of the previous works report the blurry effect in predicted images. Among the main causes
of this issue are the drawbacks of the training loss functions [25]. In fact, they usually used the MSE
loss (or L2-based losses) as a default to train their models. Klein et al. [17] used the Euclidean error and
argued that it is able to lead to sub-optimal results, in which blurrier images may be penalized less than
more natural looking ones. This is because the L2 loss may make a good assumption about the global
similarity of two images, but not their local structures. In [7], the same issue appears but is referred as
the consequence of the meteorological uncertainty in the atmosphere. The L1 loss function is said to
have the same impacts [25,26]. Shi et al. [6] proposed a combination of balanced MSE and MAE based
on the precipitation intensity value to enhance the performance on predicting heavy rain. However, we
argued that such combination is tricky and still not enough to overcome the issue because it still bases
on L1 and L2 only. Singh et al. [23] proposed to use Generative Adversarial Networks and showed
promising results. However, this technique is not easy to train and require significant more computing
resources. In contrast, IQA metrics are much simpler and less computationally expensive.

In a wider picture of training neural network models in remote sensing, the loss functions have
not gained much attention. Most works in this area that study IQA metrics are for the image processing
tasks. For example, Palubinskas [27] analyzed the similarities and differences of MSE and SSIM;
Xia and Chen et al. [28] mentioned the importance of image quality in meteorology and other remote
sensing domains; and Yang et al. [29] stated the same problem for reconstructed hyper-spectral images.
However, in tasks related to the image prediction challenge, mostly L1 and/or L2 losses are used as
the default training cost measure. We argued that an investigation into this direction could lead to a
significant improvement for the REE task. A similar achievement was obtained by Zhao et al. [25] for
the image restoration tasks, who argued that combining different loss functions can result in better
image quality even though the models are kept unchanged.

2.2. Image Quality Assessment Metrics in Neural Networks

IQA metrics are originally proposed for assessing the degradation of visual quality of images,
and recently often used as loss functions in the image generation tasks. Zhao et al. [25] argued
that L2 and the Peak Signal to Noise Ratio (PSNR) measure can be misleading because they average
the global error in an entire image. They tested the ability of SSIM and MS-SSIM, the two most
popular reference-based measures of the IQA literature, for the tasks of image super-resolution,
denoising and demosaicking and showed promising results. They suggested, however, that using
only SSIM or MS-SSIM will not provide enough error information, and that combining different
kinds of loss functions is a better way. Their experiments showed that MS-SSIM+L1 can result in
the best quality, while using only L2 can lead to the local optimal problem because of it convergence
properties. Palubinskas [27] theoretically analyzed the advantages and drawbacks of MSE and SSIM,
and proposed a composite IQA measure by combining Means, Standard deviations and Correlation
coefficient. Unfortunately, there was no experimental report on the performance of this measure.

Recently, there have been more complex IQA metrics that take advantages of the extracted feature
from the middle layers of neural network. Dosovitskiy and Brox [30] proposed a deep perceptual
similarity (DeePSiM) metric to measure the similarity between the extracted abstract features of two
images. Then, Lu et al. [31] applied that idea successfully in a combination with the GAN technique for
training ConvLSTM models in a video prediction task. Lee et al. [32] used a cosine similarity extracted
from pre-trained VGG-network feature space [33] for comparing images and obtained outstanding
results. However, as we were searching for a cheap solution, we would leave these methods for the
future work.
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3. Materials and Methods

3.1. Dataset: Shenzhen Radar Data

We chose a radar echo image dataset from the CIKM AnalytiCup 2017 competition [34].
The purpose of this dataset is for predicting the rainfall amount of the center site of the images [8],
but we used it for the multi-step REE task. This dataset contains totally 14,000 sequences of radar
reflectivity maps of four elevation angles (0.5 km, 1.5 km, 2.5 km and 3.5 km), covering some
neighboring areas of size 101 km × 101 km. Each sequence has 15 time steps recorded in 90 min with
an interval of 6 min. Each image is of size 101 × 101 pixels, and the reflectivity values are converted to
grayscale ([0, 255]). However, we did not have information to exactly convert the data back to rain-rate
values. There are three sample sets: one training set with 10,000 sequences (in two years) and two test
sets (Test A and Test B, recorded in the next one year of the training set) with 2000 sequences per set.
Because these sets are from different time periods, this sampling mode is more challenging than the
cross-validation sampling one. Moreover, we would require the models to predict the whole maps of
different areas rather than only the center patch. Our requirement is therefore more challenging than
the mentioned previous works.

For our purposes, we modified and used the data as follows. We chose only the last channel (at
the elevation of 3.5 km), because it has the least missing information or noise. In addition, a prediction
of radar images at this elevation can be helpful for the aviation management, which we would aim at
in our future projects. Note that we did not interpolate missing data or remove noise, and required the
models to deal with these issues inherently. This is another challenge that can figure out which model
is better. Finally, we divided each sequence into two parts: the first five steps as the input, and the last
ten steps as the ground truth. Unfortunately, we could not extend the length of the sequences as we
had no time-stamp information to concatenate them. Figure 3 shows the histograms of data values in
the three sample sets (only one channel). The data distribution of the two test sets are significantly
different from the training set. This led to a situation that, in a primarily experiment, when we tried
using one test set for validating a model trained on the entire training set, its validation error quickly
diverged, and the best validation results were too noisy to be recognizable. We believed that this is the
most difficult challenge for our study, as well as for practical applications in this domain.

50 100 150 200 250
Pixel values

0.0

0.2

0.4

0.6

0.8

1.0 train
testA
testB

Figure 3. Histograms of the dataset divided into three parts (best viewed in color). For convenient
comparison and presentation, we scaled the distribution of each set to the range [0, 1] and drew its
histogram as a line. Note that the zero values were excluded as they dominate the data space.

3.2. Sequence-To-Sequence Models for Radar Echo Extrapolation

We started by adapting the network structure proposed in [6] to the Shenzhen data.
While ConvRNNs methods can be ideal for representing temporal-spatial data, how to design a
suitable sequence-to-sequence network is still left opened for research communities. As the image size
of the Shenzhen radar data is smaller than the radar images used in [6] (480 × 480 pixels), we chose
their smaller configuration used for the MovingMNIST++ task (64 × 64 pixels). This model has three
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ConvRNN layers incorporated with some convolution and deconvolution layers. The input is of size
101× 101, and the states are of sizes 51× 51, 26× 26 and 13× 13 from bottom to top (Figure 4). In the
encoder, before the first RNN layer is a convolution layer for down-sampling the original input (by a
half) and producing extracted feature maps, which will be the input of the bottom cell. In the decoder,
after the bottom ConvRNN cell is one deconvolution layer and two convolution layers to produce the
final output. These convolution layers play the role of refining the predicted images.

Figure 4. The three-layer TrajGRU model for one-channel image sequence (two input steps and two
output steps). The cells are presented in rectangles with state [a× a]× b ([a× a] is the size of image,
feature map, or cell states, and b is the number of feature maps or state maps). One down-sampling
is a convolution, and one up-sampling is a deconvolution. In each layer, the step-to-step transition
is done by a “trajectory-net” (Figure 2), which produces flow fields used for a warping process to
calculate the current state. In this figure, L is the number of tracked points, while k is the kernel size
and c is the number of filters of the convolutional operations. ConvGRU or ConvLSTM models can be
implemented by simply replacing these trajectory-net blocks with the common convolution with the
stride size s = 1. In this study, we used kernel size k = 5 for all of the step-to-step transitions.

Regarding to this structure, we realized at least two negative impacts. Firstly, the upsampling
operations in the decoder use kernels with size 4 × 4, while all of the downsampling operations
use 3 × 3 kernels. This practice makes the encoder and decoder imbalanced in terms of observing
resolution and can lead to redundant connections. In fact, we found that using 3 × 3 kernels for all of
the downsampling and upsampling operations did not hurt the performance. Secondly, the number
of feature maps for representing the states of RNN cells is increased from the bottom layer to the
middle layer (from 64 to 96), and kept unchanged at the top layer (96). This is a common practice in
the literature. However, we found that it was not helpful in the case where the distributions of training
data and testing data are significantly different. Shi et al. [6] dealt with this challenge by using an
online-learning strategy, which retrains the models through time when more and more data is coming.
However, this solution is not always applicable in the reality, such as when the computing resources
for retraining is not available.

Therefore, we proposed to reduce the numbers of feature maps (from 64 to 32 to 16 through
bottom-to-top) rather than increasing them. This design was based on a natural intuition widely
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accepted in Deep Learning that the local correlations can be learned at low abstract feature levels
and the global correlations can be learned at higher levels [33]. In the image recognition literature,
an increasing the number of channel is needed to ensure that information is not lost too much when
down-scaling. However, in the prediction task such as this case-study, preserving too many details could
make the models suffer from the over-fitting problem because, at a higher abstraction level, a model
is expected to make assumption about the global rather than the local variations, detail information
is not needed. Besides this ability, our design has less computing consumption thanks to a smaller
number of parameters. We discuss this aspect more clearly in Section 4. Note that Shi et al. [6] used two
convolution layers after the last deconvolution, but we found that using only the one with kernel size
k = 1 was enough and could produce finer result. For convenience, we named our structure dec-seq2seq
because its main property is decreasing channels from layer to layer.

3.3. Image Quality Assessment Metrics as Training Loss Functions

Besides the commonly used MAE and MSE measures, we followed Zhao et al. [25] in using SSIM
and MS-SSIM measures [35–37] to implement combined loss functions. For the video predicting task,
this practice is employed in [26], which proposes a gradient difference loss function to better capture
the fast change between consecutive video frames. However, we found that this gradient-based
measure was not helpful in a preliminary experiment with the Shenzhen data, and hence did not
consider it in this study. The SSIM method to measure the similarity between two images x and y is
defined as follows:

SSIM(x, y) = l(x, y).c(x, y).s(x, y) =

(
2µxµy + C1

µ2
x + µ2

y + C1

)
.

(
2σxσy + C2

σ2
x + σ2

y + C2

)
.
(

σxy + C3

σxσy + C3

)
(1)

in which l(x, y) is the brightness similarity, c(x, y) is the contrast similarity, and s(x, y) is the structure
similarity. µx and µy are means of x and y, respectively, while σx and σy are standard deviations
of x and y, respectively. σxy is the cross correlation of x and y.C1, C2 and C3 are small positive
constants for avoiding zero division and numerical instability. All of these items are of a certain local
patch rather than the whole image. The image similarity is the average of all local patch similarities.
Combining SSIM measures at different scales results in MS-SSIM:

MS-SSIM(x, y) = lα
M(x, y).

M

∏
i=1

cβ
i (x, y).sγ

i (x, y) (2)

in which α, β and γ are relative importance factors, and M is the number of scales. By its nature,
MS-SSIM is said to be able to provide more comprehensive evaluation of image difference. In fact,
it usually performs better than SSIM in static image processing [25]. We would test if it can provide
the same results in the context of an REE task.

For using these measures as loss functions in the neural network training process (that minimizes
the training cost), we followed Zhao et al. [25], who defined SSIM and MS-SSIM losses for a pair of
predicted and ground truth images as:

LSSIM(Ŷ, Y) = 1− SSIM(Ŷ, Y) (3)

LMS-SSIM(Ŷ, Y) = 1−MS-SSIM(Ŷ, Y) (4)

To form combined loss functions, we borrowed a simple combination strategy used in [26]:

Lmixed(Ŷ, Y) = ∑
l

λlLl(Ŷ, Y) (5)
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where l is the component loss chosen in the set {MSE, MAE, SSIM, MS-SSIM} and λl is the scaling
factor for each component.

In addition, for more fairly comparing the outcome of these metrics, we also employed the Pearson
Correlation Coefficient (PCC) measure as being used in [38] for remote sensing images. Our models
would not be aware of the properties of this measure directly in the training process. Note that we did
not employ PSNR, which is commonly used in CV [39], because it would not provide more information
when the compared images are of the same range [37].

4. Experimental Results

We conducted several experiments to show that using only MSE and MAE measures to judge
models in the context of the REE task is not enough, and our idea to improve the model’s ability of
estimating unseen patterns, as well as the effectiveness of some IQA metrics in supporting the training
process. We implemented the models with TensorFlow-GPU-1.8 and executed on NVIDIA Tesla P100
GPU (16GB) with the CUDA-9.0 library. All models were trained with the early-stopping strategy and
settings in [6] (maximum 200,000 iterations with batch-size 4). We set the learning rate at 0.0001 and
decayed it after each 20,000 iterations with a rate of 0.7. The pixel values of images were normalized
to the range [0.0, 1.0] and all measures of comparison would be calculated on this range. Moreover,
to avoid a possible “unlucky” random initialization, we trained each model several times and chose to
report the best one here.

4.1. Evaluation of the Previous Work with IQA Metrics

We started by evaluating if a TrajGRU model constructed with the structure in [6] can outperform
ConvGRU and ConvLSTM models of the same structure in a viewpoint of CV. In this experiment,
the models were trained with only MSE. We randomly selected 8000 samples from the training set for
training and used the remaining 2000 samples for validating (to provide the criterion of early stopping).
We used all 4000 samples of Test A and Test B sets to form the test set. This scenario is closest to the
reality, in which a forecaster observes only the past data for predicting the future. Note that we did not
use the Test A or Test B for validating as there was no information about their time periods. We present
detail information of the models’ parameters and computing consumption in the training process
in Table A1 (Appendix A). Here, we discuss the validating errors and testing measures in Table 1,
which interestingly shows different results from different angles. As all models outperformed the basic
“last input” technique in all measures by large margins, we would not consider this common baseline
again in the following comparisons and analyses.

Table 1. Performances of models following Shi et al. [6] (Figure 4). For convenient presentation,
we scaled up MSE 100 times and MAE 10 times. MSE and MAE are expected to be decreased, while SSIM,
MS-SSIM and PCC are expected to be increased. The best value in each column is presented in bold-face.

Validating Testing

Best MSE×100 MSE×100 MAE×10 SSIM MS-SSIM PCC

Last input - 1.6804 0.8120 0.4552 0.4207 0.6234
TrajGRU ([6]) 0.4455 0.9950 0.6599 0.4920 0.5564 0.7450
ConvGRU ([6]) 0.3143 0.9998 0.6408 0.5380 0.5621 0.7507
ConvLSTM ([6]) 0.3165 0.9962 0.6463 0.5280 0.5629 0.7501

Firstly, we evaluated the models purely by the MSE measure. On the test set, our results agreed
with [6] in that TrajGRU was the best model, with its percentages of advantage over ConvGRU and
ConvLSTM were 0.48% and 0.12%, respectively. However, even though we found that TrajGRU was
usually better in our different training executions (but not always), these margins were modest while
the training process is more costly. Moreover, on the validating set, the errors of ConvGRU and
ConvLSTM were much better than TrajGRU. This can be explained as the impact of the over-fitting
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problem was more severe with ConvGRU and ConvLSTM. When they were based on location-invariant
filters, it appeared that they could learn well familiar patterns but were not strong in exploring unseen
patterns. This explanation was not mentioned in [6], but we believed that this is a critical point to
consider when bringing these ConvRNNs models into practical uses. We argued that if the patterns in
training and testing data are consistent, ConvGRU and ConvLSTM can be better than TrajGRU.

Secondly, in terms of the MAE measure and other IQA metrics, it is clear that TrajGRU was
outperformed by ConvGRU and ConvLSTM. Particularly with SSIM, it was 8.56% and 6.83% worse
than ConvGRU and ConvLSTM, respectively. With MAE, the advantages of ConvGRU and ConvLSTM
were 2.97% and 2.09%, respectively. This means that TrajGRU is not better than the others in
reflecting the local correlations and producing sharp edges of objects. Figure 5 shows an example for
demonstrating these findings. Intuitively, TrajGRU produced less accurate estimation of the local shape
and resulted in more blurry images. We argued that the reason is because ConvGRU and ConvLSTM
use location-invariant filters and hence are able to preserve the local shapes (from the previous step)
better, while TrajGRU tends to break the local shapes and make a stronger assumption about global
changes between two steps. That was why TrajGRU was better on the MSE measure, which is a
global-orienting metric [17]. This trade-off property is not discussed in [6].

ConvGRU ([6])

TrajGRU ([6])

ConvLSTM ([5])

Figure 5. Example of predicted results of three models following Shi et al. [6]. In the the first row, the
five left-most images are the input and then ten right-most images are the expected output. Predicted
images of three models are drawn in the second through the fourth rows.

Finally, to synthetically compare each couple of models over these metrics, we averaged the
percentages of advantage of a model over the other. By this way, ConvGRU and ConvLSTM were
2.57% and 2.13% better than TrajGRU, respectively, mainly thanks to their much better SSIM measure.
Moreover, ConvGRU was 0.46% better than ConvLSTM, which confirmed the conclusion in [6] that
the two models may have similar performance even though the network size of ConvGRU is much
smaller. This means that, from a CV perspective, ConvGRU can be the most effective ConvRNN
model in the context of Shenzhen dataset. With this result, together with considering the significant
higher resources and time consumption of TrajGRU (see Table A1), we inferred that the performance of
TrajGRU would not always be as outstanding as stated in [6]. However, we argued that this situation is
not advantageous to all the models, hence we altered the network structure as described in Section 3.2
and were able to produce more reliable predictions in the next experiment.

4.2. Evaluation of the dec-seq2seq Network Structure

We examined the behaviors of TrajGRU, ConvGRU and ConvLSTM models constructed with our
proposed structure, and compared them with the above models. We named our models dec-TrajGRU,
dec-ConvGRU and dec-ConvLSTM and reused the above training settings. Table 2 presents the validating
and testing results, showing improvements of generalization by our design. On the test set, our
models significantly improved over MSE, MS-SSIM and PCC. Especially with MSE, dec-TrajGRU,
dec-ConvGRU and dec-ConvLSTM improved 11.34%, 10.06% and 4.40% from their previous versions,
respectively. With MAE and SSIM, only dec-TrajGRU was able to improve, while dec-ConvGRU
and dec-ConvLSTM got worse. Synthetic comparing, dec-TrajGRU was 1.02% and 1.87% better
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than dec-ConvGRU and dec-ConvLSTM, respectively, while dec-ConvGRU was 0.89% better than
dec-ConvLSTM. In addition, our dec-TrajGRU was 1.88% better than ConvGRU, considered the best
model in Section 4.1. Interestingly, the validating error of all models significantly increased. This means
that the dec-seq2seq structure was effective in reducing the over-fitting issue, especially for ConvGRU
and TrajGRU. It is more impressive to note that our models are almost 3–4 times smaller than the
previous ones (see Table A1, Appendix A).

Table 2. Performances of three dec-seq2seq models. The presentation is similar to Table 1.

Validating Testing

Best MSE×100 MSE×100 MAE×10 SSIM MS-SSIM PCC

dec-TrajGRU 0.7003 0.8892 0.6401 0.4981 0.5742 0.7718
dec-ConvGRU 0.5793 0.8992 0.6444 0.4830 0.5789 0.7699
dec-ConvLSTM 0.4887 0.9524 0.6476 0.4987 0.5783 0.7593

To view the results more clearly, we plotted the lead time errors of six models in Figure 6. It is
interesting that all models worked quite similarly on the first two or three steps, but our models
significantly outperformed the previous models when going further into the future. This means
that our proposed design was more tolerant to the high and increasing uncertainty in the context of
Shenzhen dataset. As partly explained in Section 3.2, because our models had less detailed information
at the top and middle layers, they were more capable of escaping from familiar patterns (the possible
local optimum in the training process) to estimate strange ones at global and intermediate scales better.
Moreover, in this viewpoint, dec-TrajGRU is seen as the best model for longer time-step prediction,
following by dec-ConvGRU. This means that our proposed design was particularly helpful for the
TrajGRU architecture, leveraging its advanced properties successfully in this data context. To confirm
this finding, we conducted an extensional experiment to compare TrajGRU and dec-TrajGRU with the
MovingMNIST++ data, by generating several test sets with considerably different properties to the
training set (see Appendix B). The results were similar: when the uncertainty increased, both models
got worse but dec-TrajGRU was less mistaken than TrajGRU.
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E
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TrajGRU
ConvGRU
ConvLSTM
dec-TrajGRU (ours)
dec-ConvGRU (ours)
dec-ConvLSTM (ours)

Figure 6. Comparison of our models with the models following Shi et al. [6] in terms of lead-time error
(MSE) on the test set. Best view in color.

However, we also observed the trade-off between the ability to estimate stronger changes of
precipitation particles with the ability to generate sharp images. Intuitively, the dec-TrajGRU model
produced more reasonable images than the others, but it also suffered more from the blurry effect
(see Figure 7). This can be explained by the fact that, in the context of high uncertainty, the top layers
were not affected much by the patterns seen before and produced a reasonable abstract estimation of
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the overview of the image (presented as the cells’ outputted feature maps). These estimated feature
maps are then upsampled and used to guide the lowest layer to estimate small local patches. The blurry
effect appears mainly in these upsamling operations (because of having less detail information than
the previous models), and is not solved well by the local estimating operations, as these operations
are guided by MSE, a global-evaluating loss function. That was why we believed that adding other
local-orienting loss functions can be a supplementary solution.

TrajGRU ([6])

dec-ConvLSTM (ours)

dec-ConvGRU (ours)

dec-TrajGRU (ours)

Figure 7. Example of predicted results of three dec-seq2seq models. The result of TrajGRU from
Section 4.1 is copied here for convenient comparison.

4.3. Evaluation of IQA-Based Loss Functions

In this experiment, we illustrated the effectiveness of several combined loss functions on the
dec-TrajGRU model in Section 4.2. Firstly, we used the previous training settings and observed
that using only MAE, SSIM or MS-SSIM as the loss function would significantly hurt the MSE-test
performance, even though the overall performance could be slightly improved. This might lead to a
poor estimation of the global changes in predicted images. Therefore, we focused on combining MSE
with others to find the reasonably best function. To balance the magnitude of MSE and other measures
in combined loss functions, we set λMAE = 0.1, λSSIM = λMS−SSIM = 0.02. Moreover, we also found
that simply applying the previous early stopping technique on combined loss functions was not a
good choice, because while some testing IQA metrics can be significantly improved, the MSE measure
can be worsened. To deal with this issue, we trained the model with a combined loss function until the
validating MSE got to an equal to or lower than the validation error in Section 4.2 (which was ' 0.007).
Then, the early stopping technique was used to terminate the training process. This strategy is simple
but very important and effective to keep reasonable testing MSE.

Table 3 shows the testing results of three single-measure loss functions and the most effective
combined ones (some other combinations such as SSIM + MS-SSIM did not provide interesting results).
It is clear that using single-measure functions would increase the testing result of that measure,
but decrease the testing-MSE significantly. In general, the combinations with the presence of SSIM
seemed to be better than others, and the best loss function in this context is MSE + MAE + SSIM. To our
surprise, it even improved on testing-MSE and testing-MS-SSIM over the model trained with only MSE
or MS-SSIM. Comparing to the three models following Shi et al. [6], our best MSE measure was > 12%
better. Moreover, using only SSIM or MAE + SSIM also enhanced MAE and MS-SSIM significantly.
As argued in Section 4.2, our network tends to make strong assumptions about the global change
rather than the local correlations, adding metrics which focus on local properties such as SSIM is a
helpful compensation. Since it was able to produce more accurate predictions, other testing metrics
could be improved too.

From the above results, we were able to confirm that using some common IQA metrics (and MAE)
to train neural networks can produce less blurry images in the REE tasks than using only MSE.
However, MSE still plays an important role to provide information about the global assumption.
We illustrate these findings by the example in Figure 8. It is also important to note that the calculation
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of these IQA metrics did not significantly increase the training time, thanks to the very fast GPU-based
execution of TensorFlow. This means that using IQA metrics for training neural networks in the REE
tasks is a very cheap but effective solution, not only for our proposed structure but any other network
architectures. In addition, we also found that using MS-SSIM seemed to be ineffective. The main
reason can be because MS-SSIM is a multi-scale estimation technique, which is similar to the network
structure and hence can not compensate its weakness. This result is opposite to the conclusion in [25]
(about static image generation tasks). Using MAE only also seemed to be a poor choice. This means
that the behaviors of IQA metrics can be different when being brought from CV tasks to the REE tasks,
or more general the image processing applications in remote sensing.

Table 3. Testing performances of the dec-TrajGRU model trained with different loss functions.
For convenience, we used the “+” sign to denote the combination. The overall improvement is
the averaged percentage of advantages in the synthetic comparison with the dec-TrajGRU model trained
with only MSE in Section 4.2.

Testing Overall
ImprovementMSE×100 MAE×10 SSIM MS-SSIM PCC

MAE 0.9536 0.6031 0.5673 0.5773 0.7671 2.30%
SSIM 0.9651 0.5880 0.5934 0.5927 0.7692 4.16%
MS-SSIM 0.9632 0.6384 0.5325 0.5865 0.7668 -0.10%

MSE + MAE 0.8865 0.6132 0.5346 0.5907 0.7776 2.93%
MSE + SSIM 0.8870 0.5994 0.5762 0.5927 0.7768 5.07%
MSE + MS-SSIM 0.8991 0.6348 0.4997 0.5849 0.7719 0.23%
MAE + SSIM 0.9255 0.5787 0.5924 0.5957 0.7770 5.61%
MAE + MS-SSIM 0.9322 0.6001 0.5689 0.5931 0.7738 3.67%
MSE + MAE + SSIM 0.8743 0.5836 0.5829 0.5994 0.7845 6.56%
MSE + MAE + MS-SSIM 0.8941 0.6177 0.5424 0.5846 0.7720 2.58%

To further confirm the meanings of our study findings in a closer view to an operational context,
we compared the three best models in this part (chosen based-on the Overall Improvement) with
the considered best one in [6] (TrajGRU in Section 4.1) in terms of Critical Success Index (CSI),
False Alarm Rate (FAR), and Probability Of Detection (POD) metrics. We assumed that the dBZ
values could be calculated by dBZ = pixel_value× 95/255− 10. With this conversion, the dBZ range
in the test set is [−10, 66], and the proportions of dBZ thresholds 5, 20 and 40 are about 54.18%,
16.87% and 0.35%, respectively. Table 4 provides an overall comparison over CSI, FAR and POD of
these thresholds. While our model trained with MSE + SSIM was better than the previous best in
seven among nine criteria, the two remaining models significantly outperformed that baseline in all
criteria. Especially with heavier events, our models showed better overall predictions. We also tried
other gains and offsets for the conversion and saw similar results. Hence, it can be concluded that the
improvements in image quality are helpful for serving common operational expectations.
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MSE (baseline)

MSE + MAE

MSE + SSIM

MSE + MS-SSIM

MSE + MAE + MS-SSIM

MSE + MAE + SSIM

MAE

SSIM

MS-SSIM

MAE + SSIM

MAE + MS-SSIM

Figure 8. Example of predicted results of the dec-TrajGRU model trained with different loss functions.
The result of dec-TrajGRU from Section 4.2 is copied here for convenient comparing.

Table 4. Comparison of our three best models with TrajGRU [6] implemented in Section 4.1 over CSI,
FAR and POD (average score of the whole sequence). CSI and POD are expected to increase while FAR
is expected to decrease.

CSI FAR POD

dBZ Threshold 5 20 40 5 20 40 5 20 40

TrajGRU [6] 0.6729 0.2994 0.0436 0.1812 0.4815 0.7900 0.7646 0.3949 0.0593
MSE + SSIM 0.7013 0.3059 0.0411 0.1726 0.4443 0.7539 0.8027 0.3991 0.0568
MAE + SSIM 0.6996 0.3208 0.0524 0.1579 0.4490 0.7788 0.7879 0.4264 0.0734
MSE + MAE + SSIM 0.7069 0.3192 0.0549 0.1683 0.4513 0.7797 0.8053 0.4296 0.0859

However, we realized that the models could work well with the dBZ thresholds 5 and 20 but were
not stable with the dBZ threshold 40 (very low CSI but very high FAR). To analyze this issue more
clearly, we plotted the frame-wise scores of these measures in Figure 9. In the cases of dBZ > 5 and dBZ
> 20, all models performed similarly for the first several steps, but our models were more accurate with
the remaining ones. In the case of dBZ > 40, our models were often better for several starting steps
(except for the MSE + SSIM model), but the quality of all models degraded rapidly, with the CSI and
POD scores becoming nearly zero after 42 min. We argued that there could be several reasons. Firstly,
the train and test data have high uncertainty and heavy rain rarely occurs (0.35%). As can be inferred
from the results in Figure 3, these events can be considered as outliers and are extremely difficult to
model. This also made the evaluation vulnerable to noises (there are a number of white dots in the
images, meaning very high rain-rate). Secondly, DL methods usually need big amount of data but the
employed dataset is still considerably small in a DL context. The task is also more challenging with the
test-size equals a half of the training-size. Thirdly, as limited by the fixed sequence length, we set a
short input sequence and the models did not have enough information about the intensity change to
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estimate it well. Finally, our approach was driven to cope with the general precipitation rather than to
focus on heavy rain. We believed that this issue can be solved by assigning higher weights on high
rain rates (as in [6]), and using a bigger dataset with longer input sequences.Atmosphere 2019, xx, 5 15 of 20
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Figure 9. Frame-wise CSI, FAR and POD scores of of predicting rainfall situations at different dBZ
thresholds. Best view in color.

Interestingly, Figure 9c shows that the (MSE + SSIM) model degraded more rapidly than the
others in terms of CSI and POD, but made the least wrong predictions in terms of FAR. We argued

Figure 9. Frame-wise CSI, FAR and POD scores of of predicting rainfall situations at different dBZ
thresholds. Best view in color.
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Interestingly, Figure 9c shows that the (MSE + SSIM) model degraded more rapidly than the others
in terms of CSI and POD, but made the least wrong predictions in terms of FAR. We argued that using
MSE for our models led to the fact that they did not make strong assumptions about the change of high
intensity, and adding MAE was helpful. This argument agrees with the finding in [6], i.e. using MAE is
helpful for predicting heavier rain. This can be because MSE squares the distance between two values,
and in the intensity range [0, 1], an error evaluation might become less and less important. On the other
hand, MAE keeps the original distance of intensity to guide the training process. Because DL models
usually produce low values in the initial training steps, and need the guidance from the loss functions
to increase them, MAE could do better than MSE in this case. Moreover, SSIM might estimate the
intensity well, but locally, and could not compensate MSE well enough. It should be noted that the FAR
score of the MSE + SSIM model might fluctuate, as in Figure 9c, because there are some high intensity
particles suddenly appeared and decreased in some samples. However, we thought that it was hard to
draw an adequate conclusion for this outlier case, and suggested this issue for the future work.

In general, we argued that the MSE + SSIM was still competitive with the MAE + SSIM and MSE
+ MAE + SSIM models, and outperformed the TrajGRU model. This is strongly supported by the
evidence in Figure 10, which shows that the coefficient of determination of our three models did not
fall below the decoupling point in all 10 steps, but the TrajGRU model failed after Step 8 (48 min).
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Figure 10. Coefficients of determination over lead times. Value of the decoupling point is 1/e. Best view
in color.

5. Conclusions and Future Work

We have presented a different viewpoint from traditional approaches on some ConvRNNs
methods for the REE task. Using the Shenzhen data, which poses a difficult context for nowcasting
models, we demonstrated that the popular MSE loss function can mislead the evaluation of models.
To cope with the challenge of the dataset, we then proposed a new sequence-to-sequence structure
by reducing the number of channels of recurrent layers through bottom-to-top. Experimental results
show that dec-seq2seq models were more tolerant to the high and increasing uncertainty in the data.
Even though our design is specific-case driven, it is reasonable because it is based on a realistic situation.
In the context of climate change, such situation is more likely to occur than the common assumption
of i.i.d distribution in the machine learning literature. We confirmed this experimental finding on
the MovingMNIST++ data by generating test sets with significantly different characteristics from the
training set. We further improved the prediction quality of the REE task by using two popular IQA
metrics, SSIM and MS-SSIM, to form combined loss functions. To the best of our knowledge, this is the
first use of IQA metrics for training neural networks in the REE task and successfully produced less
blurry images. Our experimental findings show that this approach can be a cheap solution but very
effective for guiding RNNs in remote sensing areas. In more detail, we found that SSIM is a strong
candidate for the REE task, and using SSIM to combine with MSE and MAE was the best loss function.
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Finally, we concluded that improving predicted images in terms of CV standards can lead to improved
CSI, FAR and POD measures.

For the future work, we propose applying the viewpoint in this study for the multi-channel REE
task, which needs to forecast different radar images at different elevation angles, larger spatial and
temporal scales, and finer resolutions (such as NEXRAD data). We also believe that the prediction
quality can be enhanced more by blending IQA metrics with the GAN-loss, as well as incorporating
the training loss at the abstract levels. Particularly, an investigation of these techniques for heavy rain
will be highly meaningful.
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Appendix A. Network Sizes and Training Costs

Table A1. Network sizes and training costs of the models adapted from [6] (the top three rows) and
our proposed dec-seq2seq models (the bottom three rows). Because of the early stopping technique,
models might terminate after different numbers of iterations, hence we reported the average time of
one iteration here.

No. of Trainable
Variables

No. of Trainable
Parameters

Highest GPU
Consumption (MB)

One Iteration
(minutes)

TrajGRU [6] 115 4,341,677 9159 1.8
ConvGRU [6] 81 4,555,265 4551 1.5
ConvLSTM [6] 121 7,463,009 4551 2.1

dec-TrajGRU 113 1,276,669 4807 1.7
dec-ConvGRU 79 1,066,081 1479 1.1
dec-ConvLSTM 119 2,544,609 1479 1.5

Appendix B. Evaluation of TrajGRU and dec-TrajGRU models on MovingMNIST++

To demonstrate our experimental findings in the context of Shenzhen data, we tried to simulate
its properties by an experiment on the MovingMNIST++ data with one training set and several test
sets. In this experiment, the length of both the input and output sequences was 10, and the image size
was 101× 101 pixels. We generated the training set (8000 samples for training and 2000 samples for
validating) with two randomly selected digits among the first 40,000 images in the MNIST dataset,
following the implementation in [6]. To form different test sets (each had 4000 samples) with high
and different levels of uncertainty, we randomly chose one, two or three digits among the remaining
10,000 images, and gradually changed the generating settings. This is similar to the out-of-domain
testing in [5], where the images in the test sets did not appear in the training set. Since we tried
to simulate the situation of weather data, our test data were even more uncertain. The generating
settings are given in Table A2. The testing results given in Table A3 show that our dec-TrajGRU
model seemed to be less mistaken than TrajGRU when the uncertainty changed, especially when the
scaling variation is higher. Figure A1 illustrates this argument intuitively, in which both models made
wrong assumption.
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Table A2. Generating settings of the training set and three test sets with different levels of uncertainty.
To vary the intensity of images after generating each sample, we randomly generated an integer
between max_range and scale the whole sequence to that number.

Variables Training Set Test Set 1 Test Set 2 Test Set 3 Test Set 4

max_velocity_scale 3.6 4.6 5.6 5.6 4.6
initial_velocity_range [0.0, 3.6] [0.0, 4.6] [2.0, 5.6] [0.0, 5.6] [2.0, 4.6]
scale_variation_range [0.9, 1.1] [0.8, 1.2] [0.7, 1.3] [0.6, 1.4] [0.5, 1.5]
rotation_angle_range [−30, 30] [−45, 45] [−45, 45] [−45, 45] [−40, 40]
global_rotation_angle_range [−20, 20] [−45, 45] [−30, 30] [−45, 45] [−30, 30]
illumination_factor_range [0.6, 1.0] [0.8, 1.2] [0.7, 1.3] [0.8, 1.2] [0.8, 1.2]
max_range [100, 200] [80, 220] [80, 220] [80, 220] [80, 220]

Table A3. Validating and testing MSE × 100 of TrajGRU and dec-TrajGRU models.

Validating Test Set 1 Test Set 2 Test Set 3 Test Set 4

TrajGRU [6] 0.6833 0.9135 0.8342 1.1543 1.2179
dec-TrajGRU (ours) 0.7296 0.9114 0.8246 1.1420 1.1825

TrajGRU

dec-TrajGRU

Figure A1. Example of MovingMNIST++ prediction (Test set 4). We observed that dec-TrajGRU often
made less wrong assumption when going further into the future.
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