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Abstract: Complex temperature processes are the coupling results of natural and human processes,
but few studies focused on the interactive effects between natural and human systems. Based on the
dataset for temperature during the period of 1980–2012, we analyzed the complexity of temperature by
using the Correlation Dimension (CD) method. Then, we used the Geogdetector method to examine
the effects of factors and their interactions on the temperature process in the Yangtze River Delta
(YRD). The main conclusions are as follows: (1) the temperature rose 1.53 ◦C; and, among the dense
areas of population and urban, the temperature rose the fastest. (2) The temperature process was
more complicated in the sparse areas of population and urban than in the dense areas of population
and urban. (3) The complexity of temperature dynamics increased along with the increase of temporal
scale. To describe the temperature dynamic, at least two independent variables were needed at a daily
scale, but at least three independent variables were needed at seasonal and annual scales. (4) Each
driving factor did not work alone, but interacted with each other and had an enhanced effect on
temperature. In addition, the interaction between economic activity and urban density had the largest
influence on temperature.

Keywords: correlation dimension method; Geogdetector method; interaction effect; multi-scale

1. Introduction

The climate system is a complex system, which influence on ecosystems and human society has
attracted more and more attention from scholars, and temperature is one of the most important factors
in the climate system.

A number of studies [1–7] have indicated that the spatiotemporal variation of temperature and its
driving factors had regional differences. Sharma et al. [8] analyzed the temperature changes in eastern
India, and the results showed that the average temperature in central, southern and western was
decreasing, while the average temperature in the northeast, west and southeast was on the rise. Salman
et al. [9] conducted a hybrid model to select the climate models for simulating spatiotemporal changes
in temperature of Iraq. They found that temperature would increase during the period of 2070–2099
and temperatures in the north and northeast had increased significantly. Kenawy et al. [10] pointed out
that temperatures in northeastern Spain showed an upward trend during the 1960–2006 period, and
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the Eastern Atlantic (EA), the Scandinavian (SCA), and the Western Mediterranean Oscillation (WeMO)
patterns had a significant impact on temperature changes. Iqbal et al. [11] found temperature had
different correlations with North Atlantic Oscillation (NAO), Arctic Oscillation (AO), El Niño-Southern
Oscillation (ENSO), and North Sea Caspian Pattern (NCP) in different months in Pakistan. It can be
seen that the temperature change is complicated. Therefore, further understanding the mechanisms
for spatio-temporal variation of temperature and its driving factors are highly desired.

In order to reveal the complexity of temperature, many methods had been proposed, such
as wavelet analysis [12,13], ensemble experience mode decomposition [14], spectrum analysis [15],
Mann-Kendall trend test [16], and correlation dimension [17]. All of these methods had explored the
complexity of temperature from different perspectives and got some achievements. On the other hand,
there are many studies about the driving factors of temperature change. The main driving factors
are atmospheric circulation [2], land use changes [3], greenhouse gas emissions [18], urbanization
development [19], and so on. However, under the global warming, coupled with rapid economic
development, population growth, and urbanization, the temperature and its driving factors became
more and more complicated. In addition, the contribution rate of natural and socioeconomic factors
and their interactions on temperature variation were rarely studied and remained one of main gaps in
our current knowledge.

Due to the regional differences, it is necessary to conduct an in-depth analysis of temperature
variations in some key areas, especially those that play an important role in national development.
The Yangtze River Delta (YRD), one of China’s most developed, dynamic, densely populated and
concentrated industrial areas, is growing into an influential world-class metropolitan area. However,
the developed industries and frequent human activities have led to an increasingly serious urban heat
island phenomenon in this region, forming a strong regional heat island, leading to the temperature
presenting a significant warming trend over the past 50 years and extremely high temperatures occuring
frequently [20]. Property, economic losses, and social impacts caused by extremely temperature events
in this region are often enormous. In addition, extreme changes in temperature can also have an
impact on the environment and endanger human health [21]. Therefore, it is of great significance to
study the temperature changes in this region, to find the reasons that affect its changes, and to try to
reduce losses.

Therefore, we attempt to explore the spatiotemporal dynamics of temperature in the YRD,
and assess the influences of factors and their interactions on temperature. Based on observed
temperature data at 68 meteorological stations during the period of 1980–2012, we first investigated the
spatiotemporal complexity of temperature by using the Correlation Dimension (CD) method; and then
we analyzed the individual contribution rates and interactional contribution rates of driving factors to
temperature slope (TS) by using the Geogdetector method. Our main purpose is to explore which
factors or interactions between factors contribute the most to temperature.

2. Materials and Methods

2.1. Study Area and Data

The study area includes four regions: Jiangsu Province, Anhui Province, Zhejiang Province, and
Shanghai (Figure 1). The study area lies between 114◦54′–122◦42′ E and 27◦12′–35◦20′ N, and has
an area of approximately 344.03 103 km2, accounting for 3.58% of China’s total land area. The area
is under a monsoon climate regime, with hot and humid summer and cold and dry winter. The
annual precipitation is about 1000 mm, of which the precipitation in summer accounts for two-thirds
of the total precipitation [22]. The average temperature is close to 30 ◦C in July and August, and the
maximum temperature recently exceeded 40 ◦C in Shanghai [23]. The high terrain is in the north and
south and low terrain in the middle, which is dominated by plains and hills. In addition, the YRD is
one of the most developed regions in China, with dense population, convenient transportation, and
developed tertiary industry.
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Figure 1. The study area and spatial distribution of 68 meteorological stations. 

On a global scale, the temperature is mainly affected by factors such as atmospheric circulation, 
volcanic eruptions, sunspots, and so on. However, on the regional scale, the temperature is mainly 
affected by surface properties and human activities. According to previous studies [24–26], the 
altitude (AT), normalized difference vegetation index (NDVI), urban density (UD), gross domestic 
product (GDP), and night light (NL) datasets were selected. The first two can be seen as natural 
factors and the last three can be seen as socioeconomic factors. The daily temperature of 68 
meteorological stations from 1980 to 2012 is from the China Meteorological Data Service Center 
(http://data.cma.com). We analyzed data from the period from 1980 to 2012 because we couldn’t get 
station data of temperature for 2013–2018. AT and UD data are provided by the Data Center for 
Resources and Environmental Sciences, Chinese Academy of Sciences (RESDC) 
(http://www.resdc.cn), and the UD data is from 1990 to 2010. NDVI is from the Geospatial data cloud 
(http://www.gscloud.cn/), and its period is from 1989 to 2012. NL is from the National Centers for 
Environmental Information (https://www.ngdc.noaa.gov/), and its period is from 1992 to 2012. GDP 
is from the “Shanghai Statistical Yearbook”, “Anhui Statistical Yearbook”, “Jiangsu Statistical 
Yearbook”, “Zhejiang Statistical Yearbook”, and “China Regional Economic Statistics Yearbook” and 
other statistics, and its period is from 1980–2012. To ensure a consistent data format, a 0.5 km by 0.5 
km grid for the whole area in ArcGIS 10.5 software (Manufacturer, City, US State abbrev. if 
applicable, Country) was built, assigned values to each grid, and deleted the outliers by using a box-
plot analysis method. According to different standards, all factors were divided into different strata 
using ArcGIS 10.5 software. The division of the results is shown in Figure 2 below. 

  

Figure 1. The study area and spatial distribution of 68 meteorological stations.

On a global scale, the temperature is mainly affected by factors such as atmospheric circulation,
volcanic eruptions, sunspots, and so on. However, on the regional scale, the temperature is mainly
affected by surface properties and human activities. According to previous studies [24–26], the altitude
(AT), normalized difference vegetation index (NDVI), urban density (UD), gross domestic product
(GDP), and night light (NL) datasets were selected. The first two can be seen as natural factors and the
last three can be seen as socioeconomic factors. The daily temperature of 68 meteorological stations
from 1980 to 2012 is from the China Meteorological Data Service Center (http://data.cma.com). We
analyzed data from the period from 1980 to 2012 because we couldn’t get station data of temperature
for 2013–2018. AT and UD data are provided by the Data Center for Resources and Environmental
Sciences, Chinese Academy of Sciences (RESDC) (http://www.resdc.cn), and the UD data is from 1990
to 2010. NDVI is from the Geospatial data cloud (http://www.gscloud.cn/), and its period is from 1989
to 2012. NL is from the National Centers for Environmental Information (https://www.ngdc.noaa.gov/),
and its period is from 1992 to 2012. GDP is from the “Shanghai Statistical Yearbook”, “Anhui Statistical
Yearbook”, “Jiangsu Statistical Yearbook”, “Zhejiang Statistical Yearbook”, and “China Regional
Economic Statistics Yearbook” and other statistics, and its period is from 1980–2012. To ensure a
consistent data format, a 0.5 km by 0.5 km grid for the whole area in ArcGIS 10.5 software (Manufacturer,
City, US State abbrev. if applicable, Country) was built, assigned values to each grid, and deleted the
outliers by using a box-plot analysis method. According to different standards, all factors were divided
into different strata using ArcGIS 10.5 software. The division of the results is shown in Figure 2 below.

http://data.cma.com
http://www.resdc.cn
http://www.gscloud.cn/
https://www.ngdc.noaa.gov/
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2.2. Methods

To investigate the spatiotemporal complexity of temperature and its driving factors, the correlation
dimension method and the Geogdetector method were used. It can be seen from Figure 3, we first
showed the spatiotemporal pattern of temperature; then, we analyzed the complexity of temperature
on the daily, seasonal, and annual scales by using the Correlation Dimension (CD) method;finally, the
individual contribution rates and interactional contribution rates of driving factors to the temperature
slope (TS) by using Geogdetector method were detected.
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2.2.1. Trend Analysis Method

Trend analysis is the most studied and most popular quantitative forecasting method by far. It
is based on a known historical data to fit a curve, so that this curve can reflect the growth trend of
things themselves, and then to predict the future according to this growth trend curve. Commonly
used trend models include linear trend models, polynomial trend models, linear trend models, log
trend models, power function trend models, exponential trend models, and so on [27]. In this study,
we use the linear trend method to analyze the change trend of the time series:

y(t) = at + b, (1)

where y represents the time series, t represents the time, a represents the linear slope, and b represents
the intercept.

If a > 0, it indicates that the time series is increasing, if a = 0, it means that the time series is not
changing, and, if a < 0, it indicates that the time series is decreasing. The size of a indicates the degree
of change in time series.

2.2.2. Kriging Interpolation Method

Temperature is a regionalized variable, which is changing with the variation of space position.
In order to analyze the distribution of the plum rainfall in different years, Kriging interpolation is
employed. Kriging interpolation (or space local estimation) is named by D. G. Krige, who is a mining
engineer in South Africa, and it is an optimal interpolation method [28]. The original data of the
regional variables and the structural characteristics of the variance function is used to estimate the
value of non-sampling points unbiasedly and optimally [28]. In general, Kriging interpolation contains
several types, namely Ordinary Kriging, Universal Kriging, Co-Kriging, and so on. Ordinary Kriging
is shown below:

Assume that Z(x) is a regionalized variable that satisfies two-stage stationary hypotheses and
intrinsic hypothesis. m is mathematical expectation, with covariance function and variance function all
existing at the same time. The relation between them is indicated below:

E[Z(x)] = m, (2)

C(h) = E[Z(x)Z(x + h)] −m2, (3)

γ(h) =
1
2

E[(Z(x) −Z(x + h)]2. (4)

Assuming that there are no measured points in the neighborhood of x, namely x1, x2, . . . , xn, for
which the sample value is Z(xi)(i = 1, 2, 3, . . . , n), the formula can be defined as follows:

Z∗(x) =
n∑

i=1

λiZ(xi), (5)

where λi is a weight coefficient that presents the contribution degree of the observed values of Z(xi) to
estimate the values of Z∗(x). Two points need to be noticed about this formula: on the one hand, the
estimated value of Z∗(x) must be unbiased, namely the mathematical expectation of the deviation is
zero; on the other hand, it must be optimal, namely the difference between the estimated value and the
actual value is the smallest.

2.2.3. Correlation Dimension (CD)

Since the appearance of fractal theory, fractal dimension has been welcomed by scholars as one
of the quantitative indicators to describe whether the dynamic system has chaotic characteristics.
There are different types of fractal dimensions, such as topological dimension, Hausdorff dimension,
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information dimension, and correlation dimension. As for the correlation dimension, Grassberger
and Procaccia [29] proposed an analysis method for experimental time series data in 1983, which is to
obtain the fractal dimension through the relationship between the integral C (r) and the distance r on
the reconstructed phase space through the univariate time series. This method is called a G–P method.
Because it is particularly suitable for experimental observation data and the algorithm is simple and
easy to implement, it has been widely used. In this study, we use this method when calculating the
correlation dimension.

The correlation dimension (CD) is usually applied to analyze time series and determine if it
exhibits a chaotic dynamic characteristic [30,31]. Considering {x1, x2, x3, . . . , xi, . . . }, the equal interval
time series of daily temperature, and the first m data are extracted, and they determine the first point
in the m-dimensional space, which is denoted as X1. Then, remove x1, and take m data x2, x3, . . . ,
xm+1, and the second point is composed of this set of data in m-dimensional space, which is recorded
as X2. According to this, a series of phase points X1, X2, . . . , XN are formed. Given the number r, and
check how many point pairs (Xi, Xj) distance is less than r, and the ratio of the number that point pairs
distance is less than r to the total number of point pairs N is denoted as C(r) [17]. It can be expressed as
the following formula:

C(r) =
1

N2

∑N

i, j , 1
i , j

θ
(
r−

∣∣∣Xi −X j
∣∣∣), (6)

where θ(x) is the Heaviside function, which is defined as:

θ(x) =
{

1
0

, x > 0
, x < 0

. (7)

If r is too large, the distance of all point pairs will not exceed it. In addition, this r cannot
measure the correlation between phase points. In addition, appropriate reduce r, the following formula
may exist:

C(r) ∝ rd. (8)

If this relationship exists, d is a dimension called the correlation dimension, denoted as D2:

D2 = lim
r→0

ln C(r)
ln r

. (9)

The limit here mainly represents a direction in which r is reduced, and it is not mean that the r
must be close to 0. In the scale transformation of the actual system, there are scale restrictions in the
magnitude of both directions. Exceeding this limit is beyond the featureless scale area.

Figure 4 shows the results of ln(r) versus ln(r), and the correlation dimension (d) versus embedding
dimension (m) used the measured data of temperature in this paper. It is apparent that the correlation
dimension, D2, is given by the slope coefficient of ln(r) versus lnr. According to (lnr, lnC(r)), D2 can be
obtained by the least squares method using a log–log grid (as shown in Figure 4a).

To detect the chaotic behavior of the system, the correlation dimension has to be plotted as a
function of the embedding dimension (as shown in Figure 4b).

The MATLAB 2014a software (Manufacturer, City, US State abbrev. if applicable, Country)
was used to calculate Correlation Dimension. First, we calculated the time series of daily average
temperature, monthly average temperature, and annual average temperature of each meteorological
station during the period of 1980–2012, and then calculated the CD value of each station on different
time scales through programming using MATLAB software (The MathWorks, Natick, MA, USA).



Atmosphere 2020, 11, 32 7 of 17Atmosphere 2019, 10, x FOR PEER REVIEW 7 of 17 

 

 

Figure 4. (a) a plot of ln(𝑟) versus ln(𝑟) and (b) the correlation dimension (𝑑) versus embedding 
dimension (𝑚). 

2.2.4. Geogdetector 

The influencing factors have spatial heterogeneity and work together to affect the temperature. 
Geogdetector is a set of statistical methods for detecting spatial variability and revealing forces 
driving the variability [32,33]. The advantages of this method are that it cannot only detect both 
quantitative and qualitative data, but also can detect the interaction of two factors [34]. Geogdetector 
contains four detectors: a risk detector, a factor detector, an ecological detector, and an interaction 
detector. 

The risk detector can determine whether there is a significant difference in the means of 
attributes between two sub-regions, using the t statistic to test: 𝑡 = , 

(10) 

where 𝑌  is the attribution average in the region h, 𝑛  is the sample size of sub-region h, and Var is 
the variance. The statistic t approximates the Student’s distribution, where the degree of freedom (df) 
is calculated as: 

𝑑𝑓 = 𝑉𝑎𝑟 𝑌𝑛 + 𝑉𝑎𝑟 𝑌𝑛1𝑛 − 1 𝑉𝑎𝑟 𝑌𝑛 + 1𝑛 − 1 𝑉𝑎𝑟 𝑌𝑛 . (11) 

Null hypothesis: 𝑌 = 𝑌 . If H0 is rejected at significance level α, there is a significant 
difference in the mean of the attributes between the two sub-regions. 

The factor detector mainly detects the spatial variability of Y and the extent to which X is probed 
to explain the spatial differentiation of Y. The q-value was used to measure the factors: 𝑞 = 1 − ∑ 𝑁 𝜎𝑁𝜎 = 1 − 𝑆𝑆𝑊𝑆𝑆𝑇 , (12) 

𝑆𝑆𝑊 = 𝑁 𝜎 ,     𝑆𝑆𝑇 = 𝑁𝜎 , (13) 

where h = 1, …, L is the stratum of Y or X, Nh, and N are the unit numbers of layer h and the unit 
numbers of the whole region, respectively, and 𝜎  and 𝜎  are the variances of Y of the layer h and 
of the whole region, respectively. SSW and SST are the sum of squares and the total sum of squares, 
respectively. The range of q is [0, 1]. The larger the value, the more obvious the spatial distribution of 

Figure 4. (a) a plot of ln(r) versus ln(r) and (b) the correlation dimension (d) versus embedding
dimension (m).

2.2.4. Geogdetector

The influencing factors have spatial heterogeneity and work together to affect the temperature.
Geogdetector is a set of statistical methods for detecting spatial variability and revealing forces driving
the variability [32,33]. The advantages of this method are that it cannot only detect both quantitative
and qualitative data, but also can detect the interaction of two factors [34]. Geogdetector contains four
detectors: a risk detector, a factor detector, an ecological detector, and an interaction detector.

The risk detector can determine whether there is a significant difference in the means of attributes
between two sub-regions, using the t statistic to test:

tyh=1 yh=2
=

Yh=1 −Yh=2[
Var(Yh=1)

nh=1
+

Var(Yh=2)
nh=2

] 1
2

, (10)

where Yh is the attribution average in the region h, nh is the sample size of sub-region h, and Var is the
variance. The statistic t approximates the Student’s distribution, where the degree of freedom (df ) is
calculated as:

d f =

Var(Yh=1)
nz=1

+
Var(Yh=2)

nz=2

1
nh=1−1

[
Var(Yh=1)

nh=1

]2

+ 1
nh=2−1

[
Var(Yh=2)

nh=2

]2 . (11)

Null hypothesis: Yh=1 = Yh=2. If H0 is rejected at significance level α, there is a significant
difference in the mean of the attributes between the two sub-regions.

The factor detector mainly detects the spatial variability of Y and the extent to which X is probed
to explain the spatial differentiation of Y. The q-value was used to measure the factors:

q = 1−

∑L
h=1 Nhσh

2

Nσ2 = 1−
SSW
SST

, (12)

SSW =
L∑

h=1

Nhσh
2, SST = Nσ2, (13)

where h = 1, . . . , L is the stratum of Y or X, Nh, and N are the unit numbers of layer h and the unit
numbers of the whole region, respectively, and σh

2 and σ2 are the variances of Y of the layer h and
of the whole region, respectively. SSW and SST are the sum of squares and the total sum of squares,
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respectively. The range of q is [0, 1]. The larger the value, the more obvious the spatial distribution
of Y is. If the stratum is generated by the independent variable X, a larger q value shows stronger
explanatory power of the independent variable X to Y, and a smaller q means weaker power. In
extreme cases, a q value of 1 indicates that factor X has complete control over the spatial distribution of
Y, and a q value of 0 indicates that factor X has no control over the spatial distribution of Y.

The ecological detector explores whether a geographical stratum, C, is more significant than
another stratum, D, in controlling the spatial pattern, and the statistic F is used to measure it:

F =
NX1(NX2 − 1)SSWX1

NX2(NX1 − 1)SSWX2
, (14)

SSWX =
L1∑

h=1

Nhσh
2, SSTX2 =

L2∑
h=1

Nhσh
2, (15)

where Nx1 and Nx2 are the sample sizes of factors X1 and X2, respectively, and SSWx1 and SSWx2 are
sums of the variances in the strata formed by X1 and X2, respectively. L1 and L2 represent the number
of variables in X1 and X2, respectively. H0 is SSWx1 = SSWx2. If H0 is rejected at the significance level
of α, there is a significant difference in the spatial distribution of Y between X1 and X2.

The interaction detector is used to evaluate whether X1 and X2 together will increase or decrease
the explanatory power of the dependent variable Y, or whether the effects of these factors on Y are
independent of each other. q(X1), q(X2), and q((X1∩X2) were calculated and compared the differences
between q(X1), q(X2), and q((X1∩X2).

The Geogdetector software was used to calculate Geogdetector. First, we need to calculate the
annual average of temperature, AT, NDVI, UD, GDP change rate, and NL in their respective time
periods, and convert the data format to .tif format; secondly, a 0.5 × 0.5 km grid is established by
ArcGIS software, and each variable is extracted by the points in the grid; next, the extracted AT, NDVI,
UD, GDP change rate, and NL were classified respectively. In this study, these variables are divided
into five categories according to the natural segmentation method in ArcGIS software. Finally, the
processed data is imported into the Geogdetector software for calculation.

3. Results

3.1. The Spatiotemporal Pattern of Temperature

In order to understand the temperature variations during the period of 1980–2012 in the YRD, we
first analyzed the overall trend of temperature variation by using the linear trend method, and the
linear slope is used to identify the trend of temperature changes. If the linear slope is greater than 0,
it indicates that temperature is increasing, if the linear slope is equal to 0, it means that temperature
is not changing, and, if the linear slope is less than 0, it indicates that temperature is decreasing. It
showed a significant increasing trend during the period of 1980–2012 (Figure 5), and this trend may
continue in the future. We can see that the temperature rose 1.53 ◦C with the average rising rate of
0.465 ◦C/10 years and passed the significance test during the period of 1980–2012. However, in the
most recent 50 years, the global average rising rate only has reached about 0.13 ◦C/10 years [35]. We
can conclude that the increase in temperature in the YRD was not only the result of global warming,
but also other regional factors.
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Then, we showed the spatial distribution of TS during the period of 1980–2012 (Figure 6). The
ordinary Kriging method was used during the interpolation, in which a spherical model is used when
selecting the semi-variogram model, and its parameters are system default parameters. We can see
that the temperature rose in all regions. In addition, among the dense areas of population and urban,
the temperature rose quickly, while the temperature in the sparse areas of population and urban
rose slowly.
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3.2. The Spatiotemporal Complexity of Temperature

3.2.1. The Temporal Complexity of Temperature

Based on meteorological data, we analyzed the chaotic dynamics with fractal characteristic for the
temperature dynamics by using the G–P method [36]. Firstly, we randomly selected six meteorological
stations (i.e., Bozhou, Nanjing, Nantong, Wuhu, Hangzhou, Dongtou) with annual time series data for
a pilot study. The relationship between different embedding dimension (m) and correlation exponent
(d) was shown in Figure 7.
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Figure 7. The plots of correlation exponent (d) versus embedding dimension (m) for the time series of
annual data from the selected six meteorological stations

It can be seen from the trend of the six meteorological stations in Figure 7 that, as the embedding
dimension increases, the correlation exponent increases continuously and eventually stabilizes, and
the saturated correlation exponent, namely, the correlation dimension, was obtained when m ≥ 10.

Then, we calculated the CD on the daily, seasonal and annual temporal scales of each station in
the same way. Table 1 shows the CD values of several representative stations and average CD values
of all stations at different temporal scales. It can be seen from Table 1 that each CD is not an integer,
which indicates that the temperature process at different temporal scales is a chaotic dynamic system
with a fractal characteristic, and it is sensitive to the changes of initial conditions.

Table 1. The Correlation Dimension (CD) values at daily, seasonal, and annual scales for
68 meteorological stations.

Station
Temporal Scale

Daily Seasonal Annual

Xuzhou 1.79 2.18 2.80
Fuyang 1.82 2.25 2.99
Nanjing 1.78 2.12 2.23
Nantong 1.62 2.02 2.11

Hefei 1.84 2.13 2.39
Baoshan 1.78 1.78 2.40

Huangshan 1.62 1.77 2.30
Hangzhou 1.69 1.86 2.05

Cixi 1.66 1.66 1.94
Jinhua 1.86 1.96 2.00

MCD 1.73 2.08 2.32

Note: MCD is the mean of correlation dimensions for all meteorological stations.

It can be seen from the mean of correlation dimensions (MCD) at different temporal scales in
Table 1 that the ordering of the CD is: annual (2.32) > seasonal (2.08) > daily (1.73). We can conclude
that the temperature process over a larger temporal scale is more complicated than the temperature
process at a small temporal scale. Figure 8 showed the temperature anomalies of daily range and
temperature anomalies of annual range. It could be seen from the maximum, minimum, and variance
that the annual temperature fluctuated greatly, which proved that the temperature process on the
annual scale was more complicated. Table 1 also shows that, even at the same temporal scale, the CD
values of different stations are different. It is mainly related to the different locations of each station,
which makes the driving factors of each station different. The values of MCD on the seasonal and
annual scales are greater than 2, with 2.2 and 2.4, respectively, indicating that at least three independent
variables are needed to describe the dynamics of temperature process on the seasonal and annual scale;
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and the value of MCD for daily is 1.73, indicating that at least two independent variables are needed to
describe the dynamics of temperature process on the daily scale.

Atmosphere 2019, 10, x FOR PEER REVIEW 10 of 17 

 

of all stations at different temporal scales. It can be seen from Table 1 that each CD is not an integer, 
which indicates that the temperature process at different temporal scales is a chaotic dynamic system 
with a fractal characteristic, and it is sensitive to the changes of initial conditions. 

Table 1. The Correlation Dimension (CD) values at daily, seasonal, and annual scales for 68 
meteorological stations. 

Station 
Temporal Scale 

Daily Seasonal Annual 
Xuzhou 1.79 2.18 2.80 
Fuyang 1.82 2.25 2.99 
Nanjing 1.78 2.12 2.23 
Nantong 1.62 2.02 2.11 

Hefei 1.84 2.13 2.39 
Baoshan 1.78 1.78 2.40 

Huangshan 1.62 1.77 2.30 
Hangzhou 1.69 1.86 2.05 

Cixi 1.66 1.66 1.94 
Jinhua 1.86 1.96 2.00 
MCD 1.73 2.08 2.32 

Note: MCD is the mean of correlation dimensions for all meteorological stations. 

It can be seen from the mean of correlation dimensions (MCD) at different temporal scales in 
Table 1 that the ordering of the CD is: annual (2.32) > seasonal (2.08) > daily (1.73). We can conclude 
that the temperature process over a larger temporal scale is more complicated than the temperature 
process at a small temporal scale. Figure 8 showed the temperature anomalies of daily range and 
temperature anomalies of annual range. It could be seen from the maximum, minimum, and variance 
that the annual temperature fluctuated greatly, which proved that the temperature process on the 
annual scale was more complicated. Table 1 also shows that, even at the same temporal scale, the CD 
values of different stations are different. It is mainly related to the different locations of each station, 
which makes the driving factors of each station different. The values of MCD on the seasonal and 
annual scales are greater than 2, with 2.2 and 2.4, respectively, indicating that at least three 
independent variables are needed to describe the dynamics of temperature process on the seasonal 
and annual scale; and the value of MCD for daily is 1.73, indicating that at least two independent 
variables are needed to describe the dynamics of temperature process on the daily scale. 

 

Figure 8. (a) anomalies of the daily range and (b) anomalies of the annual range. 

3.2.2. The Spatial Distribution Complexity of Temperature 

Table 1 gives the CD values of the temperature on different temporal scales, showing 
temperature dynamics on the daily, seasonal and annual scales. What is the spatial distribution of the 
CD values of different stations? We show the spatial distribution of CD values on the daily, seasonal, 
and annual scales (Figure 9). The ordinary Kriging method was used during interpolation, in which 
a spherical model is used when selecting the semi-variogram model, and its parameters are system 
default parameters. 

Figure 8. (a) anomalies of the daily range and (b) anomalies of the annual range.

3.2.2. The Spatial Distribution Complexity of Temperature

Table 1 gives the CD values of the temperature on different temporal scales, showing temperature
dynamics on the daily, seasonal and annual scales. What is the spatial distribution of the CD values
of different stations? We show the spatial distribution of CD values on the daily, seasonal, and
annual scales (Figure 9). The ordinary Kriging method was used during interpolation, in which a
spherical model is used when selecting the semi-variogram model, and its parameters are system
default parameters.
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Figure 9a shows the spatial distribution of CD values on the daily scale, with values between
1.46 and 1.87. High value is mainly distributed in the northwest and southwest of the entire region,
while low values are mainly distributed in the eastern coastal areas. Figure 9b presents the spatial
distribution of CD values on the seasonal scale, which shows that all CD values are between 1.51 and
2.34. High value is mainly distributed in the northwest of the entire region, while low values are
mainly distributed in the eastern coastal areas. Figure 9c shows the spatial distribution of CD values
on the annual scale. All CD values are between 1.73 and 2.99, and the spatial pattern is similar with the
spatial pattern on the seasonal scale. As we all know, the eastern coastal areas, especially Shanghai,
Suzhou, and Hangzhou, are densely populated and have high levels of urbanization, and the CD value
of this area is relatively low, while the areas located in the northwest of the YRD, such as Bozhou,
Xuzhou, and Fuyang, the large outflow of people results in a relatively small population in these areas,
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and the urbanization level is relatively low, and the CD value in this area is relatively high. It can be
seen that the population density and the urbanization level are related to CD.

In general, on different temporal scales, the high values of CD are mainly distributed in the sparse
areas of population and urban, while the low values of CD are mainly distributed in the dense areas of
population and urban.

3.2.3. The Influences of Driving Factors and Their Interactions on Temperature Slope

From the above results, we can see that the spatial distribution of TS is different, and what is the
reason for this result? In order to answer this question, we choose some driving factors (AT, NDVI,
UD, GDP, and NL) that affect the temperature to explore the reasons of this phenomenon by using the
Geogdetector method.

The factor detector is used to detect whether the driving factors affect TS and the size of their
influences. In addition, the greater the value of q, the greater the influence of this factor on TS. Table 2
shows the result of the factor detector. On the whole, the influence, in order of size, of each factor is:
UD (0.323) > GDP (0.234) > NL (0.218) > NDVI (0.118) > AT (0.047). In addition, all driving factors
pass the significant test, which means that these five factors have significant effects on TS. In addition,
we can see that the contribution rate of socioeconomic factors (UD, GDP, NL) is greater than natural
factors (NDVI, AT).

Table 2. The result of factor detectors.

GDP AT NL UD NDVI

q statistic 0.234 0.047 0.218 0.323 0.118
p-value 0.000 0.000 0.000 0.000 0.000

Note: GDP represents the gross domestic product; AT represents the altitude; NL represents the night light; UD
represents the urban density; NDVI represents the normalized difference vegetation index.

Whether the factor has a significant difference in the spatial distribution affecting the TS is achieved
by an ecological detector. A test with a significance level of 0.05 indicates that the two factors are
different influencing the distribution of TS; otherwise, there is no significant difference. The result of
an ecological detector is shown in Table 3.

Table 3. The result of an ecological detector.

Socio-Economic Factors Natural Factors

GDP UD NL AT NDVI

Socio-economic
factors

GDP - - - - -
UD Y - - - -
NL N Y - - -

Natural factors
AT N Y Y - -

NDVI N N N Y -

Note: Y indicates that the two factors have significant differences in the spatial distribution of temperature slopes, N
indicates no significant difference, and the confidence is 95%. And GDP represents the gross domestic product;
UD represents the urban density; NL represents the night light; AT represents the altitude; NDVI represents the
normalized difference vegetation index.

The result shows that there is a significant difference between UD and GDP; there is no significant
difference between AT, NL, NDVI, and GDP, indicating that the effects of AT, NL, NDVI, and GDP on
the spatial distribution of TS are similar. In addition, there is a significant difference between UD and
NL, AT, and there is no significant difference between UD and NDVI. Similarly, there is a significant
difference between NL and AT, while NL is not significantly different from NDVI. For AT and NDVI,
there is also a significant difference between them. We can also conclude that the influences of various
driving factors on the TS are different.
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Table 2 indicates that the contribution rate of each factor alone to the TS is different. Thus, there is
an interaction between them, and, if so, what is the interaction result? In order to answer this question,
we give the results of interaction detector as Table 4.

Table 4. The result of interaction detectors.

Socio-Economic Factors GDP Natural Factors

GDP UD NL AT NDVI

Socio-Economic
Factors GDP

Natural Factors

GDP 0.234 - - - -
UD 0.464 # 0.323 - - -
NL 0.391 # 0.420 # 0.218 - -
AT 0.290 * 0.365 # 0.235 # 0.047 -

NDVI 0.314 # 0.393 # 0.262 # 0.146 # 0.118

Note: # indicates that the interaction is a bi-enhancement, i.e., q (X1∩X2) > Max(q(X1), q(X2)); * indicates that the
interaction is a nonlinear enhancement, i.e., q (X1∩ X2) > q(X1) + q(X2). And GDP represents the gross domestic
product; UD represents the urban density; NL represents the night light; AT represents the altitude; NDVI represents
the normalized difference vegetation index.

Table 4 shows that only AT and GDP have a nonlinear enhancement effect (q (GDP∩ AT) > q(GDP)
+ q(AT)) on TS, and the interactions between remaining driving factors have the bi-enhancement effect
on TS. It shows that the effect of interaction of any two factors is greater than the effect of a single factor.
Among them, the interaction effect between GDP and UD (q (GDP ∩ UD) = 0.464) is the largest, and
the interaction effect between UD and NL (q (UD∩ NL) = 0.420) is second, followed by the interaction
effect between UD and NDVI (q (UD∩NDVI) = 0.393) and the interaction effect between GDP and NL
(q (GDP∩NL) = 0.391), while the interaction effect between AT and NDVI (q (AT∩NDVI) = 0.146) is the
smallest. In general, the interaction effect between socioeconomic factors is the largest, the interaction
effect between socioeconomic factors and natural factors is second, followed by the interaction effect
between natural factors.

4. Discussion

In this study, we found that the temperature rose 1.53 ◦C with an average rising rate of
0.465 ◦C/10 years during the study period, which was higher than the global average rate. The result
was consistent with previous studies [37–39]. It confirms the regional differences in climate change. In
addition, it means that the temperature was not only affected by global warming, but also affected by
various driving factors within the region. In addition, the temperature rose quickly in the dense areas
of population and urban, and the temperature rose slowly in the sparse areas of population and urban.
It reflected the urban-rural differences in temperature distribution from the side.

The climate system was an open system with external forcing and nonlinear dissipation [40],
and fractal theory was one of the effective methods to quantitatively describe the nonlinear evolution
process of climate and its self-similar structural features. Numerous studies [41–45] had shown
that fractal analysis could calculate its fractal dimension from a seemingly chaotic climate sequence,
confirming the fractal information of the climate system. Temperature was an element of the climate
system and also had nonlinear characteristics. Especially in the YRD, the temperature was more
complicated due to the influence of human activities. By calculating the CDs on the daily, seasonal,
and annual scales of the YRD, we confirmed that the temperature in the YRD was a chaotic dynamic
system with nonlinear characteristics. We found that temperature on the annual scale was more
complicated than on the daily scale in the YRD. It was because the annual average temperature was the
average of the daily temperature, which was the macroscopic performance of the daily temperature
and influenced by many factors [46,47], so it showed greater complexity on the whole. Xu et al. [17]
found that the temperature process on the daily scale was more complicated than the temperature
process on the annual scale in Xinjiang. It was contrary to the YRD, indicating the complexity of
the temperature process had regional differences. In the spatial distribution, whether in the daily,
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seasonal, or annual scale, the high CD values were mainly distributed in the sparse areas of population
and urban, while the low CD values were mainly distributed in the dense areas of population and
urban. In the dense areas of population and urban, due to the density of cities and people, industrial
and urbanization were developing rapidly, and the temperature was mainly affected by the rapid
development of cities, showing an upward trend [38]. While in the sparse areas of population and
urban, the temperature changes were mainly affected by natural factors and socioeconomic factors
together, so the temperature changes more complicated.

The effects of five driving factors on the TS were quantitatively investigated by using the
Geogdetector method. UD was the most important factor affecting TS. From Figures 2c and 8, we can
see that the spatial distribution of UD was similar to the spatial distribution of TS, that is, decreasing
toward the periphery with Shanghai as the center. The UD reflected the intensity of the city. In Shanghai
and its surrounding areas, cities were dense and urbanization was high. One of the most striking features
of this was that the impervious surface of the city increased rapidly [48,49]. The impervious surface
of the city had strong heat storage, poor water storage capacity, and hindering airflow transmission,
which seriously affected the city’s surface hydrological cycle [50], energy distribution [49] and urban
microclimate [51], resulting in an urban heat island effect, which causes the temperature in dense areas
of urban to rise quickly. The impact of urban impervious surface on surface temperature had been
verified in different regions and a certain consensus had been reached [52–55]. The contribution rate of
GDP to TS was second. From Figures 2 and 6, we can see that the spatial distribution of GDP was
similar to the spatial distribution of TS. The development of GDP inevitably consumed a large amount
of energy, which would emit a large amount of greenhouse gases, resulting in a quick increase in
temperature. The GDP in Shanghai and its surrounding areas was increasing rapidly, so the TS in this
area was high. The contribution of NL was similar to the contribution rate of GDP, and the spatial
distribution of NL was similar to the TS. NL reflected the level of GDP and energy consumption from
the side [56,57], so it had a high contribution rate to TS. The NDVI was the smallest in Shanghai and its
surrounding area, while the TS was largest in this area, which meant that the vegetation coverage rate
played an important role in suppressing the increase of temperature, but it was not enough only to rely
on the vegetation coverage rate. Most of the YRD was plain and the fluctuation of terrain was small, so
the contribution rate of AT to the TS was small and can be ignored. Each driving factor had an effect
on TS; they did not work alone, but different driving factors interacted with each other and had an
enhanced influence on temperature.

Our main purpose is to explore which factors or interactions between factors contribute the
most to temperature. The paper only analyzed the complexity of the temperature process and the
contribution rates of driving factors to temperature, but the mechanism behind it remains to be studied
further. In addition, through the analysis of the driving factors, some policy opinions to mitigate the
temperature rise need to be proposed in the next study.

5. Conclusions

The study first analyzed the spatiotemporal variations of temperature in the YRD during the
period of 1980–2012 by using the trend analysis method; then, we investigated the spatiotemporal
complexity of temperature on different time scales by using the correlation dimension; finally, the
effects of driving factors and their interactions on TS in the YRD during the period of 1980–2012 was
analyzed by using the Geogdetector method. Summarizing this study, the main conclusions are as
follows:

1. The temperature was increasing during the period of 1980–2012, and it rose by 1.53 ◦C from
1980 to 2012; in addition, among the dense areas of population and urban, the temperature rose
quickly, while the temperature in the sparse areas of population and urban rose slowly.

2. In the temporal, the temperature process was more complicated with the increase of temporal
scale; in the spatial distribution, whether it is the daily time scale, the seasonal time scale, or
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the annual time scale, the temperature process was more complicated in the sparse areas of
population and urban than the dense areas of population and urban.

3. Socioeconomic factors were the main factors affecting climate change in the YRD, and the
contribution rate of urban density is the largest among the contribution rates of single factors. In
addition, the interactions between various driving factors had an enhanced effect on regional
climate change. In addition, the interaction between economic activity and urban density had the
largest influence on temperature.
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