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Abstract: Water resources are highly dependent on climatic variations. The quantification of
climate change impacts on surface water availability is critical for agriculture production and flood
management. The current study focuses on the projected streamflow variations in the transboundary
Mangla Dam watershed. Precipitation and temperature changes combined with future water
assessment in the watershed are projected by applying multiple downscaling techniques for three
periods (2021–2039, 2040–2069, and 2070–2099). Streamflows are simulated by using the Soil and
Water Assessment Tool (SWAT) for the outputs of five global circulation models (GCMs) and their
ensembles under two representative concentration pathways (RCPs). Spatial and temporal changes
in defined future flow indexes, such as base streamflow, average flow, and high streamflow have been
investigated in this study. Results depicted an overall increase in average annual flows under RCP 4.5
and RCP 8.5 up until 2099. The maximum values of low flow, median flow, and high flows under RCP
4.5 were found to be 55.96 m3/s, 856.94 m3/s, and 7506.2 m3/s and under RCP 8.5, 63.29 m3/s, 945.26 m3/s,
7569.8 m3/s, respectively, for these ensembles GCMs till 2099. Under RCP 4.5, the maximum increases
in maximum temperature (Tmax), minimum temperature (Tmin), precipitation (Pr), and average
annual streamflow were estimated as 5.3 ◦C, 2.0 ◦C, 128.4%, and 155.52%, respectively, up until 2099.
In the case of RCP 8.5, the maximum increase in these hydro-metrological variables was up to 8.9 ◦C,
8.2 ◦C, 180.3%, and 181.56%, respectively, up until 2099. The increases in Tmax, Tmin, and Pr using
ensemble GCMs under RCP 4.5 were found to be 1.95 ◦C, 1.68 ◦C and 93.28% (2021–2039), 1.84 ◦C,
1.34 ◦C, and 75.88%(2040–2069), 1.57 ◦C, 1.27 ◦C and 72.7% (2070–2099), respectively. Under RCP
8.5, the projected increases in Tmax, Tmin, and Pr using ensemble GCMs were found as 2.26 ◦C,
2.23 ◦C and 78.65% (2021–2039), 2.73 ◦C, 2.53 ◦C, and 83.79% (2040–2069), 2.80 ◦C, 2.63 ◦C and 67.89%
(2070–2099), respectively. Three seasons (spring, winter, and autumn) showed a remarkable increase
in streamflow, while the summer season showed a decrease in inflows. Based on modeling results,
it is expected that the Mangla Watershed will experience more frequent extreme flow events in the
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future, due to climate change. These results indicate that the study of climate change’s impact on
the water resources under a suitable downscaling technique is imperative for proper planning and
management of the water resources.

Keywords: climate change; hydrological model; representative concentration pathways; water
resources; GCM

1. Introduction

Most of the countries in South Asia are observing water stress due to global atmospheric changes.
The rising population in urban areas, agriculture, and mismanagement of water resources and climate
change has included Pakistan in the countries that are worst affected by climate change [1]. According
to a report by the International Monetary Fund (IMF), Pakistan positioned third in the world among
the countries prone to severe water scarcity [2]. The International Panel for Climate Change (IPCC)
reported a 0.72 ◦C increase in the total temperature from 1951 to 2012. An expected rise of 1 ◦C to 3 ◦C
till 2050 and 2 ◦C to 5 ◦C is likely to occur until 2100, based on the different greenhouse gases emission
scenario. The severe temperature changes affect the land cover and ultimately change the streamflow
patterns [3]. Rivers are providing more than fifty percent of the global water requirement [4]. However,
river flows are associated with long-term fluctuations in rainfall and temperature, especially in areas
where snowmelt is the principal component of the total runoff [5,6].

General circulation models (GCMs) are widely in use to study future climate change drifts.
These models simulate climate variations based on possible projected greenhouse gas emission rates.
The spatial resolution of almost all existing GCM models is around 150–300 km, and the spatial resolution
of every single GCM alters when comparing with other GCMs [7]. To accurately apprehend the impact
of climate change on water resources, the bias correction of the projected results from different climatic
models is often performed [8,9]. Bias correction is beneficial, especially for hydrological modeling
studies where streamflow directly connects with precipitation [10–12]. GCMs present large-scale
forecasts for several climatic variables [3], but numerous climatic variables are not determined efficiently
through the coarser resolution. To overcome this issue, different downscaling techniques are often
applied to downscale the projected GCMs data to a fine resolution, but these techniques also provide
systematic deviations [13–15]. Many statistical downscaling techniques have been introduced to
eliminate systematic deviations [16,17]. Specific downscaling procedures establish a connection between
regional-scale climatic components with the local scale climatic components. By studying the transfer
of moisture at a regional scale and air blowing rate, the temperature and precipitation at a local
scale can be predicted [18–21]. In statistical downscaling techniques, the spatial resolution of the
GCMs is not considered, so the calculation of bias correction coefficient must be done effectively by
using long period observed and historical climatic data [22,23]. Multiple studies deal with the drifts
of hydro-climatic components of various basins in the upper Indus basin, using several statistical
downscaling techniques, and a continuous rise in temperature was projected [24–27]. Nevertheless,
the temperature is progressing at varying rates in various sub-basins. The history explains numerous
rainfall drifts in various sub-basins present in the upper Indus basin [28].

To understand the hydrologic processes and interaction of water balance components under
climate change scenarios in Mangla Watershed, the Soil and Water Assessment Tool (SWAT) model is
used in this study. SWAT is proficient in modeling a single catchment or a system of hydrologically
connected sub-catchments. The GIS-based interface model, ArcSWAT, defines the river network and
the point of catchment outflow, and the distribution of sub-catchments and hydrological response units
(HRU) [12,29–35]. The calculation of the time of concentration by SWAT is done by adding overland
flow time (time is taken for flow from the remotest point of the sub-basin to reach the water channel)
and channel flow time (time taken from upstream channel to the watershed outlet) [36].
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The projected climate is significantly affected by the selection of GCMs [35]. In this study, five global
circulation models: The Australian Community Climate and Earth-System Simulator version 1
(ACCESS 1.0), Community Climate System Model (CCSM4), Hadley Centre Global Environment
Model version 2 (HadGEM2), Max Planck Institute for Meteorology, Earth System Model Low Radiation
Emission (MPI-ESM-LR), and Model for Interdisciplinary Research on Climate, Earth System Model
(MirocESM), were selected based on their spatial resolution, and two different emission scenarios,
RCP 4.5, and RCP 8.5 were chosen to reproduce future streamflow by applying the hydrological model
SWAT (ArcSWAT-2012).

Several studies have defined precipitation and temperature variations as dominating factors
that may affect water quantity and quality [37–39] and reported how climate change affects river
flows [21,27,40]. Few studies have reported climate change effects on the average annual streamflow
in the Mangla Watershed [32,41], however, the literature on the impact of future climate change on the
annual and seasonal base flows and high flows in the watershed is missing. Moreover, investigation of
the impact of future climate change on streamflow by considering the elevation band in watersheds is
also missing. Previously, only biased corrections of the downscaled GCMs data had been performed
without studying the different downscaling techniques. The current study has also used multiple
downscaling techniques for projecting future water resources in the study area. The main objectives
of this study are (i) the development of a hydrological model for the transboundary Mangla Dam
watershed with the use of daily precipitation, temperature, and streamflow data (ii) future projection
of precipitation and temperature from GCM data using three statistical downscaling techniques and
their comparison, (iii) estimation of future climate change impacts on the transboundary Mangla
Dam basin’s streamflow. This study could be helpful to the water resource managers for the better
administration of water resources, by modifying the management plans to mitigate the effects of
climate change in the future.

2. Material and Methods

2.1. Study Area

The transboundary Mangla Watershed ranges from 73◦55’ to 75◦35’ east of longitude and 33◦25’
to 34◦40’ north of latitude and is situated in the northeastern part of Pakistan and western part of the
Himalaya. The geographical location of the watershed and considered weather station along with
the land use and soil types in the watershed are presented in Figure 1. The Jhelum River is a main
tributary of the Indus River and the Mangla Dam is built on this River. The maximum elevation in
the Mangla watershed is about 5840 m, whereas the minimum elevation is 182 m above the mean
sea level (a.m.s.l.). The total area of Mangla watershed is about 33,490 km2. Immense icecaps are
present in the watershed, which provides large water volume to the Jhelum River by melting the
ice, which eventually contributes to the Mangla Dam reservoir. The Mangla Dam was constructed
in 1967 with an accommodation limit of 6.5 billion cubic meters of water. Almost 56% of the rear of
the Mangla Watershed belongs to the Jhelum River, while 12% belongs to Poonch River, as shown in
Figure 1. The total inflows into the Mangla dam are 1699.01 m3/s, whereas outflows are 566.34 m3/s.
The hydro-power generation capacity of the Mangla dam is about 1310 MW. The mean population
density in the watershed varies from 350 to 1000 people per square kilometer in the mountainous and
cultivated regions, respectively. The average Tmax of Mangla Watershed ranges between 10.6–31.6 ◦C,
and the average minimum temperature ranges from 4–25 ◦C. Soil data were downloaded from the
website [42] land use data, and DEM data were downloaded from [43,44].
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increased at a rate of 0.373 °C per decade (Figure 2a), and the rate of rising of minimum temperature 
was observed as 0.139 °C per decade (Figure 2b).  
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Figure 1. Study area map along with metrological stations, digital elevation model (DEM), sub-basins,
land use, Slope classes, and soil groups.

2.2. Data Collection

2.2.1. Climate Data

Daily observed data of climate variables such as Tmax, Tmin, and precipitation were obtained
from the statistics files of the Pakistan Meteorological Department (PMD) and Water and Power
Development Authority (WAPDA). Daily rainfall data for years 1981–2010 were provided by Pakistan
Meteorology Department to quantify the outflow of the basin. Figure 2 shows the average annual
temperature trends from 1981 to 2010 at Mangla Watershed. The maximum temperature increased at a
rate of 0.373 ◦C per decade (Figure 2a), and the rate of rising of minimum temperature was observed
as 0.139 ◦C per decade (Figure 2b).
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Figure 2. Historical trends of temperature in the Mangla watershed for 1981–2010 (a) Maximum
Temperature (b) Minimum Temperature.

2.2.2. Global Climatic Models (GCMs) Data

In this study, five global circulation models; ACCESS, CCSM4, HadGEM2, ESMLR, and MirocESM
were selected based on their spatial resolution [45]. Two representative concentration pathways (RCPs),
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RCP 4.5, and RCP 8.5 were considered for these five GCMs. The data were downloaded from [46].
The details about these GCMs can be found from the user guide of CMIP5 [7].

2.2.3. Landuse and Soil Data

The soil data were downloaded from the Food and Agriculture Organization (FAO) website [42].
The downloaded harmonized soil 30 arc-second raster database covers the entire globe and displays
the composition and characterization of different soil parameters, such as soil texture, ion exchange
capacity, water holding capacity, soil depth, soil pH, soil temperature, lime and gypsum contents,
granulometry, etc. The information about land use land cover (LULC) was downloaded from the
United States Geological Survey (USGS) website [44]. The land-use data is a raster dataset, with a fine
spatial resolution of 30 m by 30 m and covers a detailed 27 land cover and vegetation classification.
The land use data provide detailed information about several types of agricultural lands, forests,
vegetation, and grasslands present in any specific part of the globe. They also provide details about the
snow-covered area, water bodies, artificial or urban areas, and barren lands. The hydrological model
SWAT was parameterized using remotely sensed satellite datasets on soil, land cover, and topography.
Based on the USGS soil classification system, the Mangla watershed have more than 45 percent of
agricultural lands. Table 1 revealed that the most prominent land-use existing in the watershed is
croplands, either artificially or irrigated covering, almost 45.38 percent of the area. The second widely
spread class is grasslands, or green lands covered by needle leaves plants and covers 18.85 percent of
the watershed area. The permanent snow-covered region covers approximately 3.91 percent of the
Mangla watershed. Almost 1300 km2 of the watershed is under permanent ice-caps and snow reserves.

Table 1. The United States Geological Survey (USGS) Soil and Water Assessment Tool (SWAT) land
use classification.

Land Use
(Figure 1)

Land Use Codes
for SWAT Description Covered Area

(Km2)
Covered
Area (%)

Croplands
AGL Artificially irrigated

crop-lands 15198 45.38

AGRC Mosaic vegetation
crop-lands 3218 9.61

Forests

FRSD Broad-leaved,
semi-deciduous forest 2914 8.70

FRST Broad-leaved &
needle-leaved forest (>5 m) 1296 3.87

WETF Wet-land forests 0.33 0.001

Grasslands

SHRB Shrubland more than 50% 1084 3.236

SAVD Herbaceous vegetation
(grassland, savannas) 6313 18.85

Urban areas URBN Artificial or urban areas 17 0.05

Bare lands BARE
Barren lands with less than

one-third of the area covered
by vegetation

1989 5.94

Freshwater
reserves

WATR
Water bodies 194 0.58

Permanent snow and ice 1309 3.91

Details of soil data are presented in Table 2. The most prominent soil type in the watershed is
loamy soil, which covered up to 71.04% of Mangla Watershed. The second classification represents the
clayey soil, covers 24% of the total area, and other soils or water reservoirs surround the remaining
5% of the entire area. The GleyicSolonchak soil under group C holds 47.08% area of the watershed.
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Soil group C denotes those soils having low infiltration speeds when they remain fully saturated and
uniform, with textures from medium-fine to moderately thick. These soils allow a reasonable water
transportation rate. The principal soil collection comprises the Gleyic Solonchak group, which includes
almost 47.087% of the watershed. The other groups hold Calcaric Phaeozems that cover about 23.429% of
the area. The Mollic Planosols, Haplic Chernozems, Haplic Solonetz, Calcic Chernozems, Gelic Regosols,
Luvic Chernozems, Lithic Leptosols, and Dystric Cambisols occupy 20.694%, 1.889%, 1.616%, 1.491%,
1.163%, 1.162%, 0.702%, 0.418%, and 0.342% of the total area of the watershed. Soil characteristics
such as soil texture, soil bulk density, soil composition, soil electric conductivity, and soil possible
water retention were collected from the FAO website. Wetland forests (WETF) are tree type crops [47].
The SWAT model has a built-in function to handle WETF by using several crop parameters, such as the
ratio of erosion from land cropped to the clean tilled fallow continuous (USLE C factor), temperature
responses, leaf area development, energy biomass conversion, light interception, stomatal conductance,
canopy height, and root depth, plant nutrient content, and harvest. Detailed information on these
parameters is given in [47].

Table 2. SWAT soil classification.

Soil Group Area Covered
Area

Bulk
Density

Available
Water

Contents

Water
Conductivity Composition Electric

Conductivity

(Km2) (%) (g/cm3) (mm/mm) (mm/day) Clay Silt Sand (µs/m)

GelicRegosols 389.5 1.16 1.47 0.064 0.48 11 63 26 100

GleyicSolonetz 499.3 1.49 1.36 0.071 0.48 25 43 32 1600

CalcaricPhaeozems 7846.4 23.43 1.38 0.170 0.48 22 43 35 200

Calcic Chernozems 389.2 1.16 1.24 0.081 0.24 45 42 13 200

LuvicChernozems 237.4 0.71 1.25 0.048 1.2 44 37 19 500

MollicPlanosols 6930.4 20.69 1.35 0.090 0.48 24 52 24 100

GleyicSolonchaks 15769.4 47.09 1.39 0.175 1.68 21 42 37 8700

HaplicSolonetz 632.6 1.89 1.39 0.078 0.48 24 29 47 100

HaplicChernozems 541.2 1.62 1.35 0.175 0.48 23 54 23 100

DystricCambisols 114.5 0.34 1.41 0.175 0.48 20 38 42 100

Lithic Leptosols 140.0 0.42 1.38 0.175 0.48 24 34 42 100

SWAT model uses the value of soil available water contents (AWC) in mm/mm. The values
of AWC were used in mm/mm during the model run. The values of AWC added in the user soil
table, located in the SWAT_2012 database, were 0.064 for Gelic Regosols, 0.071 for Gleyic Solonetz,
0.170 for Calcaric Phaeozems, 0.081 for Calcic Chernozems, 0.048 for Luvic Chernozems, 0.090 for
Mollic Planosols, 0.175 for Gleyic Solonchaks, 0.078 for Haplic Solonetz, 0.175 for Haplic Chernozems,
0.175 Lithic Leptosols and 0.175 for Dystric Cambisols.

2.3. Statistical Downscaling

The large-scale gridded GCMs data were downscaled to predict the climatic conditions at a local
scale. Statistical downscaling can be performed by setting mathematical relations between large-scale
GCMs climatic variables and the local climatic variable. Statistical downscaling is much easy to interpret
than dynamical downscaling. However, statistical downscaling depends massively on historical climatic
data and gauged data. In this study, three different types of downscaling techniques were used.

1. Change factor (additive for temperature and multiplicative for precipitation)
2. Linear scaling (additive for temperature and multiplicative for precipitation)
3. Distribution mapping (additive for temperature and multiplicative for precipitation)

In change factor downscaling, the bias correction for the temperature (maximum and minimum)
was done by adding the difference of monthly changes among the future and base years GCM in
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the observed temperature data. The bias correction coefficient was calculated for precipitation by
dividing the monthly mean of GCM future precipitation data by GCM baseline precipitation data.
The calculated bias correction coefficient was multiplied by observed precipitation data to obtain the
modified/adjusted/bias-corrected precipitation [48]. The bias correction coefficient for precipitation in
linear scaling downscaling was calculated by dividing long term monthly mean of gauged precipitation
data with that of mean monthly GCMs, then this bias correction coefficient was multiplied with daily
GCMs raw data to get corrected GCMs data [49]. Similarly, for the time-series data of temperature,
an additive quotient was calculated by subtracting the long-term monthly mean of the GCMs simulated
data from the long term monthly mean of observed data. The calculated bias correction coefficient was
added in the daily GCMs raw data to obtain corrected GCMs data [49]. Distribution mapping (DM) is
a commonly used bias-correction technique employed in various climate change studies [12,33,34,50].
Its basic working principle is to reproduce a transfer function based on the monthly mean value of
GCMs data to the gauged data. The Gamma transfer function and Gaussian transfer function for
precipitation and temperature data need to be reproduced, respectively, for correcting the bias from
the downscaled future GCMs data [49].

Table 3 describes the five selected global climatic models used in this study. The GCMs were
selected based on their spatial resolution. The projected climatic parameters vary extensively for
different GCMs [35] and multiple GCMs are recommended for future projections, as single GCMs
may cause uncertainty in the projected results. The data from five GCMs were downscaled by using
three downscaling techniques, change factor downscaling, linear scaling downscaling, and distribution
mapping downscaling. To investigate the suitability of the downscaling techniques, the downscaled
data from all three downscaling techniques were compared with observed data using different statistical
parameters, such as standard deviation and correlation coefficient. Figure 3 explains that there is a
strong correlation between all three downscaling techniques and gauge data, i.e., above 0.56. In the
case of the distribution mapping downscaling technique, the results were better than linear scaling
and change factor downscaling techniques; the correlation of distribution mapping downscaling with
observed data is above 90% for the GCM ESMLR in case of minimum temperature. Based on the
correlation coefficient, standard deviation and root mean square deviation, as shown in Figure 3, it was
concluded that the GCMs, ESMLR, and MirocESM has a maximum value of correlation coefficient (CC)
as 0.83 and 0.80 respectively and minimum value of root mean square deviation (RMSD) 4.41 and 4.61
respectively for Tmax. ESMLR and MirocESM also have a maximum value of CC as 0.91 and 0.89 and
a minimum value of RMSD as 3.14 and 3.42 respectively for Tmin. After the analysis of precipitation
data, the CC of ESMLR and MirocESM also resulted in maximum reading as 0.81 and 0.74 under the
distribution mapping downscaling technique. The GCMs, MirocESM, and ESMLR were found to be
more accurate than other GCMs, and distribution mapping downscaling was found to be a more suitable
downscaling technique for the transboundary of Mangla watershed to study climatic parameters
such as maximum and minimum temperature and precipitation. The linear scaling downscaling
technique is found to be less accurate than change factor downscaling [51]. The findings of this research
consistent with previous studies such as [51] predicted that linear scaling is less suitable than change
factor, whereas [52] studied that the distribution mapping performed better than other downscaling
techniques. CMHyd software was used for linear scaling and distribution mapping, in which data
were used directly in NetCDF files format [53]. Climate Model Data for Hydrologic Modeling (CMhyd)
software was downloaded from the website of SWAT [54]. Using observed data of 30 years and
historical data for 30 years, future data were downscaled. In CMhyd software, the overlapping of
observed and historical data periods should be as long as 20 to 30 years [53]. If the overlapping period
is less than 10 years, then results will not be considered appropriate. More details of the CMhyd
software can be found in the user manual of CMhyd [53]. Change factor downscaling is showing
some ambiguities and the correlation factor is less than 0.75 for model “ACCESS”. On the other hand,
there is a strong correlation for model “ESMLR” i.e., more than 0.8 in all three downscaling techniques.
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Table 3. Description of the selected global climatic model used in this research.

GCM Institution Spatial Resolution

CCSM4 National Center for Atmospheric Research (USA) 1.2◦ × 0.9◦

ACCESS-1.0 Commonwealth Scientific & Industrial Research
Organization, The Bureau of Meteorology (BOM) (Australia) 1.9◦ × 1.2◦

HadGEM2-ES Met Office Hadley Centre (UK) 1.9◦ × 1.2◦

MIROC-ESM Japan Agency for Marine-Earth Science and Technology
(Japan) 2.8◦ × 2.8◦

MPI-ESM-LR Max Planck Institute of Neurobiology (MPIN), Germany 1.9◦ × 1.9◦
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2.4. SWAT Model Description and Setup

The SWAT model [55], developed by the United States Department of Agriculture, is broadly
being used for the assessment of the footprint of climate change in water resources studies. The main
objectives of SWAT model development are to simulate the quality and quantity of surface and
groundwater and to predict the environmental impact of land use, land management practices,
and climate change [56]. Previously, numerous researchers utilized the SWAT model for hydrological
modeling studies in the various basin and sub-basin scales [29,31,45,57–61].
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The digital elevation model (DEM) is used for watershed delineation to investigate several
properties of the basin, such as soil, slope, elevation, length of flow, streams created the longest
path, etc. SWAT requires specific information on water abstraction that includes climate, land use,
and land cover practices, topography, and river basin management to simulate hydrological processes.
Similar properties within sub-basins can be combined into HRUs. The HRUs are spatially separated,
and their replication results are added directly to the sub-basins for the entire basin path. In addition
to the frequently used HRU discretization, the SWAT can also be discretized based on the groups or
grids [56]. To perfectly reproduce the transfer of deposits, pesticides, and nutrients, the hydrological
sequence, as prognosticated with the model, should define the historical trends of the basin. The detail
about the model setup can be found in the user manual of ArcSWAT [60].

2.4.1. Slope Classification

Figure 1 and Table 4 provide the details of slope classes in the Mangla Watershed. Three slope
classes were selected. The first-class ranges from 0 to 20%, the second class ranges from 21 to 40%,
the third class ranges from 41 to 60%, fourth ranges from 61–80%, and fifth covers the slopes greater
than 80%. First-class shows the minimum slope, while the fifth class slope represents the hilly areas
having higher slopes or mountainous areas. The overall slope within the watershed is higher, and due
to greater slopes, the accurate and precise specification of elevation is mandatory to effectively study
the flow regimes within a partially or fully snow-covered watershed. In this study, to the precise
specification of the elevation, the concept of elevation bands was employed.

Table 4. SWAT slope classes in Mangla Watershed.

Sr No. Slope Classes (%) Area covered (%) Area Covered (Km2)

1 0–20 27.79 9306.9

2 21–40 20.96 7019.5

3 41–60 21.24 7113.3

4 61–80 16.07 5381.8

5 >80 13.93 4665.2

2.4.2. Elevation Bands

The precise specification of alterations in elevation plays a crucial role in the hydrological modeling
studies. Elevation bands play a significant role in the SWAT model for streamflow generation within
a fully or partially snow-covered region, as the snow usually melts first at the lower elevation and
later at a higher elevation. Similarly, for precipitation, it will fall as fresh snow at a higher altitude,
and as rainfall on lower altitudes [62]. As a result of the interdependence of snow-fall and rainfall
on elevation, the SWAT model simulations by considering the elevation bands will generate accurate
results. The upper limit of the elevation bands is 10 in SWAT 2012, so in this study, ten elevation bands
were incorporated to get the possible accuracy in results. The inter-comparison between the results
obtained by consideration of elevation bands and without elevation bands was studied by [63] and
interpreted that the results in fully or partially snow-covered watershed will not be accurate without
considering elevation bands.

2.4.3. Model Accuracy Criteria

The performance of a model can be estimated by comparing the observed streamflow and
model-simulated streamflow. There are several parameters to check the performance of the model
such as coefficient of determination, the efficiency of Nash–Sutcliffe, and percentage bias. By looking
at the observed and calibrated hydrographs, a researcher can recognize the adaptability of the model if
the model is too fast or is underestimated. However, to quantitatively evaluate the performance of the
model, numerical quantities related to the efficiency of the model are required.
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Coefficient of determination (R2): The coefficient of determination R2 estimates the percentage of
distinction in the observed data that is introduced in the results of the simulated model.

Efficiency coefficient Nash–Sutcliffe: The efficiency coefficient used by Nash–Sutcliffe to evaluate
the future predictive strength of almost all hydrological models. The main limitation of the Nash–Sutcliffe
efficiency includes the fact that the variations between the observed outflow and the simulated outflow
values are determined by the squared values. This leads to an overestimation of the performance of the
model through outflow peaks and an underestimation of the basic output flows. To check the model
performance, the following parameters are considered:

(a) The efficiency of Nash–Sutcliffe (NSE)
(b) Bias percentage (Pbias)
(c) Pearson’s coefficient for correlation (r)
(d) Coefficient of determination R2

If the NSE value for calibration and validation is above 0.65, then the results are very good.
However, if the NSE values fall below 0.5, then the results must not be considered satisfactory for the
strong footing of the model [64–67]. If the PBIAS result of the model is less than 0.1, then the results
are very good and increase in the values to 0.15. The results remain in an acceptable range, but when
the values of PBIAS cross 0.25, then the result falls into an unsatisfactory range; calibration must be
repeated by using different parameters along with a different parametric range [68,69]. If the Pearson
correlation coefficient value is between 0.81 and 1, then the model performance will be very strong.
If the performance confidence index is between 0.75 and 0.85, then the model performance will be very
strong [67].

2.4.4. Model Calibration and Validation

SWAT model calibration was done using SWAT-CUP SUFI2 Algorithm for a period of 15 years,
starting from January 1981 to December 1995. The objective function R2 was used during the calibration
period. Three years were set-up as a warm-up period. The same parameters along with their values
and the same number of iterations are further used to validate the model. The validation was done for
a period of 15 years, from January 1995 to December 2010. Several parameters such as p-factor, r-factor,
R2, NSE, PBIAS were calculated to check the performance of the SWAT model. P-factor represents the
percentage of gauged data wrapped by the simulated 95% uncertainty band. R-factor represents the
thickness of the 95% uncertainty band. The values of the p-factor should be greater than 0.70, whereas
the values of the r-factor should be closer to zero. The range of p-factor is 0 to 1, whereas the range of
r-factor lies between 0 and infinity [70].

3. Results

3.1. Model Calibration and Validation

3.1.1. Model Calibration without Considering Elevation Bands

The results of calibration and validation without considering elevation bands in Mangla watershed
show a poor model performance, as represented in Figure 4. SWAT model calibration and validation
performance evaluation indices, such as p-factor, r-factor, R2, NSE, and PBIAS, did not result in an
acceptable range [67].

Figure 4 depicts the poor correlation between observed and simulated flows, as these results
were simulated without considering elevation bands. The results of calibration without considering
elevation bands for p-factor, r-factor, R2, NSE, and PBIAS were 0.43, 1.46, 0.68, 0.46, and −32. The results
of the model performance indices, such as p-factor, r-factor, R2, NSE, and PBIAS, show the poor
performance of the model in the Mangla Watershed without the use of elevation bands. So, in this
research we recommend the hydrological modeling researchers to consider precise elevation bands to
obtain accurate simulated results.
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Figure 4. Comparison of simulated flow with the observed flow without considering elevation bands
(calibration).

3.1.2. Calibration and Validation Considering Elevation Bands

Calibration and validation results revealed a strong model performance that can be potentially
utilized to investigate the impacts of climate change on stream outflows (Figure 5). A strong relationship
between model-simulated and observed flows was exhibited, which shows a strong footing of the
SWAT model for future flow projections. The values for p-factor, r-factor, R2, NSE, PBIAS are 0.77, 0.99,
0.80, 0.78, and 1.1, respectively. These results show the strong footing of the model for future prediction.
The R2 value is 0.80, which shows a strong relationship between the simulated and observed flow.
Pbias should be between −20 to +20, and for perfect model footing, it should be close to zero. The pbias
value for calibration is closer to the ideal, which is 1.1, which shows a great model performance for
future projections. The NSE value in SWAT-CUP results is 0.78, which also represents the accuracy of
model calibration.

The results of R2, NSE, pbias, p-factor, and r-factor, for calibration and validation, are presented
in Table 5. These results depict that the SWAT model performance in the Mangla watershed is very
strong [67].

Table 5. Results of calibration and validation using the SUFI-2 algorithm.

Statistical Parameters Base Run
(Calibration)

Final Run
(Calibration)

Validation

Coefficient of Determination (R2) 0.28 0.80 0.77

Bias percentage (Pbias) 28.46 1.1 −8.2

The efficiency of Nash–Sutcliffe (NSE) 0.59 0.78 0.66

Percentage of gauged data wrapped by the
simulated 95% uncertainty band (p-factor) 0.28 0.77 0.73

Thickness of 95% uncertainty band (r-factor) 0.47 0.95 0.96

The initial values of some parameters, such as curve number 2 for soil conservation services
(CN2), the alpha factor for base flow in bank storage (days) (ALPHA_BF), delay in groundwater
in days (GW_DELAY), the minimum depth of water in the shallow aquifer essential for backflow
(mm) GWQMN, and groundwater revap coefficient (GW_REVAP), were taken from the literature [30].
The parameters used during the model calibration are shown in Table 6. The northern part of the
Mangla Watershed is a partially snow-covered region [32] so some snow cover parameters, such as the
temperature of snowfall (SFTM), the Base temperature of snowmelt (SMTMP), the maximum rate of
snowmelt over a year (SMFMX), the minimum rate of snowmelt over a year (SMFMN), the minimum
amount of snow water resembles 100% of snow cover (SNOCOVMX), and the volume of snow that
corresponds to 50% of snow cover (SNO50COV), were also utilized. The minimum initial value given
to SFTM is −5 and the maximum value given is 5. The parameter SNOCOVMX was initially set
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between 0 and 400, whereas the minimum and maximum values designated to SNO50COV were 0.1
and 0.6. More details about these parameters can be found in the user manual of SWAT-CUP_2012 [70].
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Figure 5. Comparison of simulated flow with observed flow considering elevation bands; calibration
(up) and validation (down).

Table 6. Explanation of sensitive parameters, along with their initial and adopted values.

Rank Parameter Description
Initial Range Calibrated

Value

Sensitivity Analysis

Min Max p-Values T-Stat

1 CN2 Curve number 2 for soil conservation
services −0.4 0.2 0.09 1.75 × 10−7 −5.69

2 ALPHA_BF The alpha factor for base flow in bank
storage (days) 0 0.6 0.5 0.659 −0.44

3 GW_DELAY Delay in groundwater in days 90 200 118.05 0.124 −1.54

4 GWQMN Minimum depth of water in the shallow
aquifer essential for backflow (mm) 0 500 1.56 0.805 −0.25

5 GW_REVAP Groundwater revap coefficient 0 0.2 0.16 0.939 0.08

6 RCHRG_DP Deep percolation into the aquifer 0 1 0.37 0.243 −1.17

7 CH_N2 Main channel’s manning (n) value 0 0.3 0.11 0.086 1.72

8 CH_K2 Main channel’s effective hydraulic
conductivity 5 100 77.53 0.954 −0.06

9 ALPHA_BNK Bank storage base flow’s alpha factor (day) 0 1 0.98 0.283 1.08

10 SOL_AWC Soil available water capacity −0.2 0.4 0.14 0.482 −0.7

11 SOL_K Hydraulic conductivity of saturated soil −0.8 0.8 0.48 0.111 −1.6

12 SOL_BD Bulk density of moist soil 0 1 0.87 0.419 −0.81

13 SMFMX The maximum rate of snowmelt over
a year 0 20 5.61 1.83 × 10−7 8.87

14 SMFMN The minimum rate of snowmelt over
a year 0 20 3.19 0.06 −1.88

15 SMTMP Base temperature of snowmelt (◦C) −5 5 3.49 0.489 0.69
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Table 6. Cont.

Rank Parameter Description
Initial Range Calibrated

Value

Sensitivity Analysis

Min Max p-Values T-Stat

16 SFTMP The temperature of snowfall (◦C) −5 5 −2.15 2.48 × 10−8 8.53

17 TIMP Temperature lag factor for snowpack 0 1 0.32 0.845 −0.2

18 TLAPS Lapse rate of temperature −20 20 −5.05 2.51 × 10−6 −5.19

19 PLAPS Lapse rate of precipitation −300 300 117.86 0.015 −2.43

20 ESCO Soil evaporation compensation factor 0 1 0.68 0.436 −0.78

21 SNOCOVMX The minimum amount of snow water
resembles 100% of snow cover (mm) 0 400 302.76 0.38 −0.88

22 SNO50COV The volume of snow that corresponds to
50% of snow cover 0.1 0.6 0.49 0.939 −0.08

3.2. Performance Evaluation of The SWAT Model in Terms of Low and High Flows

The simulated low streamflow and high streamflow by the SWAT model were compared with
observed low stream flows and observed high streamflow, respectively. The results indicated a strong
correlation coefficient of 0.94 and 0.98 for low and high streamflow, respectively. The values of the
coefficient of determination (R2) also indicated that the SWAT model performed well in simulating
low and high streamflow. The R2 values were 0.88 and 0.96 for low streamflow and high streamflow
respectively. Figure 6 shows the comparison between observed and simulated low streamflow and
observed and simulated high streamflow. The values of the coefficient of determination (R2) also
represent that the observed and simulated low flows and observed and simulated high flows have a
strong relationship. These indices depict that the SWAT model is performing well in simulating low
flows and high flows.
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Figure 6. Comparison of observed and simulated low streamflow (up) and observed and simulated
high streamflow (down).
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3.3. Seasonal Change in Temperature and Precipitation

The variation in mean seasonal rainfall is limited in spring and winter while shifting in rainfall
is more during autumn and summer seasons for five GCMs. The rainfall during the moon-soon
season is predicted to be more intense, while there will be a large increase in temperature; up to 8.4 ◦C.
From Figure 7, it is concluded that in the 20th century the temperature is relatively less than in the
21st century; meanwhile, the temperature is increasing at a relatively steeper rate as compared with
the previous period. In the year 1990, the average temperature of the whole watershed was 24.5 ◦C,
whereas the expected average annual temperature for the 2030 scenario is 26.2 ◦C. It can be observed
that there is almost a 1.7 ◦C increase in temperature in four decades. However, it can also be observed
that in 2070, the average temperature will reach 29.54 ◦C, as there will be a rise of almost 3.34 ◦C in
the next four decades. For 2100, the temperature will touch 32.08 ◦C, from which it can be observed
that the temperature will rise to 2.54 ◦C during the period from 2070 to 2100. Considering RCP (4.5),
it can be observed that temperature will tend to rise at a higher rate during the middle of the century,
as compared to the end of the century.
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Figure 7 revealed the average temperature from 1990 to 2100 within the transboundary Mangla
Watershed. The best adopted downscaling technique for the watershed, i.e., distribution mapping
downscaling, was used to predict these results. Figure 7 represents that the maximum rise in temperature
till 2100 will be 8.9 ◦C. It is a large increase in temperature which will definitely increase evapotranspiration
and also cause glaciers to melt and will severely affect freshwater resources in the future.

Figure 8 shows the projected change in precipitation (mm) over the Mangla watershed from the
year 1990 to 2100. In 1990, there was less precipitation in most of the watershed, and it increases
continuously in the future from 2021 to 2100. The northern part of the Mangla Watershed located at a
higher altitude registered more rainfall as compared to the southern part of the watershed. In the late
century, there will be more precipitation due to an increase in temperature. The increase in temperature
ultimately causes evapotranspiration and precipitation to surge.
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Figure 9a shows the average annual precipitation of ensembled GCM models [71] from 1981
to 2010 under three downscaling techniques for the RCP 4.5 radiative forcing emission scenario.
The average annual precipitation under change factor downscaling ranges from 3.2 mm to 5.5 mm.
The average annual precipitation from ensembled model output ranges from 2.78 mm to 4.89 mm under
distribution mapping downscaling, and 2.54 mm to 9.4 mm under linear scaling. Figure 9b shows the
GCMs ensembled average annual precipitation under RCP 8.5. The change factor downscaling ranges
between 3.14 mm and 5.47 mm, distribution mapping ranges from 2.44 mm to 4.65 mm, and linear
scaling ranges between 2.87 mm and 9.33 mm.
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Figure 9. GCMs model ensembled average annual precipitation change from 1981 to 2100 under three
downscaling techniques. (a) RCP 4.5, (b) RCP 8.5.

Figure 10 shows the GCMs ensembled average temperature trends from 1981 to 2100. The temperature
under both RCPs showed an increasing trend. Figure 10a shows the change in Tmax and Tmin from
1981 to 2100 under the RCP 4.5 scenario. The increase in Tmax under change factor (CF) downscaling is
6.32 ◦C and an increase in Tmin is 5.45 ◦C. There is a 5.36 ◦C rise in Tmax and 4.34 ◦C in Tmin under the
distribution mapping downscaling technique. In linear scaling, there is a 3.92 ◦C increase in Tmax and
2.78 ◦C in Tmin. Figure 10b shows the change in Tmax and Tmin under the RCP 8.5 scenario. The Tmax
and Tmin were increased by 7.89 ◦C and 6.85 ◦C respectively under change factor downscaling and RCP
8.5. In distribution mapping, the Tmax was increased by 7.79 ◦C, whereas the Tmin was increased by
7.74 ◦C under RCP 8.5. The linear scaling downscaling has an increase of Tmax of 5.99 ◦C and a Tmin of
5.37 ◦C.
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Figure 10. GCMs ensembled average temperature from 1981 to 2100 under three downscaling
techniques; (a) RCP 4.5, (b) RCP 8.5.

3.4. Future Flow Projection

The streamflow generation by applying CMIP5 GCMs data in SWAT is quite uncertain. The increase
in streamflow on a larger scale has been observed in all five GCMs. The percentage increase in flow
following RCP 4.5 can be observed in Table 7. In the summer season, the flow will tend to decrease,
while in winter, it tends to rise. Both flood and drought scenarios can be observed in the prospect in
the watershed. Using the global climatic model, ACCESS, from 2021 to 2039, the annual flow will
tend to rise by 60.19%. The stream flows are predicted to rise by 87.62% during the years 2040–2069
and 97.17% from 2070–2099. During the summer season (June, July, and August), these flows tend to
decrease considerably for 2021–2039 scenarios, as the flows will be 121.74% more than base period
flows, whereas, from 2040–2069, scenarios showed a 62.35% decrease in streamflow as compared with
the base period. In the last decade, the flows in summer will reach to 52.02%. Winter season (including
December, January, and February) showed a remarkable increase in streamflow, 35.57% in 2021–2030,
154.25% in the mid-century, and 200.05% in the late century. The annual and seasonal flow exceedance
percentage was described in Table 7, regarding five GCMs under RCP 4.5 during three periods; 2021 to
2039, 2040 to 2069, and 2070 to 2099. The annual flow will tend to increase up to 155.2%; the flow
during winter will increase up to 186.29%. In summer, it will increase up to 121% and in autumn it
will increase up to 175.97%. There is a maximum increase during the spring season which may lead
to floods, and during the winter season, the streamflow tends to shrink, which may cause droughts.
Flows will upsurge at an abrupt rate in the prospect. For instance, it is revealed that, through the
year 2021 to 2040, because of ACCESS, the annual average flows will rise to 86.36%, while for the year
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2030–2070, it will rise at a higher grade of 88.52%. The flow will upsurge by 110.55% in the course
of the year 2070 to 2100. In the summer season, a decrease was observed, whereas, in spring and
winter, flows are showing a remarkable increase. By studying the results of MIROCESM, it can be
observed that, on an annual basis, streamflow will increase by 121.56% from 2021–2039, as compared
with the base period 1981 to 2010. In the year 2040–2070, the streamflow will increase more and reach
the peak value of 137.31%, and at the end of the century, it will touch 142.87%. In the summer season,
stream flows are showing a decline, as in the first 30 years, the average streamflow is projected to
be 107% more than the base streamflow; in the next period, it will decline to 99.13%, and in the year
2070–2099, it will decline by more than 97.95%.

Figure 11a shows the percentage increase in stream flows as compared with the base flow for the
RCP 4.5 scenario by downscaling using the change factor technique. The streamflow under ACCESS
increment ranges from −67.9% to 112.2%, ESMLR ranges from −12.2% to 111.3%, and CCSM4 ranges
from −20.9% to 96.3%; HadGEM2 ranges from −54.6% to 56.1% and MirocESM ranges from −49.6%
to 67.5%. In Figure 11b, an annual percentage increase in stream flows, as compared with the base
flow by using the change factor downscaling technique under RCP 8.5, is presented. The extreme
values for streamflow increase under ACCESS ranges from 9.03% to 243.2%, ESMLR arrays from
28.09% to 165.33%, CCSM4 ranges from 31.3% to 165.3%, HadGEM2 ranges from 28.09% to 166.8%
and MirocESM series from 48.7% to 239.26%. Figure 11c shows an annual percentage increase in
stream flows as compared with baseflow under the linear scaling downscaling technique for RCP 4.5.
The extreme values for streamflow under ACCESS increment ranges from −54.3% to 145.3%, ESMLR
ranges from −87.9% to 345.3%, CCSM4 ranges from −45.5% to 112.7%, HADGEM2 ranges from −27.9%
to 53.9%, and MirocESM ranges from −51.7% to 220.3%. Figure 11d shows an annual percentage
increase in stream flows as compared with the base flow by using linear scaling downscaling under
RCP 8.5. The extreme values for streamflow under ACCESS increment range from −47.6% to 113.2%,
ESMLR ranges from −72.0% to 172.3%, CCSM4 ranges from −33.5% to 103.3%, and HadGEM2 ranges
from −54.2% to 99.4%. Figure 11e shows an annual percentage increase in stream flows as compared
with the base flow by using distribution mapping downscaling under RCP 4.5. The extreme values
for streamflow under ACCESS increment range from −63.7% to 139.2%, ESMLR ranges from 44.8%
to 140.73%, CCSM4 ranges from −52.7% to 114.3%, HadGEM2 ranges from −46.3% to 168.9% and
MirocESM ranges from −44.8% to 140.7%. Figure 11f shows an annual percentage increase in stream
flows as compared with the base flow, by using distribution mapping downscaling under RCP 8.5.
The extreme values for streamflow under ACCESS increment ranges from −61.5% to 112.7%, ESMLR
ranges from −53.6% to 112.7%, and CCSM4 ranges from −54.3% to 96.6%, HadGEM2 ranges from
32.49% to 164.425% and MirocESM ranges from −45.7% to 56.9%. It is observed that the possibility
of the appearance of low and high flow could be more leading in the prospect within the Mangla
watershed following both RCP scenarios. However, average flows during the summer season were
predicted to decrease by all five GCMs. This reduction in summer outflow is usually possible due to
the reduction in average yearly precipitation. The difference in high outflow and outflow duration
trajectories explains that the repetition of water abundance will further increase their quantities into
the prospect that will generate plenty of administration obstacles in the watershed. Not only economic
losses but also losses of life will be caused by flooding in the future.

Figure 12a shows average annual stream flows compared with the base flow for change factor
downscaling and RCP 4.5 emission scenarios. The extreme values for streamflow under ACCESS
ranges from 380 m3/s to 2547 m3/s, CCSM4 ranges from 958 m3/s to 2363 m3/s, MirocESM ranges from
604 m3/s to 2013 m3/s, ESMLR ranges from 1052 m3/s to 2533 m3/s, and HadGEM2 ranges from 544 m3/s
to 1874 m3/s. Figure 12b future flow projection compared with the observed flow by using the change
factor downscaling under the RCP (8.5) emission scenario. The extreme values for streamflow under
ACCESS ranges from 440 m3/s to 2782 m3/s, CCSM4 ranges from 663 m3/s to 2003 m3/s, MirocESM
ranges from 838 m3/s to 2743 m3/s, ESMLR ranges from 631 m3/s to 2019 m3/s, HADGEM2 ranges
from 483 m3/s to 1994 m3/s. Figure 12c depicts the future flow projection compared with the observed
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flow by using linear scaling downscaling under RCP (4.5) emission scenario. The extreme values
for streamflow under ACCESS range from 456 m3/s to 2453 m3/s, CCSM4 ranges from 545 m3/s to
2127 m3/s, MirocESM ranges from 483 m3/s to 3200 m3/s, ESMLR ranges from 121 m3/s to 4454 m3/s,
and HadGEM2 ranges from 720 m3/s to 1539 m3/s. ESMLR predicts very high flows in the year 2071
during the summer season. Figure 12d shows the future flow projection compared with the observed
flow by using the linear scaling downscaling under RCP (8.5) emission scenario. The extreme values
for streamflow under ACCESS range from 524 m3/s to 2132 m3/s, CCSM4 ranges from 668 m3/s to
2031 m3/s, MirocESM ranges from 136 m3/s to 3271 m3/s, ESMLR ranges from 276 m3/s to 2721 m3/s,
and HadGEM2 ranges from 460 m3/s to 1990 m3/s. Figure 12e shows future flow projection compared
with the observed flow, by using distribution mapping downscaling under the RCP (4.5) emission
scenario. The extreme values for streamflow under ACCESS ranges from 363 m3/s to 2392 m3/s, CCSM4
ranges from 473 m3/s to 2142 m3/s, MirocESM ranges from 553 m3/s to 2408 m3/s, ESMLR ranges from
545 m3/s to 1634 m3/s, and HADGEM2 ranges from 537 m3/s to 2689 m3/s. Figure 12f shows the future
flow projection compared with the observed flow, by using the distribution mapping downscaling of
global climate models under the RCP (8.5) emission scenario. The extreme values for streamflow under
ACCESS ranges from 385 m3/s to 2127 m3/s, CCSM4 ranges from 456 m3/s to 1966 m3/s, MirocESM
ranges from 550 m3/s to 1562 m3/s, ESMLR ranges from 464 m3/s to 2127 m3/s, and HADGEM2 ranges
from 675 m3/s to 1990 m3/s.
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Figure 11. Cont.
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Figure 11. Comparison of different downscaling techniques in regards to average annual percent
change in flow (a) Change Factor RCP 4.5, (b) Change Factor RCP 8.5, (c) Linear Scaling RCP 4.5,
(d) Linear Scaling RCP 8.5, (e) Distribution Mapping RCP 4.5, and (f) Distribution Mapping RCP 8.5.
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Table 7. Average annual and seasonal flow change in percentage (%) under RCP 4.5 and RCP 8.5.

GCM Period

RCP-4.5 RCP-8.5

Annual
(J-D)

Winter
(DJF)

Spring
(MAM)

Summer
(JJA)

Autumn
(SON)

Annual
(J-D)

Winter
(DJF)

Spring
(MAM)

Summer
(JJA)

Autumn
(SON)

Access 2021–2039 60.19 79.21 22.97 121.74 73.52 86.36 108.98 82.69 73.46 89.99

Access 2040–2069 87.62 110.49 48.99 62.35 101.72 88.52 111.60 64.40 56.31 93.25

Access 2070–2099 97.17 121.39 60.47 52.02 103.59 110.55 116.05 66.80 54.44 101.72

ESMLR 2021–2039 92.50 115.71 72.85 60.07 99.00 106.14 131.07 83.01 74.75 110.28

ESMLR 2040–2069 97.85 128.17 82.32 71.33 101.26 107.70 132.50 85.20 73.98 114.09

ESMLR 2070–2099 103.31 130.84 86.50 66.60 109.97 113.97 134.34 82.07 71.01 119.47

CCSM4 2021–2039 128.51 157.48 102.49 96.11 141.66 107.31 132.11 85.01 75.09 106.24

CCSM4 2040–2069 130.27 167.86 107.38 90.34 142.91 109.26 134.24 86.56 74.28 113.22

CCSM4 2070–2099 138.13 175.48 110.32 89.01 154.43 110.63 136.59 79.60 68.63 116.29

HADGEM2 2021–2039 89.96 112.66 71.05 61.61 88.56 85.81 107.94 68.14 79.91 87.17

HADGEM2 2040–2069 98.54 115.03 74.03 60.42 90.74 106.94 112.64 84.56 73.28 89.03

HADGEM2 2070–2099 107.11 119.39 79.01 59.24 92.91 117.81 115.20 69.77 59.23 113.79

MIROCESM 2021–2039 137.50 166.04 106.72 96.71 152.91 121.56 165.64 119.60 107.33 118.90

MIROCESM 2040–2069 142.42 168.80 108.35 99.80 155.33 137.31 176.96 122.46 99.13 148.58

MIROCESM 2070–2099 155.52 186.29 120.45 110.01 175.97 142.87 215.05 139.60 97.95 208.62

Note: (J-D) January to December; (DJF) December, January, February; (MAM) March, April, May; (JJA) June, July, August; (SON) September, October, November.
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Figure 12. Comparison of different downscaling techniques in regard to average annual flow under
different emission scenario; (a) Change factor RCP 4.5, (b) Change factor RCP 8.5, (c) Linear scaling
RCP 4.5, (d) Linear scaling RCP 8.5, (e) Distribution mapping RCP 4.5, (f) Distribution mapping RCP 8.5.

The multi-model ensemble means (EM) method was used to ensemble the five GCMs time series
data under three types of downscaling techniques and two different emission scenarios. Figure 13
revealed that in EM, under change factor downscaling, GCMs are projecting high flows, ranges between
735 m3/s to 2169 m3/s under RCP 4.5 and 662 m3/s to 2149 m3/s under the RCP 8.5 scenario. In linear
scaling downscaling, the streamflow ranges between 776 m3/s and 2246 m3/s under the RCP 4.5
scenario, whereas it is from 787 m3/s to 1789 m3/s under the RCP 8.5 scenario. The distribution mapping
downscaling ranges between 828 m3/s to 1591 under RCP 4.5 and 831 m3/s to 1516 m3/s under the RCP
8.5 scenario. The observed flow ranges between 420 m3/s and 1285 m3/s.

Figure 14 shows the average annual flow (January to December); winter (October to March),
Summer (August to September); Winter (December, January, and February); Spring (March, April,
and May); Summer (June, July, and August) and Autumn (September, October, and November) during
the year 2021 to 2100. Figure 14 revealed that there will be more streamflow during the summer season,
whereas there will be very little streamflow during the autumn season. The streamflow during the
summer season is relatively more due to the melting of glaciers but as we proceed to the next period
2040–2069 the streamflow during the summer season show a remarkable declining trend. A large
volume of water in streams is observed in the spring season and it will tend to rise in the future.
By considering distribution mapping, the average annual flows are 1887 m3/s flows during the autumn
season, 1435 m3/s in the summer season 2263 m3/s, and in the spring season, stream flows will be
2280 m3/s. There are a few uncertainties in the generated flows because the climatic data of temperature
and precipitation from several GCMs vary due to their different resolutions. All of the five GCM
are predicting huge stream flows during the spring season, while there will be very little streamflow
during the autumn season.
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Figure 13. Comparison of GCMs ensemble results under different downscaling techniques and emission
scenarios; (a) RCP 4.5, (b) RCP 8.5.
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Figure 14. Average annual and seasonal flows for the period 2021–2100 under distribution mapping
downscaling technique.

The box-plot represents the value of Q0 as lower extreme, Q25% as lower quartile, Q50% as median,
Q75% as upper quartile, and Q100% as the upper extreme of average annual flows. Figure 15 shows that
the lower and upper extremes of ESMLR under RCP-4.5 are 464 (m3/s) and 2127 respectively, having a
median flow of 1136 (m3/s). Similarly, the lower and upper extremes of MirocESM 770 (m3/s) and
1562 (m3/s) respectively, and median flow of 1188 (m3/s). HadGEM2 with one upper outlier point has a
lower extreme, 675 (m3/s), and an upper extreme, 1793 (m3/s); the median flows of ACCESS, CCSM4,
MirocESM, ESMLR, HadGEM2 are 1126 (m3/s), 1024 (m3/s), 1188 (m3/s), 1136 (m3/s) and 1191 (m3/s),
respectively. Under the RCP-8.5 scenario, Figure 15 also depicts that the lower extreme for ACCESS is
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363 (m3/s) and the upper extreme is 1870, whereas (m3/s). GCMs ESMLR has a minimum range of
746 (m3/s) to 1633 (m3/s) and two outlier points. The upper extreme of MirocESM is 2119 (m3/s) and the
lower extreme is 552 (m3/s). The median streamflow values of ACCESS, CCSM4, MirocESM, ESMLR
and HadGEM2 are 1112 (m3/s), 1077 (m3/s), 1247 (m3/s), 1181 (m3/s), and 1175 (m3/s) respectively.
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Figure 15. Box-plot representation of average annual flow under RCP-4.5 and RCP-8.5.

Table A1 represents the peak, mean, and low streamflow from the year 2021 to 2100 under the
RCP-4.5 emission scenario. The peak flows occur commonly in the summer season (during June, July,
and August) due to the melting of snow from the northern part of the watershed, and low flows usually
occur during the winter season due to less snow melting. HadGEM2 depicts the maximum value of
8520 m3/s for peak flows from 2051–2060 under RCP 4.5 among all GCMs, followed by ACCESS with
a value of 8342 m3/s from 2091–2100. The maximum value of median flows has been found during
the 2021–2030 decade for MirocESM with a value of 1182 m3/s followed by 2031–2040 decade for the
same GCM, and ACCESS indicates the minimum value of 714.4 m3/s from 2091–2100 under RCP 4.5.
Furthermore, the minimum and maximum values of low flows can be found for HadGEM2 from
2031–2040 and 2061–2070, respectively, among all the five GCMs.

Table A2 represents the peak, mean, and low streamflow from the year 2021 to 2100 under RCP-8.5
for five GCMs. Under RCP-8.5, the peak flow of GCM varies from 2406 (HadGEM2 2071–2080) to
8890 m3/s (ESMLR from 2061–2070), median flow varies from 525.9 (ESMLR from 2081–2090) to 1202 m3/s
(HadGEM2 from 2041–2050) and the low flow varies from 15.11 (ESMLR from 2031–2040) to 241.9 m3/s
(MirocESM from 2091–2100) for all GCMs based on the decadal data. If we talk about these GCMs
at the individual level, the peak flows vary between a range of 4004–735, 3472 to 6981, 2406–6930,
4003–8890 and 3613–7395 m3/s for ACCESS, CCSM4, HadGEM2, ESMLR, and MirocESM, respectively,
median flows vary between 741–920, 641–909, 851–1202, 525–961 and 817–1130 m3/s s for ACCESS,
CCSM4, HadGEM2, ESMLR, and MirocESM, respectively, and low flows vary between 81.86–222.6,
39.97–225.9, 51.66–333, 15.11–93.97 and 91.36–241.9 m3/s, for ACCESS, CCSM4, HadGEM2, ESMLR,
and MirocESM, respectively.

4. Discussion

In this study, future climate change was assessed under RCP (8.5) and RCP (4.5) emission scenarios.
Change of temperature and precipitation and their probable effects on water resources at Mangla
Watershed was studied on a broad spectrum. Five GCMs, along with their ensembles, were selected,
and three types of downscaling techniques were compared to estimate the change in precipitation and
temperature. After a comparison of these downscaling techniques with base data, it was concluded that
the distribution mapping is the best downscaling technique to study climatic parameters within the
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watershed, however, linear scaling downscaling was found to be a less effective downscaling technique,
as the results are in close agreement with previous studies [51]. Downscaled data were used to generate
stream flows using a semi-distributed hydrological model SWAT. In this research, evapotranspiration
was neglected due to data scarcity and unreliability. Observed data were gathered from seventeen
metrological stations, five of them in the Indian region. The scarcity of metrological stations within
Mangla Watershed can cause the low performance of the calibration. The land use classification
and soil type were kept constant throughout the simulations. This type of assumption can affect the
prediction of streamflow. Uncertainty exists as a well-known problem toward most of the hydrological
modeling considerations, particularly on large scales. The bulk part of these uncertainties appears
in the forecasted precipitation and temperature datasets, due to the distinctive resolutions of several
GCMs. The streamflow generated by using these datasets also shows uncertainties. In the prospect,
as interpreted by [31], the projection of climatic parameters using CMIP5 GCM is considerably uncertain.
In the present research, five GCMs of distinct variation in resolutions are used to predict future climatic
scenarios. Many uncertainties were found in the maximum and minimum temperature, as well as in
rainfall after using three downscaling techniques applied on CMIP5 GCMs. The uncertainties occurred
in maximum temperature using the RCP 4.5 scenario ranges between 2.58 ◦C and 5.30 ◦C, while in
minimum temperature, it ranges between 0.8◦C and 2.0◦C. These uncertainties under the RCP 8.5
scenario are even more probable. The maximum temperature under the RCP 8.5 scenario ranges
between 4.33 ◦C and 8.90 ◦C, whereas the minimum temperature ranges between 3.10 ◦C to 8.60 ◦C [21].
These temperature variations ultimately affect the amount of precipitation. The percentage increase
in precipitation compared to the baseline period ranges between 45 to 128.4% under the RCP 4.5
scenarios and 92 to 180.3% in the RCP 8.5 scenario. As predicted by [72], it is hard to exactly predict
the climatic variables, particularly rainfall, and consequently, uncertainties in predicted temperature
and rainfall will lead to uncertainties in streamflow [31]. The results of five GCMs under both RCPs
4.5 and RCP 8.5 scenarios, illustrates that the change in temperature and precipitation frequencies will
affect the water resources and streamflow within the transboundary, directly or indirectly. Besides
climate change, other anthropogenic changes can also have a significant impact on streamflow, such as
future management practices and land-use change significantly influencing water availability [61,73].

The projected GCMs show an increase in the precipitation amount in the study area compared to
base years and are in close agreement with previous studies [21,24,74]. The rainfall is greatly affected
by various transmission systems, such as monsoons [75]. The moisture transportation, inter-annual,
and inter-decadal change of the monsoon are the principal agents that can induce an accession in
the rainfall frequencies in the Indus basin region [45]. An increase in precipitation amount is also
vulnerable to temperature change at a different inter-annual and inter-decadal time [29]. These factors
are performing a major role in the increase of precipitation; further investigations by performing
different climatic modeling techniques ought to be carried in the prospect to study these aspects in more
detail. The projected increase in precipitation and temperature tends to influence the streamflow within
the transboundary Mangla dam watershed and is in close agreement with the previous work carried
out in the study area [21,24,45]. This increase in streamflow in the rivers will tend to cause floods [76],
so several preventions, such as the construction of new dams, are strongly recommended. The results
of this study are consistent with the results of precipitation and temperature in the past [45]. These
projected climatic variables and stream flows could be valuable for policymakers and water resource
administrators for the proper administration of water reserves. Some of the predicted streamflows
showed a large increase that may cause floods in the prospect, to avoid these floods this study can be
valuable for water resource planners for the management of water resources construction of new water
storage structures, and modernizing the designs and storage capabilities of existing dams.

5. Conclusions

Pakistan stands among one of the countries with significant and more prominent water stress,
and its existing water resources are extremely vulnerable to climate change. In this investigation,
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the possible consequences of climate change on water reserves in the Mangla Watershed have been
evaluated under RCP 4.5 and RCP 8.5 scenarios using the outputs of five GCMs. The forecasts for
climatic variables and their probable influences on water resources within the boundary of Mangla
Watershed were examined up to the year 2099. Under CMIP5, five GCMs and their ensembles were
used, considering RCP 4.5 and RCP 8.5 emission scenarios to forecast temperature, precipitation,
and streamflow within the watershed, to attain substantial precipitation, maximum and minimum
temperature data series following various climate change situations. Change factor, linear scaling, and
distribution mapping downscaling techniques were exercised to downscale the future projections of
climatic parameters. Furthermore, the mentioned three downscaling techniques were inter-compared
and decided the best downscaling technique for the watershed. The hydrological model SWAT,
after calibration, was applied to produce streamflow based on the values of the climatic parameters that
were downscaled by the specified downscaling techniques. Subsequently, the streamflow generated by
using these downscaled data in SWAT was analyzed, comprehensively, for all five models and their
ensembles. The several noticeable results extracted from this research were compiled as subsequently:

• The results regarding calibration and validation criteria, i.e., NSE, PBIAS, and R2, are satisfactory
within the monthly period by incorporating elevation bands. The calibrated hydrological model
SWAT precisely re-generates streamflow within the Mangla Watershed.

• Maximum temperature and minimum temperature are projected to increase in the future from
2021 to 2099 for all five GCMs, under both RCP (4.5) and RCP (8.5) emission scenarios.

• The projected precipitation is more uncertain and obscure. All five GCMs and their ensemble are
predicting an increase in precipitation frequencies from June to September within the Mangla
Watershed with a significant increase of (219%) in June.

• The projected average annual flow will increase constantly for all five GCMs and their ensemble,
especially in the Spring season with a 193% increase, but there will be a decrease in the streamflow
during the autumn season. Moreover, there will be an excess of high flows and low flow events
for the projected flows.

Hence, based on these outcomes, to predict climatic parameters in the future, a more certain GCMs
ensemble scenario could be used. An increase in flow will cause high flood risk in the watershed.
By applying good management practices and by constructing dams and reservoirs, Pakistan may be
able to generate more hydropower and also produce more food for its residents. The principal outcome
of the research is that the Mangla watershed will be expected to face more flooding in the future,
and average flows are supposed to decrease. The maximum temperature, minimum temperature,
and precipitation peak will also tend to increase in the future. The outcomes of this research are
helpful for climate change researchers, development planners, and policymakers toward designing
and accomplishing suitable water administration systems to mitigate the influences of climate change.
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Appendix A

Table A1. Peak, median and low flows (2021–2100) under RCP-4.5.

GCMs ACCESS CCSM4 HadGEM2 ESMLR MirocESM

Years
Peak
Flow

(m3/s)

Median
Flow

(m3/s)

Low
Flow

(m3/s)

Peak
Flow

(m3/s)

Median
Flow

(m3/s)

Low
Flow

(m3/s)

Peak
Flow

(m3/s)

Median
Flow

(m3/s)

Low
Flow

(m3/s)

Peak
Flow

(m3/s)

Median
Flow

(m3/s)

Low
Flow

(m3/s)

Peak
Flow

(m3/s)

Median
Flow

(m3/s)

Low
Flow

(m3/s)

2021–2030 3603 763 73 3961 748 160 6730 812 51 4316 1119 100 5390 1182 141

2031–2040 3798 956 119 4657 878 81 5795 761 21 4228 938 110 5544 1120 302

2041–2050 5560 875 135 5040 814 135 5885 886 26 5683 1134 173 5263 897 95

2051–2060 4163 738 107 7230 788 135 8520 977 56 4898 910 96 5577 976 156

2061–2070 4947 991 95 6060 731 148 5995 1122 372 5648 995 157 5258 1057 160

2071–2080 5962 920 126 4873 844 57 3390 876 67 4082 1034 171 4105 895 96

2081–2090 7581 895 143 5126 920 106 5813 1018 193 3688 876 71 5523 1101 315

2091–2100 8342 714 98 5675 766 142 4357 1023 65 7388 1097 217 5231 928 94

Table A2. Peak, median and low flows (2021–2100) under RCP-8.5.

GCMs ACCESS CCSM4 HadGEM2 ESMLR MirocESM

Years
Peak
Flow

(m3/s)

Median
Flow

(m3/s)

Low
Flow

(m3/s)

Peak
Flow

(m3/s)

Median
Flow

(m3/s)

Low
Flow

(m3/s)

Peak
Flow

(m3/s)

Median
Flow

(m3/s)

Low
Flow

(m3/s)

Peak
Flow

(m3/s)

Median
Flow

(m3/s)

Low
Flow

(m3/s)

Peak
Flow

(m3/s)

Median
Flow

(m3/s)

Low
Flow

(m3/s)

2021–2030 4004 837 113 4870 845 40 6930 1108 193 4439 895 86 4893 1046 101

2031–2040 4487 862 152 5681 886 140 4732 1053 52 8473 714 15 3613 883 97

2041–2050 4987 920 223 3775 789 138 6441 1202 66 8220 577 18 5668 1123 173

2051–2060 7335 884 116 6981 798 174 4811 963 105 8510 712 152 4891 906 97

2061–2070 5505 911 143 3472 909 226 4648 778 68 8890 767 19 5639 993 161

2071–2080 4630 815 170 5367 629 111 2406 1011 333 6969 647 18 4994 895 120

2081–2090 5068 917 82 4476 679 176 4216 895 66 4003 526 34 4258 818 91

2091–2100 6211 741 124 4185 642 93 3300 1050 70 6651 961 94 7395 943 242
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