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Abstract: The Air Quality Health Index (AQHI) is a tool that has been developed in order to address
the health effects caused by simultaneous exposure to several different air pollutants. Short-term
health effects in terms of mortality or morbidity are used in order to construct an index. In this
study, different indexes for different health outcomes, based on the concentrations of NO2, O3, and
PM10 at an urban background measuring station in Stockholm during the period of 2015–2017, are
calculated by using different risk-coefficients obtained from a meta-analysis. An AQHI based on local
risk-coefficients for asthma emergency department visits (AEDV) in Stockholm is also included in
the analysis. Correlation coefficients between different pairs of AQHIs, where the additive effects
associated with exposure to NO2, O3, and PM10 during 2015–2017 are used, exhibit R-values as in 12
out of 15 cases exceed 0.80. However, the average risk increase for different AQHIs are very different,
where indexes based on hospital admissions for asthma are larger than those based on mortality
outcomes. An overall conclusion is that different AQHIs for different population groups are not
needed, but the index may need to be weighted differently for different population groups.
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1. Introduction

The Air Quality Health Index (AQHI) is a tool that has been developed in order to address the
health effects caused by simultaneous exposure to several different air pollutants, and can thereby for
preventive purposes be used as a warning system regarding the current or the forecasted air quality
situation. The Air Quality Index (AQI), which is commonly used in many cities as a tool to quantify
the air quality, is normally based on several pollutants, but where the pollutant with the highest
concentration in relation to its standard value determines the index value [1]. This means that the
additive effects of several different air pollutants are not captured. Contrary, the AQHI is based on a
multi-pollutant approach, where the excess risks of different health outcomes related to exposure to a
group of air pollutants are used in order to construct the index. Short-term health effects in terms of
mortality or morbidity are usually used. Previous studies have used several different health-related
indicators in order to construct an AQHI. Excess risks associated with short-term mortality from
different combinations of air pollutants have been used in Canada by Stieb et al. (2008) [1] and in
China by Li et al. (2017) [2]. A similar approach has been performed in South Africa by Cairncross et al.
(2007) [3].

An AQHI based on the exposure-response relationships between short-term mortality and different
combinations of air pollutants has also been proven to be useful for other health outcomes. In Chen et al.
(2014) [4], an AQHI based on excess risks of mortality was also significantly associated with emergency
department visits for acute ischemic stroke in the city of Edmonton in Canada. This AQHI, based

Atmosphere 2020, 11, 192; doi:10.3390/atmos11020192 www.mdpi.com/journal/atmosphere

http://www.mdpi.com/journal/atmosphere
http://www.mdpi.com
http://dx.doi.org/10.3390/atmos11020192
http://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/2073-4433/11/2/192?type=check_update&version=2


Atmosphere 2020, 11, 192 2 of 12

on mortality, has also been significantly correlated with emergency department visits for asthma
in Ontario, Canada, as has been shown by Szyszkowicz et al. (2014) [5]. Significant correlations
between this AQHI and increased use of asthma health services in Ontario, Canada, have also been
shown in To et al. (2013) [6], where significant associations were found for asthma outpatient visits,
hospitalizations, and emergency department visits. The AQHI that has been constructed based on
excess risks of mortality is thus also significantly correlated with asthma, where the mortality rate,
however, is low.

The main purpose of this study is to analyze how the AQHI varies depending on the health
outcome that is used in order to construct the index. The reason for this is to clarify if different types
of AQHI are needed for different population groups, i.e., sensitive groups with cardiovascular or
respiratory diseases, children and elderly, and healthy individuals who want to avoid poor air quality
for preventive purposes. This study is partly a further development of a previous study in Stockholm,
where a local AQHI was constructed by using locally produced risk-coefficients for asthma emergency
department visits (Olstrup et al., 2019) [7], but where the calculated AQHI is not highly correlated
with the threshold-based index (AQI) based on PM10. In this study, the correlations between different
AQHI based on different health outcomes are analyzed.

By using air pollution data for NO2, O3, and PM10 from an urban background station in Stockholm
during the period of 2015–2017 (see Appendix A) and meta-coefficients for the excess risks of different
health outcomes [8], the variations of the additive effects of different indexes and the correlations
between them are graphically presented and statistically analyzed. Additive effects associated with
simultaneous exposure to NO2, O3, and PM10 have been assumed, since synergistic effects have
normally not been observed at environmental exposure levels [9].

2. Experiments

Different AQHIs based on NO2, O3, and PM10 are calculated by using several risk-coefficients
obtained from a meta-analysis [8]. The choice of NO2, O3, and PM10 is based on their representation
of different sources of air pollution. NO2 represents exhaust emissions, O3 is a marker for oxidants,
and PM10 represents a wide spectrum of particles, where the mass consists largely of mechanically
generated road dust particles.

Different indexes are calculated for Stockholm during the period of 2015–2017 based on the
concentrations of the above-mentioned air pollutants at a measuring station representing urban
background. The monitoring station is located on a roof 20 m above street level and represents urban
background concentrations, and it is a part of the city’s regulatory air pollution control network. The
methods and instruments at the station are described in Table 1.

Table 1. Description of the measurement methods and the instruments that have been used to measure
the pollutants included in the Air Quality Health Index (AQHI).

Pollutant Method Instrument

NO2 Chemiluminescence AC32M, Environment S.A.
O3 UV absorption O342M, Environment S.A.

PM10 Gravimetric TEOM 1400A, Thermo Fisher Scientific

The AQHI is calculated as a percentage increase according to the following equation:

AQHI =
∑

i=1...p

100
(
eβiXi

− 1
)

(1)

The beta-coefficient (βi) represents the increase in a specific health outcome associated with 1 µg
m-3 increase of each individual air pollutant (i) for pollutant 1 to p and where Xi represents the absolute
no-threshold concentration of the specific air pollutant measured in µg m-3. Since the beta-coefficients
are based on no-threshold concentrations, the AQHI is calculated by using the absolute concentrations
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assuming no threshold under which no effect occurs. The concentrations of NO2 and PM10 are based
on daily mean values, while the concentrations of O3 are based on daily maximum 8-h mean values.
The AQHI represents the total percentage increase by adding the individual effect of each air pollutant.
The variations in the index during the period of 2015–2017 are presented for different health outcomes
including mortality and morbidity, and where different age groups are analyzed separately. The
correlations between all pairs of combinations of indexes, based on the beta-coefficients for different
health outcomes, are calculated by using Pearson correlation coefficient according to the following
equation:

rxy =
nΣxy− ΣxΣy√

[nΣx2 − (Σx)2 ][nΣy2 − (Σy)2]

(2)

In Equation (2), rxy is the correlation coefficient, n is the sample size and x and y are the individual
sample points.

There are not local beta-coefficients from Stockholm available for all health outcomes that form the
basis for the analyses, and therefore, beta-coefficients from a meta-analysis (Anderson et al., 2007) [8],
which is the most comprehensive and current study in this field, have been chosen. The excess risks
associated with exposure to the measured air pollutants (NO2, O3, and PM10) have been chosen for
all-cause mortality in all ages, all-cause mortality in the elderly, cardiovascular mortality in all ages,
hospital admissions for asthma in all ages, and hospital admissions for asthma in children (Table 2).
The health outcomes in Table 2 have been chosen to represent both mortality and morbidity. Since the
mortality rates are generally low for asthma, then the health outcomes associated with asthma should
be clearly separated from the health outcomes associated with mortality. The health outcomes have
also been selected due to the number of studies on which the risk-coefficients have been based on,
where the greatest possible number of studies has been sought to provide the largest possible amount
of data. This is also the reason for the choice of mortality as a metric for all health outcomes except for
asthma, where the meta-coefficients using mortality as a health outcome are based on a relatively larger
amount of data in comparison with the meta-coefficients using morbidity-related health outcomes.

Table 2. The percentage risk increases with 95% confidence intervals (CI) associated with a 10 µg m−3

increase in exposure to NO2, O3, and PM10 obtained from a meta-analysis [8]. All-cause mortality
and hospital admissions for asthma are divided into all ages and elderly, and all ages and children,
respectively. Cardiovascular mortality is presented for all ages only.

Health Outcome NO2 O3 PM10

All-cause mortality, all ages 0.49 (95% CI: 0.38–0.60) 0.22 (95% CI: 0.09–0.35) 0.51 (95% CI: 0.40–0.62)
All-cause mortality, elderly 0.86 (95% CI: 0.50–1.22) 0.43 (95% CI: 0.18–0.69) 0.47 (95% CI: 0.35–0.58)

Cardiovascular mortality, all ages 1.17 (95% CI: 0.82–1.53) 0.38 (95% CI: 0.27–0.49) 0.64 (95% CI: 0.46–0.81)
Hospital admissions (asthma) all ages 1.37 (95% CI: 0.59–2.15) 1.60 (95% CI: −0.08–3.30) 0.77 (95% CI: 0.06–1.48)

Hospital admissions (asthma), children 2.92 (95% CI: 1.15–4.72) 0.75 (95% CI: −1.72–3.28) 1.78 (95% CI: 1.01–2.55)

3. Results

3.1. The Risk Increases for Different Health Outcomes during 2015–2017

The percentage risk increases for the different health outcomes on a monthly basis during 2015–2017
are presented in Figures 1–5. All calculations are based on the point estimates of the risk-coefficients
from a meta-analysis [8] (Table 2). This meta-analysis is based on a large number of studies that have
been analyzed. The choice of lag is different for different studies. The choice of lag is commonly
firstly based on the smallest p-value and secondly on the size of the risk estimate [8]. Since lag 01
is the most commonly used lag, the calculations in this study are consistently based on lag 01 (the
average pollution concentration of the same day and the day before). The cumulative effects from
three pollutants (NO2, O3, and PM10) are presented for Stockholm during the period of 2015–2017.
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Figure 2. The calculated average monthly percentage risk increase associated with NO2, O3, and PM10

for all-cause mortality in elderly in Stockholm during 2015–2017 based on meta-coefficients [8].
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Figure 3. The calculated average monthly percentage risk increase associated with NO2, O3, and PM10
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Figure 4. The calculated average monthly percentage risk increase associated with NO2, O3, and PM10 for
hospital admissions for asthma in all ages in Stockholm during 2015–2017 based on meta-coefficients [8].
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Figure 5. The calculated average monthly percentage risk increase associated with NO2, O3, and
PM10 for hospital admissions for asthma in children in Stockholm during 2015–2017 based on
meta-coefficients [8].

The annual variations in the concentrations of NO2, O3, and PM10 and the following risk increases
are shown in Figures 1–5. The concentrations of NO2 and the following risk increases are highest
during wintertime. The reasons for this are a more intensive traffic during wintertime in combination
with a more stable atmosphere with lower wind speeds. On the contrary, during summertime, the
traffic intensity decreases, and the atmosphere becomes more unstable with greater dilution effects,
contributing to lower concentrations and relatively lower risk increases. The O3 concentrations and the
highest risk increases arise during April and May. The reasons for this phenomenon are not entirely
clear. A peak in the photochemical production in combination with a stratospheric-tropospheric
exchange might be the two main factors behind the peak levels in O3 during springtime [10]. The
concentrations in PM10 and the risk increases associated with those exhibit a peak during late winter
and early spring. The is mainly caused by road abrasion from the use of studded tires during
wintertime [11]. These road dust particles are then suspended when the road surfaces become drier
during early spring, contributing to the peak levels in PM10 [12].

3.2. Correlations and Comparisons between Different AQHIs Based on Different Health Outcomes

In Table 3, the Pearson correlation coefficients (R-values) between all pairs of the different AQHIs
in Figures 1–5 are presented.
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Table 3. Correlation matrix with R-values for different pairs of AQHI-indexes, calculated in Stockholm
for NO2, O3, and PM10 based on the daily risk increases during the period of 2015–2017. The
abbreviations mean the following: AA = all ages, AC = all cause, C = children, CV = cardiovascular, E
= elderly, HA = hospital admissions.

Health Outcome AC mort. AA AC mort. E CV mort. AA HA Asthma AA HA Asthma C

AC mort. AA 1 0.98 0.98 0.85 0.96
AC mort. E 0.98 1 0.97 0.90 0.93

CV mort. AA 0.98 0.97 1 0.77 0.99
HA asthma AA 0.85 0.90 0.77 1 0.69
HA asthma C 0.96 0.93 0.99 0.69 1

In Table 3, 8 out of 10 correlations have R-values larger than 0.85. The corresponding R-values
between the health outcomes in Table 3 and the AQHI during 2015–2017 in Stockholm (with birch
pollen excluded) in Olstrup et al. (2019) [7] are presented in Table 4. In this study [7], daily local
excess risks of asthma emergency department visits (AEDV) in all ages based on NOx, O3, PM10,
and birch pollen have been used. The R2

adjusted, when including this AQHI in a base model, and
observed AEDV during 2005–2013 (after adjustments for calendar variables, meteorological data, and
influenza admissions) is 0.765, which indicates that this AQHI is a valid indicator of AEDV related to
air pollution exposure.

Table 4. Correlations (R-values) between AQHIs based on meta-coefficients and an AQHI based on
local risk-coefficients for asthma emergency department visits (AEDV) in Stockholm. The calculations
are based on the daily risk increases during the period of 2015–2017.

AQHI Based on Different Health
Outcomes from a Meta-Analysis [8]

AQHI Based on Local Risk-Coefficients
for AEDV in Stockholm [7]

AC mort. AA 0.95
AC mort. E 0.87

CV mort. AA 0.88
HA asthma AA 0.72
HA asthma C 0.88

In Table 5, the average daily percentage risk increase associated with different AQHIs based on
different health outcomes are presented. The result from the previous study in Stockholm [7], where
AEDV in all ages (AA) is used, is presented together with the results based on the meta-coefficients
used in his study.

Table 5. The average daily percentage risk increases for different AQHIs based on different health
outcomes during the period of 2015–2017.

AQHI Based on Different Health Outcomes Average Daily Percentage Risk Increases During 2015–2017.

AC mort. AA 2.6
AC mort. E 4.3

CV mort. AA 4.5
HA asthma AA 12.9
HA asthma C 10.4
AEDV AA [7] 5.8

4. Discussion

The results from the correlation analyzes clearly indicate that the R-values between the different
AQHIs, based on different health outcomes, are relatively high. Moreover, the R-values between the
AQHIs based on the meta-coefficients and the AQHI based on AEDV in Stockholm [7] are relatively
high. The exception is hospital admissions for asthma in all ages, where the correlation between
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the AQHIs based on other health outcomes are lower in comparison with the others. What is most
remarkable is that the coefficient for ozone is very much greater in comparison with the other health
outcomes. The meta-coefficient for O3 in “HA asthma AA” is based on seven studies, where adjustment
for the effect of pollen has only been performed in one of these seven studies. The levels of O3 tend
to be high during the pollen season, and pollen exposure can thereby contribute to the risk increase
associated with O3 and make the risk-coefficient for O3 greater than it would have been if pollen
adjustments had been performed. Adjustment for pollen has been performed in the local AQHI in
Stockholm [7] and except for the AQHI based on “HA asthma AA” this index correlates well with all
the AQHIs based on meta-coefficients (R-values in the range of 0.87–0.95).

The main purpose of this study is to find out if there is a need to produce different indexes for
different population groups. Based on the calculated R-values, the correlations are so evident that
they do not give reason to construct different indexes for different population groups. An AQHI
based on excess risks associated with mortality has also been proven to exhibit statistically significant
associations with non-lethal health outcomes [4–6]. However, when considering the daily average
percentage risk increases for the different AQHIs (Table 4), hospital admissions for asthma in both
children and all ages stand out as significantly larger than the others. This can of course be regarded as
highly reasonable, since mortality is by far the most serious health consequence, and asthma triggering
can be expected to increase relatively more at a certain level of the AQHI. The average daily percentage
risk increases of cardiovascular mortality and mortality in elderly are also larger than it is for all-cause
mortality in all ages. Consequently, even if there is no need to construct different AQHIs for different
population groups, there may be a reason to weight the index differently depending on the population
group, where children and other individuals who are predisposed to asthma or cardiovascular diseases
could have the index higher scaled in comparison with other less sensitive groups.

Although the different calculated AQHIs are highly correlated, the currently air quality index
(AQI) that is used in large parts of the world has proven insufficient when it comes to estimating
the cumulative effects of multi-pollutant exposure [1]. When comparing AQHI based on AEDV and
AQI based on PM10 in Stockholm during 2015–2017, it turned out that the conformity was not great;
the AQI (scaled from 1–4) exhibited the lowest value of 1 at many times while the AQHI exhibited a
relatively large risk increase [7]. Previous studies in China have also shown that the AQHI is a better
predictor of health outcomes in comparison with the AQI [2,13]. Assuming that the AQHI is a more
reliable tool in order to estimate the expected health risks associated with current or forecasted air
pollution concentrations, this study indicates that there is probably no need to create different indexes
for different population groups.

The AQHIs used in the calculations in this study are based on the absolute concentrations
assuming no threshold under which no effect occurs. For NO2, short-term exposure studies do not
indicate any clear threshold values [14], making the calculations based on the absolute concentrations
for NO2 valid. This also applies to PM10, where short-term exposure studies do not indicate any clear
threshold values [15,16]. For O3, it is more unclear if there is a threshold value under which no effect
occurs. When threshold values regarding daily mortality associated with O3 exposure in the Jiangsu
Province in China were analyzed, no clear evidence of a specific threshold value was found. When
the Akaike Information Criterion for quasi-Poisson (Q-AIC) values for models was used in order to
compare a model with a threshold value of 90 µg m−3 with a model with no threshold (0 µg m−3), there
was no clear indication of better model fit for the threshold-based model [17]. However, the same study
indicates potential threshold values for O3 exposure at some places, where the concentration-response
functions were almost horizontal at O3 concentrations below 80 µg m−3. In contrast to NO2 and
PM10, there might be a problem to use non-threshold-based concentrations for O3 when the AQHI
is calculated. However, since there is no clear evidence of a specific value that should be used, the
absolute concentrations for O3 are used in this study, although it is important to be aware of the
potential risk that the effects related to O3 exposure are overestimated.
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Since there are not local risk-coefficients for Stockholm available for all the presented health
outcomes, meta-coefficients have been used. Using meta-coefficients instead of local risk-coefficients
has both its advantages and disadvantages. Local risk-coefficients can spontaneously be regarded
as advantageous, since they are specific for the areas of interest. However, variations in city-specific
estimates are stochastic and a meta-coefficient is therefore preferable in order to reduce these stochastic
errors (Le Tertre et al., 2005) [18]. The meta-coefficients that are used in this study differ greatly
regarding the number of studies included. The meta-coefficients for all-cause mortality in all ages are
based on the largest amount of data; 147 studies are included in the coefficient for PM10, 137 studies
are included in the coefficient for NO2, and 20 are included in the coefficient for O3. The largest
possible amount of data is preferable in order to reduce the stochastic errors. However, Stockholm,
like many other cities in the north, are a bit special when it comes to the composition of PM10, where as
much as 90% of the mass of PM10 during springtime originates from road abrasion, largely caused
by the studded tires that are used during wintertime [11]. Consequently, a meta-coefficient may
be inappropriate if there are local circumstances that are not present in the studies included in the
meta-coefficient, which must be considered when a local AQHI is constructed.

The large amount of data that underlies the meta-coefficients for all-cause mortality in all ages
makes them particularly robust. Additionally, mortality as a health outcome is a more reliable indicator
in comparison with morbidity-related health outcomes like asthma. This is caused by mainly two
factors: (1) Different access to healthcare in different countries and cities creates uncertainties when
it comes to comparing results that have been obtained at locations where the access to health care is
significantly different; (2) different individuals are differently prone to seek health care for air pollution
attributed morbidity, which means that unrecorded statistics may occur. On the other hand, mortality
as an indicator does not give rise to these above-mentioned problems. This means that meta-coefficients
based on mortality-related health outcomes are valid both in terms of the large amount of data and
the lack of the above-mentioned problems. An increase in mortality can, however, be assumed to be
an indicator also for morbidity, which occurs before mortality as a less serious consequence, where
mortality is by far the most serious health consequence. The R-value of 0.95 between the AQHI
based meta-coefficients for AC mort. AA and the locally constructed AQHI in Stockholm based on
AEDV is moreover surprisingly large when considering the different health outcomes and the special
composition of PM10 in Stockholm.

5. Conclusions

The AQHI has been proven to be a useful tool in order to capture the combined effects of
simultaneous exposure to several different air pollutants. The main purpose of this study is to compare
different AQHIs based on different health outcomes and answer the question if different indexes are
needed for different population groups. The conclusions are that based on the conditions in Stockholm,
different indexes are not needed, but the index may need to be weighted differently for different
population groups when used as a warning system for the forecasted or the current air quality situation.
Another conclusion is that meta-coefficients for all-cause mortality are valid when it comes to designing
a local AQHI, even in the case of usually non-lethal outcomes like asthma.
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