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Abstract: Ensemble verification of low-level wind shear (LLWS) is an important issue in airplane
landing operations and management. In this study, we conducted an accuracy and reliability analysis
using a rank histogram, Brier score, and reliability diagram to verify LLWS ensemble member forecasts
based on grid points over the Jeju area of the Republic of Korea. Thirteen LLWS ensemble member
forecasts derived from a limited area ensemble prediction system (LENS) were obtained between
1 July 2016 and 30 May 2018, and 3-h LLWS forecasts for lead times up to 72 h (three days) were
issued twice a day at 0000 UTC (9 am local time) and 1200 UTC (9 pm local time). We found that
LLWS ensemble forecasts have a weak negative bias in summer and autumn and a positive bias in
the spring and winter; the forecasts also have under-dispersion for all seasons, which implies that the
ensemble spread of an ensemble is smaller than that of the corresponding observations. Additionally,
the reliability curve in the associated reliability diagram indicates an over-forecasting of LLWS events
bias. The selection of a forecast probability threshold from the LLWS ensemble forecast was confirmed
to be one of the most important factors for issuing a severe LLWS warning. A simple method to select
a forecast probability threshold without economic factors was conducted. The results showed that
the selection of threshold is more useful for issuing a severe LLWS warning than none being selected.

Keywords: ensemble verification; forecast probability threshold; low-level wind shear; reliability
analysis

1. Introduction

Wind shear events are usually associated with atmospheric instabilities caused by convective
activity, specifically gust fronts and microbursts (National Research Council 1983). These events were
the most common weather factors in a total of 1740 weather-related accidents reported in the United
States airports during the early 2000s [1]. Damage related to high-impact weather, including wind
shear, is also continuously reported and resulted in 3010 flight delays and cancellations in Korea in
2017 [2].

Prediction of the low-level wind shear (LLWS) over the airports has been mostly focused on
detection and early warning systems based on measurements from the low level windshear alert
system (LLWAS) and terminal doppler weather radar (TDWR) [3,4]. Later, as the rapid development of
numerical weather prediction (NWP) models and high-performance computing capabilities occurred,
wind shear forecasts based on specific weather prediction models were increasingly found to provide
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reliable and useful warnings about wind hazards [5,6]. Nevertheless, forecasting such wind disturbances
is still an ongoing area of development in the field of NWP systems.

It is more appropriate, then, to utilize numerical forecasting to provide information on
the relative likelihood of possible weather events. Ensemble forecasts have been developed as
a complementary tool for deterministic forecasts by adapting multi-model runs with different possible
initial conditions [7–9]. Recently, it has become possible to resolve convection-scale turbulence
using local-scale ensemble forecasts or downscaled forecasts from larger-scale ensemble prediction
systems [10–12]. Ensemble-based weather forecasting has also been applied to aviation meteorology
to predict the weather hazards affecting aircraft operation and has been presented as a better tool
for describing wind disturbances and their likely positions [13,14]. Zhou et al. [15,16] applied the
National Centers for Environmental Prediction (NCEP) 32-km operational ensemble system from the
Short-Range Ensemble Forecast, to LLWS ensemble forecasts. They also suggested that the LLWS
ensemble forecasts could perform better than traditional deterministic forecasts through bias correction
of numerically quantified uncertainties. However, it is still challenging to use ensemble forecasts to
ensure sufficient accuracy for hazardous wind prediction around the airport.

In this study, the Korea Meteorological Administration (KMA)’s operational ensemble forecasts
from the limited area ensemble prediction system (LENS) are used to generate probabilistic forecasts for
almost two years (from July 2016 to May 2018). Since the Jeju International Airport is the most frequent
area of wind shear among all 13 international and domestic airports in ROK, we conducted a reliability
analysis based on grid points over the Jeju area. The ensemble forecasts from the LENS, which is the
local-scale operational ensemble models of the KMA, are verified with their corresponding analysis
data generated from the KMA’s operational local-scale atmospheric numerical model. A Reliability
analysis using a rank histogram [17,18] and the statistical consistency of the LLWS forecast probability
using the Brier score [19,20] as well as reliability diagram [21] were utilized to evaluate the statistical
consistency of the ensembles. Moreover, the mean absolute error (MAE), root mean square error
(RMSE), and continuous ranked probability score (CRPS) were used to assess the prediction skill of the
ensemble forecasts. The selection of a forecast probability threshold from the LLWS ensemble forecast
is one of the most important factors for issuing a severe LLWS warning. Therefore, we also considered
the selection of a forecast probability threshold when we use the probability information in forecasting
LLWS. This paper presents preliminary results of the LLWS ensemble forecasts and provides general
principles for ensemble forecast verification. Also, LLWS ensemble information analyzed from the
LENS forecast output can be used to reduce the bias and spread of the ensemble system.

The rest of this paper is organized as follows: the LLWS ensemble forecasts used for analysis are
described in Section 2. The reliability analysis of the LLWS ensemble and its corresponding analysis
data, prediction skill of the ensembles, and statistical consistency of the LLWS forecast probability are
indicated in Section 3. A simple method to select a forecast probability threshold and its results are
also discussed in Section 3. Finally, conclusions are given in Section 4.

2. LLWS Ensemble Forecast

The LENS is based on the MOGREPS-UK developed at the Met Office UK [22]. Figure 1 shows
a schematic diagram of the LENS and its relationship with KMA’s operational global forecasts.
The upper part of Figure 1 illustrates an operational cycling of the KMA’s global deterministic model,
that is global data assimilation and prediction system (GDAPS). The initial conditions for the global
ensemble (EPSG) are taken from only early analysis (ERLY) of the GDAPS using both of the global
hybrid 4D-Var data assimilation scheme and an ensemble transform Kalman filter (ETKF) with a 6h
cycle, to initialize forecasts at 0000, 0600, 1200, and 1800 UTC respectively [23,24]. The EPSG forecasts
consist of 24 ensemble members including control run with 12-day forecasts for 0000 and 1200 UTC
and with 9-h forecasts for 0600 and 1800 UTC. The initial and boundary conditions of the LENS are
provided by dynamically downscaling to 3-km model grid resolution [25]. Because of computational
cost, the LENS run 13, rather than 24, members with 3 h (T+3) forecasts of the EPSG in each 6 h (0000,
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0600, 1200 and 1800 UTC) [26]. The LENS is run with a time step of 1 h, and the available forecast times
are from 4 h to 72 h (3 days) twice a day (0000 and 1200 UTC). The LENS covers the entire Korean
peninsula and small parts of China and Japan with 460 × 482 horizontal grids and 70 vertical levels
(solid line areas of Figure 2).

Atmosphere 2020, 11, 198 3 of 26 

 

2. LLWS Ensemble Forecast 

The LENS is based on the MOGREPS-UK developed at the Met Office UK [22]. Figure 1 shows 
a schematic diagram of the LENS and its relationship with KMA’s operational global forecasts. The 
upper part of Figure 1 illustrates an operational cycling of the KMA’s global deterministic model, 
that is global data assimilation and prediction system (GDAPS). The initial conditions for the global 
ensemble (EPSG) are taken from only early analysis (ERLY) of the GDAPS using both of the global 
hybrid 4D-Var data assimilation scheme and an ensemble transform Kalman filter (ETKF) with a 6h 
cycle, to initialize forecasts at 0000, 0600, 1200, and 1800 UTC respectively [23,24]. The EPSG forecasts 
consist of 24 ensemble members including control run with 12-day forecasts for 0000 and 1200 UTC 
and with 9-h forecasts for 0600 and 1800 UTC. The initial and boundary conditions of the LENS are 
provided by dynamically downscaling to 3-km model grid resolution [25]. Because of computational 
cost, the LENS run 13, rather than 24, members with 3 h (T+3) forecasts of the EPSG in each 6 h (0000, 
0600, 1200 and 1800 UTC) [26]. The LENS is run with a time step of 1 h, and the available forecast 
times are from 4 h to 72 h (3 days) twice a day (0000 and 1200 UTC). The LENS covers the entire 
Korean peninsula and small parts of China and Japan with 460 × 482 horizontal grids and 70 vertical 
levels (solid line areas of Figure 2). 

 
Figure 1. The schematic flow chart of the Limited area ENsemble prediction System (LENS) operated 
in conjunction with the Global Data Assimilation and Prediction System (GDAPS) and Ensemble 
Prediction System for Global (EPSG) at the Korea Meteorological Administration (KMA) (Sourced 
from [25]). 

Figure 1. The schematic flow chart of the Limited area ENsemble prediction System (LENS) operated
in conjunction with the Global Data Assimilation and Prediction System (GDAPS) and Ensemble
Prediction System for Global (EPSG) at the Korea Meteorological Administration (KMA) (Sourced
from [25]).
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2.1. LLWS Calculation

The LLWS is computed according to the National Weather Service Instructions on Terminal
Aerodrome Forecasts (TAFs), in which the LLWS is defined as the difference of wind vectors between
the surface and 2000 feet [27]. Fortunately, both models have the same vertical coordinates from the
surface to about 4 km, so the winds at two altitudes are directly used to perform the LLWS calculation.
The LLWS is then obtained from the wind vector difference between two levels as:

∆w =

∣∣∣∣∣∂V∂z
∣∣∣∣∣ = (∣∣∣∣∣∂u∂z

∣∣∣∣∣2 + ∣∣∣∣∣∂v∂z
∣∣∣∣∣2)1/2

(1)

where z is the vertical height, and V is the horizontal wind vector, with zonal (u) and meridional
(v) components. In this study, the vertical height z is calculated as the geopotential height to avoid
regional variations of gravity with latitude and elevation, and the winds of 10 m and 2000 feet + 10 m
(about 2030 feet) are used to calculate the LLWS [15].

2.2. LLWS Verification

A comparison experiment of the LENS wind forecasts at the Jeju IA with KMA’s operational
radiosonde data observed in Jeju present some adequate consistency, but in extreme cases such
as the strong wind alter events at the Jeju International Airport (JIA), they represent significant
differences [28]. It is supposed that this discrepancy caused by a large horizontal separation distance
for each measurement altitude in low atmosphere between the surface and 2000 feet.

In this case, if there is a limit to the observations, the model reanalysis data has been used as
a verification of the LLWS prediction [15]. The predictability of the LEN’s LLWS ensemble forecasts
were verified with analysis data produced by the KMA’s operational 1.5-km local-scale model called
as local data assimilation and prediction system (LDAPS). With a comparison to 76 surface weather
measurements in South Korea, the LDAPS surface wind (at 10-m altitude) forecasts are shown to be
less than 1.5 m/s of the root mean square error (RMSE) for the whole forecast time (from 1 to 36 h) in
2018 [29]. The LDAPS analysis data used as the initial field of the local-scale model are produced every
three hours via incremental 3DVAR with various observations, ranging from surface measurements to
remote sensing data, covering the Korean peninsula with 622 × 810 grid points for each model run
(dashed line areas of Figure 2) [30,31].

To determine the capability of the LENS forecasts with respect to the LDAPS analyses, both 3-km
model outputs are initially produced over the overlapping area (shaded region in Figure 2) of 296 ×
388 grid points; however, only a limited area around Jeju Island covered by a 34 × 28 gridded area
is considered in this study (Figure 3). The LLWS forecasts are then validated via LENS from 6–72 h
with 3-h time steps in order to compare the LLWS analyses with those of LDAPS for the same hours.
The LLWS forecast evaluation is done during an almost two-year period (from July 2017 to May 2018)
since the current version of LENS has been run operationally at the KMA.
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Figure 3. The orography of the 102 km × 84 km region around the Jeju International Airport (JIA).
The thick rectangular area indicates the verification area of 34 × 28 grids with 3-km resolution.

3. Results

The ensemble forecasts of LLWS at intervals of 3h for lead times of 72 h (3 days) were issued twice
a day at 0000 UTC (9 am local time) and 1200 UTC (9 pm local time). We focused on the LENS ensemble
runs initialized at 0000 UTC. If any of the LLWS ensemble forecasts and analysis data (or both) were
missing, all corresponding datasets were removed. Thereafter, the data used in the analysis were
converted into seasonal data for all grid points and projection times. The verification is grid to grid.

In order to assess the reliability (or statistical consistency) of LLWS ensemble forecasts and
their corresponding observations, which mean LDAPS analyses, a rank histogram [17,18] was used.
The rank histogram is a very useful visual tool for evaluating the reliability of ensemble forecasts
and identifying errors related to their mean and spread. Given a set of observations and a K-member
ensemble forecasts, the first step in constructing a rank histogram is to rank the individual forecasts of
a K-member ensemble from the lowest value to highest value. Next, a rank of the single observation
within each group of K+1 values is determined. For example, if the single observation is smaller than
all K-members, then its rank is 1. If it is greater than all the members, then its rank is K+1. For all
sample of ensemble forecasts and observations, these ranks are plotted in the form of a histogram.
If the rank histogram has a uniform pattern, then one may conclude that the ensemble and observation
are drawn from indistinguishable distribution, whereas a non-uniform rank histogram indicates that
the ensemble and observation are drawn from different distributions [17].

For example, a rank histogram with high (or moderate) frequency counts at both extremes,
which shows a U-shaped implies the ensemble may be under-dispersive (for example Figure 4a–d,g,h).
A rank histogram with high counts near one extreme and low frequency counts near the other extreme
(for example, Figure 4h) presents a consistent bias or systematic error in the ensemble.
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The rank histograms (RHs) for 13 ensemble forecasts and the corresponding LDAPS analyses
for each season are presented in Figure 4. In general, the RHs show similar patterns according to the
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seasons. For JJA and SON, the RH shows that the ensemble forecast tends to have a weak trend. For the
2016 JA and SON, the RH shows nearly similar frequency counts on both extremes, but has slightly
more frequency on the right. Therefore, the LLWS ensemble forecasts have a slightly negative bias,
which indicates a minor under-estimation, indicating that the LLWS ensemble forecasts are generally
lower than the LDAPS analyses. However, for other seasons except 2017 JJA, the LLWS ensemble
forecasts have a consistently positive bias, which implies over-estimation, in particular, the RH for
the 2018 MAM has a strong positive bias compared to other seasons. The RHs for the 2017 JJA and
SON do not show any skewed patterns, and it can be seen that there is almost no tendency in the
two seasons. Moreover, the RHs clearly show a U-shape, except in the 2017 JJA, thus verifying that
ensemble forecasts have under-dispersion, which implies that the ensemble spread is smaller than that
of the corresponding LDAPS analyses, although the degree to which this was true varied seasonally.
In addition, we see that about 21% of the LLWS observed data are not covered by the current LLWS
ensemble forecast derived from LENS. However, the RH for the 2017 JJA has an almost uniform
distribution, which indicates that the LDAPS analyses and ensemble forecasts were derived from the
same distribution.

The reliability index is used to quantify the deviation of the RH from uniformity [32]. The reliability
index is defined by

∑K
k=1

∣∣∣pk −
1
K

∣∣∣, where K and pk denote the number of classes in the rank histogram
and the observed relative frequency in class k, respectively. If the LLWS ensemble forecasts and
the corresponding LLWS observed data may have come from the same distribution, the reliability
index should be zero. The reliability indexes for Figure 4 are presented in Table 1 and show a lack of
uniformity (except in the 2017 JJA, as mentioned above). The reliability index of the 2018 MAM is
greater than those of other seasons.

Table 1. The reliability indexes for Figure 4.

Season Reliability Index

2016 JA 0.144
2016 SON 0.142

2016–17 DJF 0.223
2017 MAM 0.173

2017 JJA 0.034
2017 SON 0.131

2017–18 DJF 0.233
2018 MAM 0.308

Note: JA = July, August; SON = September, October, November; DJF = December, January, February; MAM = March,
April, May; JJA = June, July, August.

In order to examine the prediction skill of the LLWS ensemble forecasts, the ensemble mean is
used. Figure 5 shows examples of the LLWS mean and spread based on grid points at a forecast time
of 69-h (18 December 2016) and 60-h (8 May 2017). Line contours indicate the mean values, while the
shaded colors denote the spreads. The dark blue colored regions show that the uncertain LLWS
forecasts are large. The ensemble spread is the variability range for the LLWS forecasts, indicating the
forecast uncertainty. The area with a large ensemble mean also has a large spread, and as the spread
increases, the prediction uncertainty also increases.

The MAE, RMSE, CRPS [18,33], spread, and bias (observation-forecast) were used to assess
the prediction skill of the ensemble mean. The CRPS is defined as the sum of squared differences
between the cumulative distribution function, noted F, and that of the observation y, crps(F, y) =∫
∞

−∞
(F(x) − 1(x ≥ y))2dx, where 1(·) is the indicator function.
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of the prediction error in the winter season is better than that of the other seasons, and the spring 
season consistently has the worst performance. This is because the variability between the ensemble 
member forecasts and LDAPS analyses increases since the frequency of severe LLWS events in the 
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Figure 5. LLWS mean (black lines) and spread (filled colors) distribution over Jeju Island (yellow green
line) at (a) 69 h (18 December 2016) and (b) 60 h (8 May 2017).

The prediction skill of the ensemble mean for each season is given in Figure 6. It can be seen that
four measurements (except bias) have similar patterns according to the season. Also, the performance
of the prediction error in the winter season is better than that of the other seasons, and the spring
season consistently has the worst performance. This is because the variability between the ensemble
member forecasts and LDAPS analyses increases since the frequency of severe LLWS events in the
spring season is higher than in other seasons. Bias in the autumn is less than that during other seasons
and the bias is largest in spring. In particular, a negative bias occurred in the autumn 2017, suggesting
a positive bias.

Atmosphere 2020, 11, 198 10 of 26 

 

 

 
Figure 6. Prediction skills of the LLWS ensemble mean for each season. 

The pattern of bias according to each season is different from the results of MAE, RMSE, or 
CRPS, which are obtained via LLWS ensemble forecasts. Although autumn tends to have small 
biases, the MAE or CRPS indicate small values in winter seasons. To examine the discrepancy, box 
plots of the deviation between the LDAPS analyses and forecasts for each season are given in Figure 
7. The average deviation (red dot) in autumn is smaller than that in winter, but the variation of the 
deviations in autumn is larger than that in winter. For this reason, even if the average deviation in 
autumn is small, the variability of the deviations is large. Therefore, the performance skill is worse in 
autumn than in winter. As mentioned above, spring seasons have a strong positive bias, and the 
corresponding variabilities have wider ranges than they do in other seasons. This demonstrates that 
the prediction skill in spring is not as good as in other seasons. 
  

Figure 6. Prediction skills of the LLWS ensemble mean for each season.

The pattern of bias according to each season is different from the results of MAE, RMSE, or CRPS,
which are obtained via LLWS ensemble forecasts. Although autumn tends to have small biases,
the MAE or CRPS indicate small values in winter seasons. To examine the discrepancy, box plots of the
deviation between the LDAPS analyses and forecasts for each season are given in Figure 7. The average
deviation (red dot) in autumn is smaller than that in winter, but the variation of the deviations in
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autumn is larger than that in winter. For this reason, even if the average deviation in autumn is small,
the variability of the deviations is large. Therefore, the performance skill is worse in autumn than
in winter. As mentioned above, spring seasons have a strong positive bias, and the corresponding
variabilities have wider ranges than they do in other seasons. This demonstrates that the prediction
skill in spring is not as good as in other seasons.
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3.1. Reliability Analysis of Forecast Probability

The forecast probability of LLWS can be generated by using a particular threshold value.
Since a severe LLWS greatly impacts aviation weather forecasts, the occurrence of a severe LLWS is
defined by the following threshold:

severe LLWS =

{
1, LLWS > 20 knots/2000 feet

0, otherwise
(2)

By using 13 ensemble member forecasts derived from LENS, the forecast probability of LLWS ensembles
is computed as follows:

p(x) =
nt

nx
(3)

where nx denotes the number of ensemble members and nt denotes the number of ensemble members
that are greater than 20 knots/2000 feet.

Severe LLWS events and their forecast probability, as defined in Equations (2) and (3) are
calculated by using an LLWS ensemble forecast and its corresponding LDAPS analyses for each season.
The distributional patterns of the LDAPS analyses and LLWS ensembles according to the presence or
absence of a severe LLWS event can be analyzed by using box plots. Figure 8 depicts box plots for
wind speeds of the LDAPS analyses and average ensemble mean when a severe LLWS event did not
occur. The distributional characteristics (mean and variation) of the observation and ensemble mean
are almost similar regardless of the seasons. However, the outliers in the ensemble mean are relatively
frequent compared to the LDAPS analyses. For the case of a severe LLWS in Figure 9, the wind speeds
of the LDAPS analyses and average ensemble mean show different distributional patterns. The average
wind speed of the LDAPS analyses is about 24 knots, which is greater than the overall ensemble
mean average and has less spread than that of the ensemble mean. On the other hand, the overall
ensemble mean average is smaller than the average wind speed of the LDAPS analyses and shows
a large amount of variability. This suggests that the ensemble forecasts did not simulate the LDAPS
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analyses well when a severe LLWS occurred. It can be seen that the prediction for a future quantity of
LDAPS analyses is likely to be poorly predicted.

In general, the forecast probability of LLWS events can be assessed in terms of accuracy and
reliability. The Brier score can be used to assess the accuracy and the reliability of the forecast probability
is evaluated by a reliability diagram.
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Forecasts are classified into two categories to produce a binary forecast: the probability of a severe
LLWS event (>20 knots/2000 feet) and the probability of a non-severe LLWS (otherwise). The Brier
score (BS) [19,20] for a data set comprising a series of forecasts and the corresponding observations is
the average of the individual scores:

BS =
1
N

∑N

k=1
(fk − ok)

2, (4)

where N is the total number of data points, fk denotes the forecast probability of the kth ensemble
member forecasts and ok is the corresponding observation with ok = 1 for the observation of a severe
LLWS event and ok = 0, otherwise. The BS is negatively oriented, with perfect forecasts exhibiting
BS = 0.
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The BS can be decomposed into three additive components: reliability, resolution, and uncertainty.
The components of the decomposition of the BS are as follows:

BS =
1
N

K∑
k=1

nk(fk − ok)
2
−

1
N

K∑
k=1

nk(ok − o)2 + o(1− o) (5)

where K is the number of forecast categories, fk denotes the forecast probability of a severe LLWS
event in category k, the number of observations in each category is denoted by nk, and the number
of observations of a severe LLWS event in each category is denoted by ok. The average frequency of
severe LLWS observations in category k is ok = ok/nk. The overall average frequency of the severe
LLWS observations is o =

∑
k ok/N.

The BS, reliability, resolution, and uncertainty of the forecast probability of LLWS ensembles are
described in Figure 10. For a seasonal BS, the skill of the forecast probability is the worst in the spring
season. The other seasons show similar BS values, but the performance of the forecast probability in
the winter season is the best. The reason the BS is poor during the spring season is that it is heavily
influenced by uncertainty rather than that by other decompositions of the BS. This is because the
occurrence frequency of a severe LLWS event is higher than in other seasons, thus providing a cause of
increasing uncertainty.
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The reliability diagram is a highly useful visual tool that evaluates the reliability of the observed
frequency of severe LLWS events plotted against the forecast probability of severe LLWS events [21].
The reliability diagram shows how often a forecast probability actually occurred. For perfect reliability,
the forecast probability and frequency of occurrence should be equal, and the plotted points should
align on the diagonal. Thus, for example, when the forecast states an event will occur with a probability
of 30%, for perfect reliability, the event should occur on 30% of the occasions for which the statement
was made.

To evaluate the reliability of the forecast probability of LLWS ensembles, consider the seasonal
reliability diagram given in Figure 11. From Figure 11, it can be seen that the reliability curve is located
below the diagonal line for all seasons, which means it is over-forecasting. Comparing the two winter
seasons, since the reliability curve for the 2017–2018 DJF moves away from the best line (in contrast to
the 2016–2017 DJF), the reliability of the LLWS ensembles is lower in the 2017–2018 winter. This pattern
is similar in other seasons.

The resolution is obtained from the distance between the uncertainty line and the reliability curve.
If the reliability curve decreases down to the uncertainty line, the LLWS ensemble forecast has no
resolution, or it indicates that the forecast cannot be distinguished from data uncertainty. The gray
area in Figure 11 is the skillful area, in which the LLWS ensemble forecast has skill, and the blank
area is the area in which the LLWS ensemble forecast has no skill. For example, in the 2016 JA, if the
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LLWS ensemble forecast probability is lower than 60%, all the reliability curves are within the blank
area, indicating that forecasts of severe LLWS events will not be skillful. For the 2017 MAM, when the
forecast probability is equal to 0, the sample frequency is about 83.5%. This indicates that, of all the
sample in 83.5% of the regions, no ensemble member indicated LLWS > 20 knots/2000 feet, indicating
that all members predicted no severe LLWS event.
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Figure 11. Reliability diagram of LLWS for each season. The numbers on the panel are the sample
frequency for each bin, which are obtained as the number of forecast probabilities included in the
bins are divided by the total number of forecast probabilities. (a) 2016 JA; (b) 2017 JJA; (c) 2016 SON;
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3.2. Forecast Probability Threshold Selection of LLWS

The occurrence of a severe LLWS can be categorized into four groups after a classification rule,
as denoted in a 2 × 2 confusion matrix (contingency table) given in Table 2, which contains information
about the true and predicted classes.

Table 2. Confusion matrix.

True Condition

Positive (P) Negative (N)

Predicted condition

Positive Hit
(TP, True, Positive)

False Alarms
(FP, False Positive)

Negative misses
(FN, False Negative)

Correct Negative
(TN, True Negative)

In Table 2, the terms positive (P) and negative (N) refer to the classifier’s prediction, and the
terms true and false refer to whether that prediction corresponds to the observation. A “hit” is the
number of occurrences where the forecast mean LLWS and the severe LLWS events are larger than
the severe LLWS threshold. A “miss” is the number of occurrences where the forecast mean is not
severe, but the observed LLWS event is severe; “false alarms” is the number of occurrence in which the
forecast mean is severe, but the observed LLWS event is not severe. Several measures can be derived
using the confusion matrix given in Table 2:

Hit Rate : HR =
Hit

misses + Hit

False Alarm Rate : FAR =
False Alarms

Hit + False Alarms
,

Missing Rate = 1−HR,

Equitable Threat Score : ETS =
Hit−Hitrandom

Hit + misses + False Alarms−Hitrandom
,

where

Hitrandom =
(Hit + misses)(Hit + False Alarms)

N
.

First, we consider the forecast probability distribution obtained from 13 ensemble member
forecasts to select the forecast probability threshold. Figure 12 shows the severe LLWS probability
distributions for all grid points of the Jeju area at the projection time of 24 h on 9 May 2017.

In Figure 12, the yellow areas indicate that the forecast probability of a severe LLWS event is zero,
and the blue areas indicate the most likely regions in which an LLWS event is over 20 knots/2000 feet.
Depending on the region, the inland areas with dark blue are areas in which a severe LLWS event
is more likely to occur, while other regions have different forecast probabilities for the severe LLWS.
In this case, it is necessary to choose an appropriate threshold for the forecast probability to issue
a severe LLWS warning for some regions. If the threshold sets to higher, the forecast confidence will
increase but it will also lead to a high missing rate. On the other hand, if it is set to lower, the missing
rate may be decreased, while the FAR increases. Therefore, determining a forecast probability threshold
to issue severe LLWS warnings for certain regions is an important issue. For example, if the threshold
is set to 100%, then all ensemble members will provide a severe LLWS forecast, and the confidence will
be highest. Some regions in which a severe LLWS event actually happens, however, might be missed,
but not all members will provide a severe LLWS forecast. If the threshold is set to 50%, then the missing
rate may be lowered, but it may increase the FAR and the confidence level may decrease since only
50% of the members predict a severe LLWS event. Therefore, the issues with regard to the probability
threshold is a very practical problem for forecasters interested in utilizing the probability information.



Atmosphere 2020, 11, 198 15 of 20

Atmosphere 2020, 11, 198 20 of 26 

 

issue a severe LLWS warning for some regions. If the threshold sets to higher, the forecast confidence 
will increase but it will also lead to a high missing rate. On the other hand, if it is set to lower, the 
missing rate may be decreased, while the FAR increases. Therefore, determining a forecast 
probability threshold to issue severe LLWS warnings for certain regions is an important issue. For 
example, if the threshold is set to 100%, then all ensemble members will provide a severe LLWS 
forecast, and the confidence will be highest. Some regions in which a severe LLWS event actually 
happens, however, might be missed, but not all members will provide a severe LLWS forecast. If the 
threshold is set to 50%, then the missing rate may be lowered, but it may increase the FAR and the 
confidence level may decrease since only 50% of the members predict a severe LLWS event. 
Therefore, the issues with regard to the probability threshold is a very practical problem for 
forecasters interested in utilizing the probability information. 

 

Figure 12. Forecast probability distribution at 24 h, 9 May 2017. 

According to the methods of Zhou et al. [16], we therefore select a forecast probability threshold 
using the ETS. Both the missing rate and FAR are related to the ETS and if both are at their lowest 
then the ETS will be at its highest. To select a threshold, we computed the missing rate and the FAR 
as well as the ETS for different forecast probabilities and selected a threshold in which both the 
missing rate and the FAR are their lowest and the ETS at their highest. 

For each season, the missing rate, hit rate, FAR and ETS were calculated for different forecast 
probabilities to select a threshold of the forecast probability for each season on 34 × 28 grid points 
of Jeju at each projection time and depicted them together in one plot. For each season, we set the 
threshold of the forecast probability at intervals of 3 h for lead times up to 72 h. Figure 13 describes 
how to select a forecast probability threshold for issuing a severe LLWS. In Figure 13, the red, blue, 
green and black lines denote the hit rate, FAR, missing rate, and ETS, respectively. From Figure 13, it 
can be seen that the optimal forecast probability threshold is different depending on the projection 
times. For the projection time of 6 h, the results show that the best probability threshold is about 50%, 
where the ETS has a maximum point when the sum of the missing rate and the FAR is lowest. This 
means that the forecast probability threshold should be selected at 50% for issuing a severe LLWS 
warning. That is, as long as an area has a severe LLWS probability > 50%, we can be relatively 

Figure 12. Forecast probability distribution at 24 h, 9 May 2017.

According to the methods of Zhou et al. [16], we therefore select a forecast probability threshold
using the ETS. Both the missing rate and FAR are related to the ETS and if both are at their lowest then
the ETS will be at its highest. To select a threshold, we computed the missing rate and the FAR as well
as the ETS for different forecast probabilities and selected a threshold in which both the missing rate
and the FAR are their lowest and the ETS at their highest.

For each season, the missing rate, hit rate, FAR and ETS were calculated for different forecast
probabilities to select a threshold of the forecast probability for each season on 34× 28 grid points of Jeju
at each projection time and depicted them together in one plot. For each season, we set the threshold
of the forecast probability at intervals of 3 h for lead times up to 72 h. Figure 13 describes how to
select a forecast probability threshold for issuing a severe LLWS. In Figure 13, the red, blue, green and
black lines denote the hit rate, FAR, missing rate, and ETS, respectively. From Figure 13, it can be seen
that the optimal forecast probability threshold is different depending on the projection times. For the
projection time of 6 h, the results show that the best probability threshold is about 50%, where the ETS
has a maximum point when the sum of the missing rate and the FAR is lowest. This means that the
forecast probability threshold should be selected at 50% for issuing a severe LLWS warning. That is,
as long as an area has a severe LLWS probability > 50%, we can be relatively confident that a severe
LLWS will happen; this approach makes it most likely to miss a severe LLWS but has the lowest FAR.

For other projection times, we should select 40% at a projection time of 15 h, 60% at a projection
time of 24 h, 45% at a projection time of 33 h, 55% at a projection time of 42 h, 55% at a projection
time of 51 h, 60% at a projection time of 60 h and 60% at a projection time of 72 h. For other seasons,
different forecast probability thresholds are obtained depending on the projection times (e.g., the 2017
MAM, Figure 13).

The observed probability, the forecast probability obtained from raw ensembles, and the best
probability threshold for issuing a severe LLWS forecast for projection times of 60 h and 24 h on May
8 and 9, 2017 are respectively given in Figure 14. From Figure 14a, the probability of the observed
severe LLWS has a binary value. That is, if the observed LLWS is greater than 20 knots/2000 feet,
then the probability of a severe LLWS event is equal to 1 (blue region); otherwise, it is 0 (yellow region).
Figure 14b also represents the forecast probability of the LLWS ensembles defined in Equation (4).
Comparing the observed probability (Figure 14a) with the forecast probability (Figure 14b) for the
severe LLWS, the forecast probabilities are not consistent with the observed probabilities in most
regions; that is, the forecast probabilities are predicted to be smaller than the observed probabilities.
The forecast probability of a severe LLWS event is given in Figure 14c when the best probability
threshold is applied. In Figure 14c, we selected 60% as the forecast probability threshold for issuing
a severe LLWS warning. The forecast probability with threshold (Figure 14c) is obtained as the forecast
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probability of severe LLWS (Figure 14b) is divided by the threshold of 0.6 for all grid points. The ratio
can be less than or greater than 1. If it is greater than 1, it is set to 1. The forecast probability distribution
that is applied to the best probability threshold is similar to the observed probability distribution.
It can be seen that regions where the forecast probability of a severe LLWS event is more than 60%
are much more similar to regions where actual severe LLWS events occur compared to regions in
which the threshold is not applied. Figure 14d–f gives the probability distribution of the observed
severe LLWS, the forecast probability obtained from LLWS ensembles, and the forecast probability
from applying the threshold; the forecast probability threshold was set to 60%. It can be seen that the
forecast probabilities obtained from LLWS ensembles are predicted to be lower than the probabilities
of the observed severe LLWS events, except in some regions. This indicates that there is not a high
possibility of issuing a severe LLWS warning. However, when the threshold is applied, the probability
distribution of the regions where the forecast probability is greater than 60% are much more similar to
those of regions in which the observed severe LLWS occurred. Therefore, we can see that the selection
of a threshold plays an important role in issuing a severe LLWS warning.
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Figure 13. The best probability threshold for issuing a severe LLWS warning (2017 MAM). (a) projection
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(a–c) May 8, 2017 projection time 60 h; (d–f) May 9, 2017 projection time 24 h.

We used only the hit rate, missing rate, FAR, and ETS to determine the best threshold. However,
there is a limit to setting an optimal threshold using the hit rate, missing rate and FAR. If the frequency
of occurrence of the observed severe LLWS events is not high, then a severe LLWS rarely occurs. In that
case, any one of these rates can have a value of zero, and we cannot select a probability for which,
both the missing rate and the FAR are lowest. To solve this problem, a lot of data should be provided,
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or as mentioned by Zhou et al. [16], the economic factors that have an impact on the probability
threshold selection rule should be considered.

4. Conclusions

LLWS is one of the major concerns of aviation weather forecasters at airports because of its
dangerous impact on airplane landing operations and management. However, there have been few
studies on ensemble verification and forecasts of LLWS. Therefore, we conducted a reliability analysis
and evaluation to verify LLWS ensemble member forecasts and LDAPS analyses based on grid points
over the Jeju area.

A rank histogram, BS, and a reliability diagram were used to identify the statistical consistency of
LLWS ensemble forecasts and their corresponding LDAPS analyses. It was found that LLWS ensemble
forecasts have negative (summer and autumn seasons) or positive biases (spring and winter seasons).
The reliability curve also indicated that the ensemble forecast was over-forecasting LLWS events.

The selection of a forecast probability threshold from the LLWS ensemble forecast is one of the
most important factors for issuing a severe LLWS warning. We utilized a simple method to select
a forecast probability threshold without considering economic factors. We selected seasonal forecast
probability thresholds to issue the appropriate severe LLWS warning for each forecast time. The results
indicate that a reasonable probability threshold is important for issuing a severe LLWS warning.
The selection, however, is dependent on data characteristics, the size of the datasets, the frequency of
severe LLWS events, etc. Therefore, there is a limit to setting an optimal probability threshold using hit
rates, missing rates, FAR, and ETS. If a severe LLWS occurs rarely and the dataset is small, then the hit
rate or other measures can be zero. In cases like these, we cannot determine a threshold in which both
the missing rate and the FAR are at their lowest and the ETS is at its highest.

This work can be considered an early approach to applying bias-correction techniques.
The systematic and random errors based on the primary results may be reduced by using statistical
post-processing methods for LLWS. If the bias-corrected LLWS can be used in prediction, the skill will
be better than that of the current LLWS forecast.
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