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Abstract: Appropriate input selection for the estimation matrix is essential when modeling non-linear
progression. In this study, the feasibility of the Gamma test (GT) was investigated to extract the
optimal input combination as the primary modeling step for estimating monthly pan evaporation
(EPm). A new artificial intelligent (AI) model called the co-active neuro-fuzzy inference system
(CANFIS) was developed for monthly EPm estimation at Pantnagar station (located in Uttarakhand
State) and Nagina station (located in Uttar Pradesh State), India. The proposed AI model was trained
and tested using different percentages of data points in scenarios one to four. The estimates yielded
by the CANFIS model were validated against several well-established predictive AI (multilayer
perceptron neural network (MLPNN) and multiple linear regression (MLR)) and empirical (Penman
model (PM)) models. Multiple statistical metrics (normalized root mean square error (NRMSE),
Nash–Sutcliffe efficiency (NSE), Pearson correlation coefficient (PCC), Willmott index (WI), and
relative error (RE)) and graphical interpretation (time variation plot, scatter plot, relative error plot,
and Taylor diagram) were performed for the modeling evaluation. The results of appraisal showed
that the CANFIS-1 model with six input variables provided better NRMSE (0.1364, 0.0904, 0.0947,
and 0.0898), NSE (0.9439, 0.9736, 0.9703, and 0.9799), PCC (0.9790, 0.9872, 0.9877, and 0.9922), and WI
(0.9860, 0.9934, 0.9927, and 0.9949) values for Pantnagar station, and NRMSE (0.1543, 0.1719, 0.2067,
and 0.1356), NSE (0.9150, 0.8962, 0.8382, and 0.9453), PCC (0.9643, 0.9649, 0.9473, and 0.9762), and WI
(0.9794, 0.9761, 0.9632, and 0.9853) values for Nagina stations in all applied modeling scenarios for
estimating the monthly EPm. This study also confirmed the supremacy of the proposed integrated
GT-CANFIS model under four different scenarios in estimating monthly EPm. The results of the
current application demonstrated a reliable modeling methodology for water resource management
and sustainability.
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1. Introduction

The evaporation process is a crucial parameter in the global hydrological cycle, and is defined
as the transformation of water from the liquid phase to water vapor [1]. Evaporation loss has
increased significantly during the last few decades, particularly in the semi-arid and arid regions
across the globe [2,3]. Therefore, the accurate estimation of evaporation rates is vital for several
facets, such as water budgeting, irrigation water management, hydrology, agronomy, and water
resource management [4–6]. Generally, open water surface evaporation is measured by employing two
methods: (i) direct measurement by pan evaporimeters, and (ii) indirect measurement using empirical
and semi-empirical equations based on climatic variables [7]. However, the direct measurement of
evaporation using pan evaporimeters is prone to several sources of error due to multiple factors, such
as animal activity in and around the pan, debris in water, the construction material of the pan, the size
of the pan, strong wind circulation, exposure to the pan, and the measurement of water depth in the
pan [4,8,9]. Furthermore, the estimation of monthly pan evaporation (EPm) using direct measurement
can be a tedious, expensive, and time-consuming task [10]. Therefore, the introduction of robust and
reliable intelligent models is a hot topic in the field of hydrology [11].

In nature, the EPm is highly non-linear and non-stationary and associated with several climatic
factors (i.e., air temperature, dew point temperature, relative humidity, wind speed, sunshine hours, and
solar radiation). Recently, several non-linear hybrid or simple artificial intelligent (AI) models have been
employed for modeling various hydrological components [12–19]. Over the past decades, applications
of AI models have demonstrated their feasibility as efficient tools for estimating daily and monthly pan
evaporation using easily measured climatic variables [20–27]. Another essential development in the
computer aid base has been the integration of standalone AI models and nature-inspired optimization
algorithms for obtaining more reliable hybrid intelligent models [28–31].

Qasem et al. [20] applied support vector machine (SVM), multilayer perceptron neural network
(MLPNN), wavelet-support vector regression (W-SVR), and wavelet-multilayer perceptron neural
network (W-MLPNN) models for estimating the monthly EPm at Tabriz (Iran) and Antalya (Turkey)
stations. The results revealed that the MLPNN model outperformed the other models at both stations.
Kisi and Heddam [32] investigated the comparative potential of multivariate adaptive regression
spline (MARS), M5 Tree, modified Hargreaves–Samani (MHS), Stephens–Stewart (SS), and multiple
linear regression (MLR) models for modeling the monthly EPm using only Tmax and Tmin data of
three hydrometeorological stations in Turkey. The results disclosed that the MARS model achieved a
superior prediction accuracy in comparison to the other models. Sebbar et al. [21] employed extreme
learning machine (ELM) with online sequential (ELM_OS) and optimal pruned (ELM_OP) techniques
to predict the monthly EPm at Ain Dalia and Zit Emba stations located in Algeria. The obtained results
indicated the high prediction accuracy of the ELM_OS model in comparison to the ELM_OP model.
Majhi et al. [22] evaluated the ability of deep long short-term memory cell (Deep-LSTM) and MLPNN
models for modeling the daily pan evaporation in India. The compared results evidenced the capacity
of the Deep-LSTM model performance in comparison to that of the MLPNN model. Lu et al. [23]
estimated the daily evaporation over multiple regions in China using M5 Tree, random forest (RF), and
gradient boosting decision tree (GBDT) models. They found that the GBDT model outperformed the
other models.

Shiri [33] used the neuro-fuzzy system (NF) and neural network (NN) models to simulate the daily
pan evaporation at four meteorological stations situated in the USA and found that the proposed NF
and NN models have a good ability in simulating the daily pan evaporation. Feng et al. [29] estimated
the monthly EPm in different climates of China using extreme learning machine (ELM), artificial neural



Atmosphere 2020, 11, 553 3 of 25

network embedded with particle swarm optimization (PSO-ANN), genetic algorithm (GA-ANN), and
Stephens–Stewart (SS) models. The results of the modeling comparison demonstrated that the ELM,
PSO-ANN, and GA-ANN models provided better estimates than the SS model. Furthermore, several
advanced models have been developed for modeling multiple scales of the pan evaporation process
across the globe [28,34–42]. In accordance with the literature, the exploration of new versions of AI
models is still an ongoing research area. Therefore, the current research investigated the potential
of a newly explored AI model (i.e., the co-active neuro-fuzzy inference system (CANFIS)), as a
widespread approximator for any non-linear occupation. The foremost excellence of the CANFIS
model is evidenced by pattern-dependent coefficients (weights) among the consequent and premise
layers [43]. Although there have been several studies focused on establishing a robust and reliable
predictive model, few have focused on improving the models’ accuracy. The current research can
contribute to prediction performance improvement based on the incorporation of the best selection of
input variables. The implementation of the CANFIS model was advanced by integrating a non-linear
input selection approach called the Gamma test (GT), in order to identify the input attributes correlating
to the targeted predicted variable.

To date, few studies have investigated the appropriate input variables for constructing an
integrative AI predictive model for evaporation estimation. Therefore, to solve this problem, a
non-linear modeling and analysis tool, i.e., GT proposed by Stefánsson et al. [44], was used to identify
the appropriate input variables. Recently, a number of applications on GT’s capacity have been
produced in diverse hydrological fields [35,45–49].

As per the authors’ information, preceding studies have not stated the utility of an integrated
GT approach with the CANFIS model for estimating the monthly pan evaporation process in two
different climates. The potential of the proposed model was validated against MLPNN, MLR, and
Penman model (PM) models in four different scenarios based on several statistical indicators and
graphical inspection. The predictive models developed were examined for historical climatological
data collected from Pantnagar and Nagina stations, located in India.

2. Case Study and Data Description

Two different meteorological stations (i.e., Pantnagar and Nagina) located in Uttarakhand and Uttar
Pradesh states, respectively, were used to build the modeling procedure. Figure 1 demonstrates the
coordinates of the study stations (Pantnagar: 79◦38′0” E longitude and 29◦0′0” N latitude with 243.8 m
above mean sea level (MSL), and Nagina: 78◦25′58.8” E longitude and 29◦26′34.8” N latitude with
282 m above MSL). The climatic information including the maximum and minimum air temperatures
(Tmax and Tmin), wind speed (WS), relative humidity at 7:00 a.m. (RH-1) and 2:00 p.m. (RH-2), bright
sunshine hours (SSH), and monthly pan evaporation (EPm) were obtained from observatories located
at the Pantnagar Crop Research Centre (PCRC), Uttarakhand, and Rice Research Station Nagina, Bijnor
district in Uttar Pradesh State, India. Figure 2a,b illustrates the climatic parameters measured from
January 2009 to December 2016 (eight year period) at both stations using a box and whisker plot, which
presents statistics on the minimum value, first quartile, median, third quartile, and maximum value
for climatic parameters (reading from lower to upper values). Additionally, Table 1 reports the brief
statistical properties of climatic variables intended for both stations. The statistical characteristics
reveal the platykurtic (−) and leptokurtic (+) nature of the climatic variables at both stations. Table 2
shows the correlations between the monthly EPm and other climatic variables for both stations. It can
be observed from Table 2 that all of the six variables (Tmin, Tmax, RH-1, RH-2, WS, and SSH) have
significant correlations with the EPm at a 5% significance level.
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Table 1. Statistical constraints of climatic variables at the study stations during 2009–2016.

Station/Climatic
Variable

Statistical Parameters

Minimum Maximum Mean Std Skewness Kurtosis

Pantnagar

Tmin (oC) 5.80 26.30 17.27 7.07 −0.15 −1.55
Tmax (oC) 16.50 40.10 29.94 5.88 −0.48 −0.54
RH-1 (%) 59.00 96.00 84.30 9.72 −1.23 0.21
RH-2 (%) 19.00 77.00 51.38 15.04 −0.16 −0.99

WS (km/h) 2.10 9.90 5.09 1.90 0.37 −0.43
SSH (h) 2.60 9.90 6.58 1.92 −0.21 −0.90

EPm (mm) 1.00 11.40 4.43 2.65 0.91 −0.16

Nagina

Tmin (oC) 5.40 26.50 16.84 7.40 −0.14 −1.55
Tmax (oC) 16.10 40.10 29.14 5.94 −0.47 −0.54
RH-1 (%) 20.20 99.00 88.90 12.34 −2.44 9.08
RH-2 (%) 23.00 81.00 55.03 14.63 −0.04 −0.89

WS (km/h) 1.00 7.00 3.77 1.52 0.21 −0.92
SSH (h) 2.80 10.10 6.98 1.86 −0.28 −0.79

EPm (mm) 0.90 8.40 3.71 2.03 0.52 −0.76

Note: std represents the standard deviation.

Table 2. Inter-correlation between the climatic variables at the study stations.

Station/Climatic
Variable Tmin Tmax RH-1 RH-2 WS SSH EPm

Pantnagar

Tmin 1.00
Tmax 0.84 * 1.00
RH-1 −0.47 * −0.79 * 1.00
RH-2 0.21 * −0.35 * 0.65 * 1.00
WS 0.57 * 0.62 * −0.75 * −0.23 * 1.00
SSH 0.12 0.58 * −0.64 * −0.80 * 0.28 * 1.00
EPm 0.63 * 0.88 * −0.95 * −0.52 * 0.82 * 0.59 * 1.00

Nagina

Tmin 1.00
Tmax 0.85 * 1.00
RH-1 −0.48 * −0.70 * 1.00
RH-2 0.23 * −0.26 * 0.55 * 1.00
WS 0.50 * 0.54 * −0.61 * −0.18 1.00
SSH 0.21 * 0.61 * −0.60 * −0.74 * 0.38 * 1.00
EPm 0.73 * 0.88 * −0.82 * −0.37 * 0.77 * 0.64 * 1.00

* Statistically significant at a 5% level of significance.

3. Methodology

3.1. Gamma Test (GT)

When modeling non-linear hydrological/environmental processes, selecting the optimal input
parameters is tedious and time-consuming. To solve this problem, GT (a non-linear tool) has been used
widely in several fields [35,45,47,49–54]. Conceptually, GT estimates the minimum standard error for
each investigated input/output variable through Equation (1) [55]:

y = Aδ+ Γ (1)



Atmosphere 2020, 11, 553 6 of 25

where y is the output vector, A is the gradient, and gamma (Γ) is the intercept on the vertical axis (δ = 0).
If the values of Γ, A, standard error (SE), and Vratio approach the minimum, it indicates the goodness of
input variables [47,56]. The Vratio is computed using the following expression:

Vratio =
Γ

σ2(y)
(2)

where, σ2(y) is the variance of the output y and Γ is the gamma function. In this research, the CANFIS,
MLPNN, and MLR techniques were employed for designating the optimal group of input variables
(decided through the lowest value of A, SE, Vratio, and Γ), to estimate the monthly EPm at Pantnagar
and Nagina stations.

3.2. Co-Active Neuro-Fuzzy Inference System (CANFIS) Model

The CANFIS model is a hybrid AI model that was introduced by Jang et al. [57]. The hierarchy
network of the CANFIS structure is composed of five layers: (i) fuzzification layer (categorization
of inputs by applying certain membership functions), (ii) fuzzy rule layer (multiplication concept is
applied), (iii) normalization layer (normalize the output of the previous layer using the activation
function), (iv) defuzzification layer (de-fuzzified the output of the previous layer by applying the
learning algorithm), and (v) summation layer (obtain final results as a crisp output). Figure 3
demonstrates the working architecture of the CANFIS model. More details on the working function of
each layer are provided in [8,43].
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Figure 3. Hierarchy network of the co-active neuro-fuzzy inference system (CANFIS) model.

In this research, through supervised learning, the network of the CANFIS model was designed
with a trial and error procedure using two Gaussian and Bell membership functions, the hyperbolic
tangent activation function (with a range from −1 to 1), the Sugeno fuzzy inference system, and
the delta-bar-delta (DBD) learning algorithm. The CANFIS model was trained and terminated
after 1000 iterations over the 0.001 threshold level in NeuroSolutions 5.0 software produced by the
NeuroDimension, Inc., Gainesville, FL, USA.



Atmosphere 2020, 11, 553 7 of 25

3.3. Multilayer Perceptron Neural Network (MLPNN) Model

The main concept of the MLPNN model was introduced by Haykin [58]. MLPNN consists of
parallel processing elements called neurons. Figure 4 illustrates the structure of the feed-forward
MLPNN model, which consists of three layers—an input layer (i), hidden layer (j), and output layer
(k)—with interconnected weights between the layers (Wij and Wjk). The appropriate weights are
adjusted to minimize the error between the observed and predicted output through back propagation
encountered from right to left, as depicted in Figure 4.
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Figure 4. Configuration of the three-layer multilayer perceptron neural network (MLPNN) model.

The structure of the MLNN model was designed through the knowledge process by a trial and
error procedure in this study. The network was made up of three (input, hidden, and output) layers
with a single output (i.e., EPm). Data normalization was conducted with the hyperbolic-tangent (tanh)
activation function (ranges from −1 to 1). As recommended by previous studies, the maximum number
of neurons contained in the hidden layer was projected through the 2n + 1 idea, where n is the number
of input variables [59]. Training of the MLPNN model was terminated over a 0.001 threshold value
after 1000 epochs in NeuroSolutions 5.0 software. The framework of the MLPNN model designed in
this study was built to incorporate all of the six input climate variables collected.

3.4. Multiple Linear Regression (MLR) Model

For a general comparison and validation, following several established research studies in the
literature, the MLR model was employed. Conceptually, MLR is a statistical approach that uses the
collinearity among the targeted variables and the independent variables [60]. Mathematically, the
regression equation of MLR is written as

Y = β0 + β1X1 + β2X2+, . . . ,+βkXn, (3)

where, Y is the target variable; X1, X2, . . . . . . Xn are the independent variables; and β0, β1, β2 . . . . . .
. . . βk are the regression coefficients.
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3.5. Penman Model (PM)

Penman [61] developed an empirical model for computing the rate of evaporation using climatic
parameters, expressed as

EP =
∆Rn + γEa

∆ + γ
(4)

where EP is the rate of evaporation (mm/month), Rn represents the net radiation (MJ/m2/month), ∆ is
the slope of the saturation vapor pressure–air temperature curve (kPa/◦C), γ indicates the psychrometric
constant (kPa/◦C), and Ea is the aerodynamic function (mm/month) and computed using Equation (5):

Ea = f (u) × (es − ea), (5)

where, es is the saturation vapor pressure (kPa), ea is the actual vapor pressure, and f (u) represents
an empirical or theoretically-derived aerodynamic wind function, which can be calculated using
Equation (6):

f (u) = 0.263(aw − bwus), (6)

where, us is the wind speed (m/s) at a 2 m elevation, and aw and bw are empirical coefficients.
Penman [62] suggested 0.5 and 0.537 values for aw and bw for open water bodies.

In this study, the Rn, ∆, γ, es and ea parameters were calculated by adopting the procedure
provided by Allen et al. [63] in the Food and Agriculture Organization of manual 56 (FAO-56).

3.6. Modeling Scenarios

In this research, the monthly pan evaporation at Pantnagar and Nagina stations was estimated
using the CANFIS, MLPNN, and MLR techniques for four different scenarios. The total available
climatic datasets from January 2009–December 2016 (period of eight years) of both stations were split
into four scenarios, with different percentages of training (calibration) and testing (validation) datasets.
The details of the training and testing data percentages in the four scenarios are as follows:

I. Scenario-1 contains 25% data for training (January 2009 to December 2010) and 75% data for
testing (January 2011 to December 2016).

II. Scenario-2 contains 50% data for training (January 2009 to December 2012) and 50% data for
testing (January 2013 to December 2016).

III. Scenario-3 contains 75% data for training (January 2009 to December 2014) and 25% data for
testing (January 2015 to December 2016).

IV. Scenario-4 contains 75% data for training (January 2011 to December 2016) and 25% data for
testing (January 2009 to December 2010).

The first three modeling scenarios, data was divided into training and testing phases continuously.
Whereas, the fourth modeling scenario testing phase data was selected somewhere in the middle of the
data span in order to test the applicability of the applied predictive models for the reverse prediction
mechanism. Figure 5 illustrates the percentage of training and testing datasets in the four different
scenarios used in this study for monthly EPm estimation at the two study locations.
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3.7. Performance Appraisal Indicators

The outcomes of the applied models, i.e., CANFIS, MLPNN, MLR, and PM models, were assessed
for four different scenarios using the normalized root mean square error (NRMSE), Nash–Sutcliffe
efficiency (NSE), Pearson correlation coefficient (PCC), Willmott index (WI), and relative error (RE),
and graphical interpretation employing a time variation plot, scatter plot, and Taylor diagram [64].
The performance indicators are described as follows:

I. Normalized root mean square error [65–67]:

NRMSE =

√
1
N

∑N
i=1 (Xobs,i − Yest,i)

2

Xobs
(7)

II. Nash–Sutcliffe efficiency [68,69]:

NSE = 1−


∑N

i=1 (Xobs,i − Yest,i)
2∑N

i=1 (Xobs,i − Xobs)
2

; (8)

III. Pearson correlation coefficient [54,56,70]:

PCC =

∑N
i=1

(
Xobs,i − Xobs

) (
Yest,i − Yest

)
√∑N

i=1 (Xobs,i − Xobs)
2 ∑N

i=1 (Yest,i − Yest)
2

(9)

IV. Willmott index [71,72]:

WI = 1−


∑N

i=1 (Yest,i − Xobs,i)
2∑N

i=1 (
∣∣∣Yest,i − Xobs

∣∣∣+ ∣∣∣Xobs,i − Xobs
∣∣∣)2

; (10)

V. Relative error [66,73]:

RE =

(
Xobs,i − Yest,i

)(
Xobs,i

) × 100, (11)

where, Yest and Xobs are the estimated and observed monthly EPm values for the ith dataset,
respectively; Xobs and Yest are the mean observed and estimated monthly EPm values for ith
dataset, respectively; and N is the number of observations.
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4. Application Results and Analysis

4.1. Optimal Input Variable Selection Using GT

The capacity of AI models relies on several modeling adjustments. The selection of appropriate
input parameters is one of the essential prior steps for the learning process of AI implementation.
Hence, the current research investigated the potential of various input combinations that anticipate
several climatological parameters which have a positive influence on the EPm at the Pantnagar and
Nagina meteorological stations (Table 3). To complete this, the feasibility of the GT approach was
adopted to identify the related input combinations that are crucial to building predictive models. The
statistical results of GT are reported in Table 4 for both stations. Based on the GT results in Table 4,
and with a fixed mask example (111111), the minimum values of Γ = 0.0017, A = 0.0665, SE = 0.0013,
and Vratio = 0.0070 were obtained for Pantnagar station (Figure 6a), while the minimum values of Γ =

0.0112, A = 0.0395, SE = 0.0024, and Vratio = 0.0448 were obtained for Nagina station (Figure 6b). The
mask demonstrated the incorporation of the six input variables for estimating the EPm. Hence, the
following input variables were utilized for EPm estimation (i.e., Tmax, Tmin, RH-1, RH-2, WS, and SSH)
at Pantnagar and Nagina stations, respectively. It is worth mentioning that including the WS variable
as an input parameter provides a better score compared to the SSH (compare the Gamma scores of
Tmax, RH-2, WS and Tmax, RH-2, SSH; or scores of Tmax, WS and Tmax, SSH in Table 4), according to
the Gamma test, at both stations. This is in direct agreement with the correlations between WS or SSH
and EPm given in Table 2.

Table 3. Contribution of different climatic variables to the composition of the seven models at the
study stations.

Climatic
Variables

CANFIS/MLPNN/MLR

1 2 3 4 5 6 7

Tmin
√

Tmax
√ √ √ √ √ √ √

RH-1
√

RH-2
√ √ √

WS
√ √ √ √

SSH
√ √ √ √

Note:
√

is used to indicate the input variable for different combinations.

Table 4. Gamma test (GT) results on different input combinations at the study stations.

Various Input Combinations GT Statistic

Γ A SE Vratio Mask

Pantnagar

Tmin, Tmax, RH-1,
RH-2, WS, SSH 0.0017 0.0665 0.0013 0.0070 111111

Tmax, WS, SSH 0.0109 0.0905 0.0023 0.0436 010011
Tmax, RH-2, WS 0.0050 0.1375 0.0031 0.0199 010110
Tmax, RH-2, SSH 0.0105 0.1548 0.0071 0.0419 010101

Tmax, WS 0.0119 0.1934 0.0031 0.0476 010010
Tmax, SSH 0.0118 0.3441 0.0042 0.0474 010001

Tmax 0.0156 0.3202 0.0024 0.0623 010000

Nagina

Tmin, Tmax, RH-1,
RH-2, WS, SSH 0.0112 0.0395 0.0024 0.0448 111111

Tmax, WS, SSH 0.0179 0.0704 0.0048 0.0718 010011
Tmax, RH-2, WS 0.0163 0.0821 0.0047 0.0652 010110
Tmax, RH-2, SSH 0.0189 0.1528 0.0058 0.0756 010101

Tmax, WS 0.0163 0.2786 0.0047 0.0653 010010
Tmax, SSH 0.0247 0.2652 0.0071 0.0989 010001

Tmax 0.0370 0.3576 0.0055 0.1479 010000
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4.2. Estimation of EPm under Different Scenarios at Pantnagar Station

The combination of input variables (Tmax, Tmin, RH-1, RH-2, WS, and SSH) was used for training
and testing the applied methods (CANFIS, MLPNN, and MLR) under four different scenarios based
on the performance evaluation indicators (NRMSE, NSE, PCC, and WI). The values of NRMSE, NSE,
PCC, and WI in the four different scenarios in the testing phase are summarized in Table 5, which
indicate that in scenario-1, the NRMSE (mm/month) = 0.1364, 0.1404, and 0.1402; NSE = 0.9439,
0.9406, and 0.9408; PCC = 0.9790, 0.9751, and 0.9758; and WI = 0.9860, 0.9857, and 0.9851 for the
CANFIS-1, MLPNN-1 (with the structure of 6 inputs-9 processing elements-1 output), and MLR-1
models, respectively. In scenario-2 (Table 5), the NRMSE (mm/month) = 0.0904, 0.0920, and 0.1110;
NSE = 0.9736, 0.9726, and 0.9602; PCC = 0.9872, 0.9857, and 0.9818; and WI = 0.9934, 0.9932, and 0.9903
for the CANFIS-1, MLPNN-1 (6-11-1), and MLR-1 models, respectively. Under scenario-3 (Table 5), the
NRMSE (mm/month) = 0.0947, 0.0993, and 0.1085; NSE = 0.9703, 0.9674, and 0.9611; PCC = 0.9877,
0.9874, and 0.9831; and WI = 0.9927, 0.9918, and 0.9905 for the CANFIS-1, MLPNN-1 (6-10-1) and
MLR-1 models, respectively. In the case of scenario-4 (Table 5), the NRMSE (mm/month) = 0.0898,
0.1021, and 0.1056; NSE = 0.9799, 0.9740, and 0.9721; PCC = 0.9922, 0.9877, and 0.9885; and WI = 0.9949,
0.9934, and 0.9927 for the CANFIS-1, MLPNN-1 (6-9-1), and MLR-1 models, respectively. In order to
validate the results of the CANFIS, MLPNN, and MLR models, a comparison with the PM was made
for all scenarios. As Table 5 clearly shows, the CANFIS-1 models out-performed the other models in
all four scenarios, followed by the MLPNN-1 models. Therefore, the CANFIS-1 models followed the
best statistical criteria (i.e., maximum rate of WI, PCC, and NSE, and minimum rate of NRMSE) for the
testing period and were selected as the best among the three models. Likewise, the performance of PM
was found to be the worst in all scenarios for monthly EPm estimation at the Pantnagar station.
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Table 5. Normalized root mean square error (NRMSE), Nash–Sutcliffe efficiency (NSE), Pearson
correlation coefficient (PCC), and Willmott index (WI) values of CANFIS, MLPNN, multiple linear
regression (MLR), and Penman model (PM) models during the testing period at Pantnagar station
under four different scenarios.

Model Structure
Testing Period

NRMSE
(mm/month) NSE PCC WI

Scenario-1

CANFIS-1 Bell-3 0.1364 0.9439 0.9790 0.9860
MLPNN-1 6-9-1 0.1404 0.9406 0.9751 0.9857

MLR-1 - 0.1402 0.9408 0.9768 0.9851
PM - 0.9585 −1.7672 0.8047 0.5590

Scenario-2

CANFIS-1 Gauss-2 0.0904 0.9736 0.9872 0.9934
MLPNN-1 6-11-1 0.0920 0.9726 0.9867 0.9932

MLR-1 - 0.1110 0.9602 0.9818 0.9903
PM - 0.9871 −2.1474 0.8224 0.5486

Scenario-3

CANFIS-1 Gauss-3 0.0947 0.9703 0.9877 0.9927
MLPNN-1 6-10-1 0.0993 0.9674 0.9874 0.9918

MLR-1 - 0.1085 0.9611 0.9831 0.9905
PM - 0.9994 −2.3051 0.8511 0.5416

Scenario-4

CANFIS-1 Gauss-2 0.0898 0.9799 0.9922 0.9949
MLPNN-1 6-9-1 0.1021 0.9740 0.9877 0.9934

MLR-1 - 0.1056 0.9721 0.9885 0.9927
PM - 0.9168 −1.1016 0.8103 0.5957

Figure 7a–d depicts the time variation and scatter plots of the observed and estimated monthly EPm

values obtained by CANFIS-1, MLPNN-1, MLR-1, and PM models under scenarios one to four during
the testing period at Pantnagar. In the scatter plots, the regression line (RL) provides the coefficient
of determination (R2) for all four scenarios. In scenario-1, the R2 = 0.9584, 0.9508, 0.9542, and 0.2951;
scenario-2, the R2 = 0.9745, 0.9736, 0.9639, and 2721; scenario-3, the R2 = 0.9756, 0.9750, 0.9666, and
3203; and scenario-4, the R2 = 0.9845, 0.9756, 0.9771, and 0.2953, for the CANFIS-1, MLPNN-1, MLR-1,
and PM models during the testing phase, respectively. Besides, scenarios one to four demonstrated
that the regression line is above the 1:1 line, and this means that the PM model under these scenarios
highly overestimated the magnitude of the monthly EPm values at Pantnagar station.

The percentages of relative errors (obtained using Equation (11)) between the estimated and
observed EPm values of the CANFIS-1, MLPNN-1, MLR-1, and PM models in the four different
scenarios over the testing period are illustrated in Figure 8a–d. As reported in Figure 8a–d, the RE
percentage was limited to between +40 and −20 for the first scenario. The highest RE% was experienced
using the Penman model (PM). However, the minimum relative error percentage was obtained for the
CANFIS model, and it was limited to ±10, with some observations reaching ±20. Greater spreading of
the RE for all prescribed models seemed to occur at the peak value of monthly EPm. It can also be
observed from Figure 8, together with Figure 7, that the models’ accuracy varies over diverse scenarios
and this suggests the use of various scenarios in evaluating the potential of AI models, as also discussed
by Kisi and Heddam [32].
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CANFIS-1, MLPNN-1, MLR-1, and PM models in (a) scenario-1, (b) scenario-2, (c) scenario-3, and (d)
scenario-4 during the testing period at Pantnagar station.
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Figure 8. Relative error (RE) percentage distribution of the CANFIS-1, MLPNN-1, MLR-1, and PM
models for (a) scenario-1, (b) scenario-2, (c) scenario-3, and (d) scenario-4 during the testing period at
Pantnagar station.

Figure 9a–d demonstrates the spatial distribution of observed and estimated monthly EPm values
yielded by the CANFIS-1, MLPNN-1, MLR-1, and PM models under scenarios one to four during the
testing period at Pantnagar station through a Taylor diagram (TD), which is a polar plot for acquiring a
visual judgment of model performance based on the coefficient of correlation, standard deviation, and
root mean square error (RMSE). Figure 9a–d shows that the estimates provided by the CANFIS-1 model
in all four scenarios are very close to the observed values of monthly EPm. Henceforth, the CANFIS-1
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model with Tmax, Tmin, RH-1, RH-2, WS, and SSH climatic parameters can be cast for monthly EPm

estimation at Pantnagar station.
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Figure 9. Taylor diagram (TD) of observed and estimated monthly evaporation obtained by the
CANFIS-1, MLPNN-1, MLR-1, and PM models in (a) scenario-1, (b) scenario-2, (c) scenario-3, and (d)
scenario-4 during the testing period at Pantnagar station.

4.3. Estimation of EPm under Different Scenarios at Nagina Station

Table 6 presents the values of performance evaluation indicators (NRMSE, NSE, PCC, and WI)
for the selected input combination (i.e., Tmax, Tmin, RH-1, RH-2, WS, and SSH) during the testing
period under four different scenarios. Nagina station in scenario-1 (Table 6) achieved NRMSE values
ranging from 0.1543 to 0.1866 and NSE/PCC (WI) values ranging from 0.9150 to 0.8758/0.9643 to 0.9437
(0.9794 to 0.9698) for the CANFIS-1, MLPNN-1 (6-10-1), and MLR-1 models, respectively. In scenario-2
(Table 6), the NRMSE values ranged from 0.1719 to 0.2299 and NSE/PCC (WI) values ranged from
0.8962 to 0.8144/0.9649 to 0.9346 (0.9761 to 0.9579) for the CANFIS-1, MLPNN-1 (6-10-1), and MLR-1
models, respectively. In the case of scenario-3 (Table 6), the NRMSE values ranged from 0.2067 to
0.2939 and NSE/PCC (WI) values ranged from 0.8382 to 0.6729/0.9473 to 0.9049 (0.9632 to 0.9313), while
in scenario-4, the NRMSE values ranged from 0.1356 to 0.1621 and NSE/PCC (WI) values ranged from
0.9453 to 0.9219/0.9762 to 0.9666 (0.853 to 0.9789), for the CANFIS-1, MLPNN-1 (6-10-1), and MLR-1
models, respectively. A comparison of the CANFIS, MLPNN, and MLR models against the PM for all
scenarios exposed the better performance of the CANFIS model, followed by the MLPNN and MLR
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models. As Table 6 clearly indicates, the CANFIS-1 models out-performed the other models in all
four scenarios, followed by the MLPNN-1 models. Therefore, CANFIS-1 followed the best statistical
criteria (i.e., minimum values = NRMSE, and maximum values = NSE, PCC, and WI) during the testing
period and was selected as the best of the three models. Hence, the models’ estimation accuracies
show variations over the four scenarios and increasing the training data length generally improves the
models’ exactness in estimation of the monthly EPm, as also discussed by Kisi and Heddam [32].

Table 6. NRMSE, NSE, PCC, and WI values of the CANFIS, MLPNN, and MLR models during the
testing period at Nagina station under four different scenarios.

Model Structure
Testing Period

NRMSE
(mm/month) NSE PCC WI

Scenario-1

CANFIS-1 Gauss-3 0.1543 0.9150 0.9643 0.9794
MLPNN-1 6-10-1 0.1813 0.8827 0.9592 0.9723

MLR-1 - 0.1866 0.8758 0.9437 0.9698
PM 1.3464 −5.4677 0.8507 0.4585

Scenario-2

CANFIS-1 Gauss-2 0.1719 0.8962 0.9649 0.9761
MLPNN-1 6-10-1 0.1899 0.8734 0.9486 0.9699

MLR-1 - 0.2299 0.8144 0.9346 0.9579
PM 1.3989 −5.8728 0.8470 0.4493

Scenario-3

CANFIS-1 Gauss-2 0.2067 0.8382 0.9473 0.9632
MLPNN-1 6-10-1 0.2281 0.8031 0.9247 0.9552

MLR-1 - 0.2939 0.6729 0.9049 0.9313
PM 1.3907 −6.3213 0.8158 0.4291

Scenario-4

CANFIS-1 Gauss-2 0.1356 0.9453 0.9762 0.9853
MLPNN-1 6-10-1 0.1477 0.9351 0.9746 0.9820

MLR-1 - 0.1621 0.9219 0.9666 0.9789
PM 1.1789 −3.1294 0.8961 0.5362

Figure 10a–d illustrates the time variation and scatter plots of observed and estimated monthly
EPm values obtained by the CANFIS-1, MLPNN-1, MLR-1, and Penman models under scenarios one
to four during the testing period at Nagina station. In scenario-1, the R2 is 0.9299, 0.9201, 0.8905, and
0.2879; scenario-2, the R2 is 0.9311, 0.8999, 0.8735, and 0.2863; scenario-3, the R2 is 0.8973, 0.8550, 0.8188,
and 0.2944; and scenario-4, the R2 is 0.9529, 0.9498, 0.9343, and 0.3911 for the CANFIS-1, MLPNN-1,
MLR-1, and PM models during the testing phase, respectively. In addition, the scenarios one, two, and
three demonstrated that the regression line (RL) is above the 1:1 line for all of the methods and this
means that the CANFIS-1, MLPNN-1, and MLR-1 models under these scenarios slightly over-predict,
while in scenario-4, they under-predict, the monthly EPm values at Nagina station. Moreover, scenarios
one to four verified that the Penman model highly over-estimates the EPm values. Therefore, the use of
various data splitting scenarios is recommended when testing data-driven methods in the estimation
of EPm.
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Figure 10. Comparison plots of observed and estimated monthly pan-evaporation values yielded by
the CANFIS-1, MLPNN-1, and MLR-1 models in (a) scenario-1, (b) scenario-2, (c) scenario-3, and (d)
scenario-4 during the testing period at Nagina station.

The percentage of RE between the estimated and observed monthly EPm values for all applied
predictive models for Nagina station is displayed in Figure 11a–d for the four different scenarios
over the testing period. Figure 11a–d shows that the RE percentage was between +25 and −50 for
the first scenario. The maximum RE% was experienced for the Penman model. Apparently, the best
performance based on this metric was attained for the CANFIS model and for the fourth scenario. The
relative error percentage was limited to ±15 for about 80% of the testing phase of modeling. Conversely,
the rest of the data observations ranged by ±20%. Therefore, extreme spreading of the RE for the peak
value of the monthly EPm was detected for all prescribed models.
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Figure 12a–d displays the spatial distribution among observed and estimated monthly EPm values
yielded through the CANFIS-1, MLPNN-1, MLR-1, and Penman models under scenarios one to four
during the testing period. Figure 12a–d shows that the CANFIS-1 model in all four scenarios is closer to
the observed values of monthly EPm compared to the other applied models. Therefore, the CANFIS-1
model with Tmax, Tmin, RH-1, RH-2, WS, and SSH climatic variables at Nagina station can be employed
for monthly EPm estimation.
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MLPNN-1, MLR-1, and PM models in (a) scenario-1, (b) scenario-2, (c) scenario-3, and (d) scenario-4
during the testing period at Nagina station.

4.4. Comparison and Discussion

In this research, the monthly EPm was estimated at Pantnagar and Nagina stations under four
different scenarios by employing the CANFIS, MLPNN, and MLR models in conjunction with GT,
which revealed the appropriate input variable combination for this task. The results produced by
the CANFIS model were validated against the MLPNN and MLR models using several statistical
metrics and visual interpretations. The CANFIS model optimized with the Takagi–Sugeno–Kang (TSK)
fuzzy inference system, hyperbolic-tangent (tanh) activation function, delta bar delta algorithm, and
Gaussian membership functions demonstrated a substantial predictability performance of the modeled
evaporation process. This was observed for all of the investigated modeling scenarios.

Machine learning models behave based on the supplied dataset. Hence, in this research the
applicability of the applied predictive models in the reverse back mode was tested. The models were
trained using a recent historical data set trend and were tested to predict the evaporation at an earlier
span period. In this way, more informative visualization can be attained on the applicability of the
predictive for predicting the evaporation in the reverse time period. This is because, from a logical
aspect: arranging the data and consequently training and then testing, could be by chance to obtain
good results. Hence, machine learning models should be investigated by training the models using
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any dataset, and the testing phase can be randomly selected at any span period desired to be examined.
The research findings evidenced the capacity of the proposed AI predictive model for the reverse back
mode scenario.

To corroborate the findings of the research, a comparison was analyzed with respect to the NRMSE
of the MLPNN-1, MLR-1, and Penman models in terms of the prediction accuracy, which reduced from
85.8% to 2.8%, 90.8% to 1.7%, 90.5% to 4.6%, and 90.2% to 12.0% in scenarios one to four, respectively,
with the CANFIS-1 model at Pantnagar station. Similarly, the prediction accuracy concerning the
NRMSE of MLPNN-1, MLR-1, and Penman models reduced from 88.5% to 14.9%, 87.7% to 9.5%, 85.1%
to 9.4%, and 85.5% to 8.2% with the CANFIS-1 model in scenarios one to four, respectively, at Nagina
station. Therefore, the applied modeling approach can be employed to build a straightforward reliable
AI system, which is crucial for the sustainable planning and management of water resources.

In accordance with the attained estimation accuracy, the data span used was eight years of weather
information, which consisted of the minimum and maximum air temperature, morning and afternoon
relative humidity, wind speed, and sunshine hours. Overall, the investigated eight-year monthly-scale
climatic information was sufficient for constructing the predictive models. It can also be noted that the
co-active neuro-fuzzy inference system introduced performed remarkably for mimicking the actual
trend of the evaporation process. This was due to the major capability of simulating the uncertainty
problem where the CANFIS model is characterized. The monthly EPm process is usually highly
associated with major uncertainties of climatic variability. Therefore, proposing the CANFIS model
was an excellent idea for addressing this complex climate process. For this region, it was evidenced
that the incorporation of all related available hydrological information was highly crucial for modeling
the monthly EPm. This was due to the high stochasticity of the monthly EPm, which is very much
influenced by different climate attributes. Decadal research on pan evaporation estimation has shown
the wide applications of AI models. Through validation against literature studies [28,74–79], the present
implementation of the CANFIS model confirmed its predictability capacity using statistical metrics.

The current research could be further extended with other modeling scenarios by incorporating
the most significant correlated climate variables. For instance, the integration of metaheuristic
optimization algorithms [80] can advance the prediction process to abstract the essential correlated
attributes. Conceptually, this is a factual implementation with the possibility of eliminating unnecessary
climate variables and obtaining an acceptable prediction accuracy with less input variability. This is
highly beneficial for catchments located in developing countries where a lack of climatological data
availability exists.

5. Conclusions

The evaporation process in nature is characterized by highly non-linear and stochastic phenomena.
In the current research, the first phase was established to extract the input variables relating to the
monthly EPm using the Gamma test. The second phase of modeling was employed to estimate the
value of monthly EPm using different AI models, including CANFIS and MLPNN at Pantnagar station
(located in Uttarakhand State) and Nagina station (located in Uttar Pradesh State), India. Owing to the
fact that different span data can influence the efficiency of the applied AI models, several scenarios
were investigated, applying different training and testing data set spans. For validation purposes, the
predictability potential of CANFIS and MLPNN were evaluated against the classical multiple linear
regression and traditional Penman model. The modeling procedure was inspected using multiple
statistical metrics (i.e., normalized root mean square error, Nash–Sutcliffe efficiency, Pearson correlation
coefficient, Willmott index, and relative error). In addition, graphical inspections were performed,
including a time variation plot, scatter plot, relative error percentage graph, and Taylor diagram. The
findings of the research evidenced the capacity of the CANFIS-1 model for estimating monthly-scale
pan evaporation incorporating all of the weather information, including the minimum and maximum
air temperature, morning and afternoon relative humidity, wind speed, and sunshine hours. The
superiority of the CANFIS-1 model was observed for all examined scenarios and at both Pantnagar and
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Nagina stations. Additionally, the performance of the traditional Penman model was found to be the
worst in all scenarios for estimating the monthly EPm at both stations. Overall, the result of the current
research demonstrated the feasibility of the CANFIS model as a newly developed data-intelligent
approach for simulating pan evaporation in the Indian region, where it can be applied for several
water resource engineering applications.

In future studies, the different percentages of training and testing datasets should be considered for
monthly pan evaporation estimation using advanced hybrid metaheuristic models (i.e., the grey wolf
optimizer, particle swarm optimizer, multi verse optimizer, whale optimization algorithm, and ant lion
optimizer), and compared with empirical and semi-empirical climate-based models (Stephens–Stewart,
Griffiths, Christiansen, Priestley–Taylor, and Jensen–Burman–Allen) in different climates. This research
focuses on the specific area of Pantnagar and Nagina stations, so the results of the current research
cannot be used to generalize about the ability of applied AI models for different climatic regions.
Therefore, it is also suggested that, in future studies, the generalization of applied AI models should be
examined by considering multiple stations in different environmental conditions.
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