Covid-19 airborne transmission and its prevention: waiting for evidence or applying the precautionary principle?

Annalaura Carducci*, Ileana Federigi*, Marco Verani*

* Department of Biology, University of Pisa, Via S. Zeno 35/39, Pisa 56127, Italy

Appendix 1 - List of papers removed with reasons:

Reason #1: description of an index case but without confirmed secondary cases

- Buchholz U, Müller MA, Nitsche A, et al. Contact investigation of a case of human novel coronavirus infection treated in a German hospital, October-November 2012. Euro Surveill. 2013;18(8):20406. Published 2013 Feb 21.

- Lillie PJ, Samson A, Li A, et al. Novel coronavirus disease (Covid-19): The first two patients in the UK with person to person transmission. J Infect. 2020;80(5):578-606. doi:10.1016/j.jinf.2020.02.020;

- Park BJ, Peck AJ, Kuehnert MJ, et al. Lack of SARS transmission among healthcare workers, United States. Emerg Infect Dis. 2004;10(2):244-248. doi:10.3201/eid1002.030793;

- Reuss A, Litterst A, Drosten C, et al. Contact investigation for imported case of Middle East respiratory syndrome, Germany. Emerg Infect Dis. 2014;20(4):620-625. doi:10.3201/eid2004.131375.

Reason #2: lack of epidemiological analysis

- Nam HS, Yeon MY, Park JW, Hong JY, Son JW. Healthcare worker infected with Middle East Respiratory Syndrome during cardiopulmonary resuscitation in Korea, 2015. Epidemiol Health. 2017;39:e2017052. doi:10.4178/epih.e2017052;

- Meng X, Huang X, Zhou P, Li C, Wu A. Alert for SARS-CoV-2 infection caused by fecal aerosols in rural areas in China. Infect Control Hosp Epidemiol. 2020;1. doi:10.1017/ice.2020.114

Appendix 2 – Description of the papers included in the literature revision, divided on the basis of the aim of the study

	Aim	Test coronavirus and viral suspension load before aerosolization ^a	Duration of the assay	Experimental apparatus	Environ paramet T (°C)	mental ers RH (%)	Aerosol collection system and operative parameters (sampling flow rate, sampling time)
Ijaz et al., 1985 [49]	Survival at different RH and temperatur e levels	HCoV-229E 3-4.2 × 10 ⁷ PFU/ml	24-72 hr (five samples collected over the course of the experiment)	6-jet collison nebulizer using Triptose Phospahte Broth (TPB) as spry fluid. Viral aerosol is stored into a 300-liter stainless-steel rotating (4 rpm) drum	6, 20	30, 50, 80	All-glass impinger using TPB as collection fluid (5.6 L/min, 2 min)
Ijaz et al., 1987 [44]	Survival at different RH levels	HCoV-229E 10³ PFU/ml	24 hr (five samples collected over the course of the experiment)	6-jet collison nebulizer using TPB as spry fluid. Viral aerosol is stored into a 300-liter stainless- steel rotating (4 rpm) drum	20	30, 50, 80	All-glass impinger using TPB as collection fluid (5.6 L/min, 1 min)
Agranovski et al., 2004 [45]	Collection efficiency of aerosol samplers	SARS-CoV 104 TCID50/ml	4-hr (continuous aerosol collection)	NA	24	55	Personal bioaerosol sampler (4 L/min, 4-hr)
Tseng & Li, 2005 [46]	Collection efficiency of four commonly used bioaerosol samplers	phage phi 6 10º–10 ¹⁰ PFU/ml	Variable	3-jet Collision nebulizer using deionized water as spry fluid. Viral aersol is injected into a for virus aerosolization into a test chamber	Not specifi ed	20, 55, 85	 Andersen impactor 1-STG sampler (28.3 L/min, 5 min); AGI-30 impinger using sterile deionized water as collection fluid (12.5 L/min, 5 min); Gelatin filter with 3.0-µm pore size (30 L/min, 5 min); Nuclepore polycarbonate filter with a 0.4-µm pore size (2L/min, 20 min)

Table S1. In vitro studies on the air contamination by coronaviruses (listed in chronological order)

Farnswo et al., 20 [48]	Orth 1006 Collection and recovery efficiency of HVAC filters	TGEV ~ 10 ⁵ TCID ₅₀	10-min	Collison nebulizer using viral growth media ^b as spray fluid. Viral aerosol is injected into an air filter testing apparatus equipped with both HAV filter and impinger samplers for virus titration	22-24	37	 HVAC filter media, rated MERV 14 by ASHRAE; AGI-30 impinger with viral growth media ^b as collection fluid (12.5 L/min, 10 min)
Kim et a 2007 [47	Recovery al., efficiency [] of HVAC filters	TGEV geometric mean of 8.51 × 10 ⁴ TCID50/ml	10-min	6-jet collison nebulizer using viral growth media ^b as spray fluid. Viral aerosol is injected into an air filter testing apparatus equipped with both HAV filter and impinger samplers for virus titration	23	30, 50, 70, 90	 HVAC filter media, rated MERV 14 by ASHRAE (exposed to aerosol for 10 min); Two impinger samplers (AGI-30, BioSamplers) with viral growth media as collection fluid (12.5 L/min, 10 min)
Walker Ko, 2007 [55]	& Survival at 7 under UV irradiation	MHV 104-105 PFU/ml	35 min (four samples collected over the course of the experiment)	6-jet collison nebulizer using viral growth media ^b as spray fluid. Viral aerosol is injected into an experimental chamber	Not specifi ed	50	AGI-30 liquid impinger with viral growth media ^b as collection fluid (12.5 L/min, 15 min)
van Dorema et al., 20 [52]	llen 13 Survival at different RH levels	MERS-CoV 10º TCID50/ml	10 min (continuous aerosol collection during aerosolisation)	AeroMP aerosol management platform	20	40, 70	All Glass Impinger with viral growth media ^b as collection fluid (12.5 L/min, 10 min)
Pyanko al., 2018 [51]	v et Survival at different RH and temperatur e levels	MERS-CoV ~ 10 ⁶ TCID ₅₀ /ml	1-hr (five samples collected over the course of	3-jet collison nebulizer for virus aerosolization into a rotational chamber	25, 38	79, 24	Personal bioaerosol samplers with viral growth media ^b as collection fluid (4 L/min, 2 min)

			the experiment)				
Prussin et al., 2018 [50]	Survival at different RH, absolute humidity and temperatur e levels	phage phi 6 10 ⁸ to 10 ¹⁰ PFU/ml	2-hr (seven samples collected over the course of each experiment)	Chamber equipped to control RH and AH, incubated in temperature-controlled rooms	14, 19, 25, 37	23, 33, 43, 61, 75, 85, 98	NA ¢
van Doremalen et al., 2020 [53]	Survival at fixed RH and temperatur e	- SARS-CoV-1 ~ 10 ⁷ TCID ₅₀ /ml - SARS-CoV-2 (Washington variant) ~ 10 ⁵ TCID ₅₀ /ml	3-hr (five sample collected over the experiment)	3-jet collison nebulizer for virus aerosolization into a Goldberg drum	21-23	65	47mm gelatin filter
Smither et al., 2020 [54]	Survival at different RH levels	SARS-CoV-2 (UK variant) ~ 10º TCID50/ml	90-min (five sample collected over the experiment)	3-jet collision nebulizer for virus aerosolization using artificial saliva or tissue culture media as spry fluid into a 40L Goldberg drum	19-22	40-60, 68-88	Midget impingers with viral growth media ^b as collection fluid (4 L/min, 1 min)

^a MERS-CoV, SARS-CoV and SARS-CoV-2 have been propagated and titrated on Vero E6 cells; MHV on DBT cell line; TGEV on swine testis (ST) cells; HCoV-229E on L132 cells; phage phi6 on *Pseudomonas syringae*

^b Viral growth media represents the maintenance medium of the cell lines used for virus replication

^c The assay was performed with droplets

Coro	navirus	Sampling site and samples (type and number)	Air sampling and detection methods	Results	Ref.
	PRCoV	Nonhealthcare setting (USA): 46 pigs artificially infected. Oral-nasal swabs, expired air by the pigs, air samples from the room.	AGI-30 impinger using viral growth media as collection fluid (12.5 L/min, 5 min). (RT)-PCR	Positivity in all swab samples but in no air samples	Hermann et al., 2008 [60]
ø	PEDV	Nonhealthcare setting (USA): - 6 air samples from experimental condition of pigs artificially infected with PEDV; - 62 air samples collected from field monitoring in swine herds.	Liquid cyclonic air collector using viral growth media as collection fluid (200 L/min, 30 min). Real time RT-PCR and bioassay for positive samples	All experimental samples positive for molecular test and infectivity. 11/62 (18%) of field samples positive for viral genome, none for the infectivity	Alonso et al., 2014 [61]
Animal CoV	PEDV	Nonhealthcare setting (USA): 54 air samples from experimental condition of pigs artificially infected with PEDV (48 collected using Andersen cascade impactor and 6 using liquid cyclonic collector)	Liquid cyclonic air collector using viral growth media as collection fluid (200 L/min, 30 min) and an Andersen cascade impactor separating particles into 8 size intervals (28.3 L/min, 1 hr). Real Time (RT)-PCR, cell culture and bioassay to assess the infectivity	PEDV was detected in all particle sizes and in higher quantities than other searched viruses. All positive samples infectious.	Alonso et al., 2015 [62]
	PEDV	Nonhealthcare setting (USA), namely 9 swine or poultry farms: 16 air samples (12 and 4 collected from inside and outside, respectively)	Two different air samplers: Andersen cascade impactor separating particles into 8 size intervals (28.3 L/min, 1 hr) and Tisch cascade impactor separating particles into 4 size intervals (1130 L/min, 30 min). Real time (RT)- PCR	69% positive samples for PEDV. Inside samples more often positive. Highest PEDV concentrations in larger particles.	Alonso et al., 2017 [63]
an CoVs	229E/N L63 and OC43/ HKU1	King Abdul Aziz International Airport, Pilgrims City (Jeddah, Saudi Arabia): 40 surfaces and 18 air samples	Liquid SKC biosampler using buffered solution with bovine serum albumin as collection fluid (6 L/min, 2 hr). Respiratory multiplex array	One air sample (1/18, 5.5%) positive for viral presence. 3/7 surfaces samples positive for HCoV-OC43/HKU1.	Memish et al., 2014 [66]
Common Hum	HCoV	Healthcare setting (USA): 48 air samples (24 for each type of air sampler) from the patient waiting areas in the emergency department of a pediatric hospital, a public primary care clinic, and a private primary care clinic.	Two different air samplers: liquid SKC biosampler using buffered solution with bovine serum albumin as collection fluid (8 L/min, 1 hr) and portable SKC filter cassette preloaded with PTFE filter (5 L/min, 3 hr). Real time (RT)-PCR and cell culture.	16 (33.3%) of the 48 samples positive at least for 1 respiratory pathogen, but no infectivity. No positivity for coronavirus.	Nguyen et al., 2016 [68]

Table S2. Environmental air monitoring studies classified according to the type of coronavirus

	HCaV	Nonhealthcare settings (Malaysia), namely farms (11), abattoirs (2), and animal markets (3):	NIOSH bioaerosol sampler separating particles into 3 size intervals (3.5 L/min, 30 min). Real	HCoV was detected in 2.6% of worker nasal wash but no in the	Borkenha gen et al.,
	псот	78 worker nasal wash samples, 55 pig feces, 49	time (RT)-PCR.	others animal and environmental	2018 [64]
		pig oral secretion, and 45 air samples.		samples.	<u>C 1</u>
		Singapore Mass Rapid Transit heavy rail lines	NIOSH bioaerosol sampler separating particles	14 (16%) of the aerosol samples	Coleman
	HCoV	(Singapore): 89 air samples	(RT) PCR cell culture and sequencing	No positive samples for	et al., 2018 [65]
			(KT)-1 CK, ten tultule and sequencing	coronavirus	2010 [05]
		General paediatric ward at KK Women's and	NIOSH bioaerosol sampler separating particles	8 (28.5%) samples positive for	Yadana et
		Children's Hospital (Singapore): 28 air samples	into 3 size intervals (3.5 L/min, 4 hr) and SKC	adenovirus and one (3.5%) for	al., 2019
	HCoV		filter cassette preloaded with 0.3- μ m pore size	influenza A virus, but no	[69]
			PTFE filter (3.5 L/min, 4 hr). Real time (RT)-PCR	infectious. HCoV was not found.	
			and cell culture		
	229E	University campus (Hong Kong): 1028 air	NIOSH bioaerosol sampler separating particles	Influenza genome was the most	Xie et al.,
	and	samples	into 3 size intervals (3.5 L/min, 30 min). Real	detected (20.6% of total samples).	2020 [67]
	OC43		time (RT)-PCR and cell culture for positive	HCoV was not found.	
			samples.		
		Room with positive patient in the Chang Gung	Sampling filter cassette with a $1-\mu m$ PTFE filter	All samples negative. HEPA	Tsai at al.,
		Memorial Hospital (Taiwan): 12 air samples	(4.5 L/minute, 8 hr). Moreover, 0.023 -µm and	filters with a pore size of 0.023	2006 [71]
		and 3 unexposed filters.	0.3-µm HEPA filters connected to breathing	µm could remove 100% of	
			L/minute 20 minutes) Real time (RT) PCP	aerosolized virus.	
		Healthcare setting (Taiwan):	Compling filter essette with a 1 um PTEE filter	None of the air camples positive	Wan at a
		- 6 air samples from nogative prossure hospital	were collected from a patient isolation room	for SARS-CoV genome PCR	2004 [72]
ΛO		isolation room.	(4.5.1/min_20 min) Real time RT-PCR	positive rates of the filters were	2004[72]
С С		- 3 air samples from each filter during	(1.0 L/mill, 20 mill). Real time RTT eR	100%	
AR		experimental tests for filtration efficiency.			
Š		SARS units of four Toronto healthcare facilities	Wet air sampling: High-resolution slit-sampler	2 wet air samples and 3 surface	Booth et
		(Canada): 38 air (10 wet air samples and 28 dry	system impinger using buffered solution with	samples (bed table, television	al., 2005
		air samples) and 85 surfaces samples collected	bovine serum albumin as collection fluid (30	remote control and medication	[70]
		from 19 rooms.	L/min, 18 min). Dry air sampling: 0.3-µm PTFE	refrigerator door) positive. None	
			membrane filter in disposable plastic cassette (2	infectious.	
			L/min, 18 min). RT- PCR, real time RT-PCR, and		
			cell culture.		

MERS-CoV	Healthcare setting (South Korea): 7 air and 68 surfaces samples from 2 rooms of infected patients in hospital A and 1 room patient in hospital B Camels' barn (Saudi Arabia): 3 air samples from the site where a worker became ill	MD8 airscan sampling device with 3-µm pore size sterile gelatin filters (50 L/min, 20 min). RT- PCR and isolation on cells. Electron microscope and immunofluorescence assay MD8 airscan sampling device with 3-µm pore size sterile gelatin filters (50 L/min, 20 min). Real time RT-PCR and sequencing	All air samples positive and 4/7 infectious. 42/68 swab samples positive by RT-PCR and sequencing. Only one air sample positive and the genome sequences were identical to those from the animal and from the infected worker.	Kim et al., 2016 [74] Azhar et al., 2014 [73]
	Healthcare setting (Hong Kong): 8 air samples and 13 various environmental samples in the room of the first confirmed case in Hong Kong	SAS Super ISO 180 equipped with culture plate containing viral transport medium (180 L/min, 5 min). RT-PCR.	All air samples negative. Only the window bench surface positive before the collection of air samples.	Cheng et al., 2020 [77]
	ICU at Imam Khomeini Hospital complex (Iran): 10 air samples in patients' rooms	Liquid impinger using viral growth media as collection fluid (1.5 L/min, 1 hr). Real Time RT- PCR	All air samples negative	Faridi et al., 2020 [78]
	ICU and general COVID-19 ward (China): 56 air samples collected from different sites (i.e. near the air outlets, inside patient's room, in the doctors' office area) and 369 surface samples from objects frequently touched by medical staff or patients (i.e. computer mice, trash cans, doorknobs)	SASS 2300 Wetted Wall Cyclone Sampler (300 L/min, 30 min). Real Time RT-PCR	RNA detected in all the sampling sites, with the highest frequency near the patients (44.4%) and at the air outlets (35.7%).	Guo et al., 2020 [75]
SARS-CoV-2	Healthcare setting (China): 35 air samples collected with different sampling methods in two designated hospitals and public areas in Wuhan	 Sampling on presterilized gelatin filters (pore size 3 μm) with three methods: Aspiration using Casella portable pump (5 L/min, 5-20 hr) for aerosol samples of total suspended particles (30); Miniature SKC cascade impactor (9 L/min, 5-20 hr) for aerodynamic size-segregated aerosol samples (3); Gelatin filter packed in a holder with an effective deposition area of 43 cm² (exposed for 7 days) for aerosol deposition samples (2) Droplets digital PCR. 	Highest level contamination in the toilet area. Positive samples in the medical staff area and low contamination in public area outside. RNA was found in submicron region and supermicron region aerosol size.	Liu et al., 2020 [76]

Healthcare setting (Singapore): 6 air samples	SKC filter cassette preloaded with 0.3-µm pore	Only surface samples were	Ong et al.,
from three AIIRs and 38 surfaces samples	size PTFE filter (5 L/min, 4 hr) in the room and	positive, including 13/15 (87%)	2020 [79]
(surface inside the room and personal	anteroom. Sartorius MD8 microbiological	room surface sites and 3/5 (60%)	
protective equipment used by medical staff)	sampler with gelatin membrane filter (6 L/h, 15	toilet surfaces before routine	
	min) outside the room.	cleaning resulted positive.	
Healthcare setting (Singapore): 3 air samples	NIOSH BC 251 bioaerosol sampler separating	Air samples from two (66.7%) of	Chia et
from AIIRs of general ward and 245 surfaces	particles into 3 size intervals (3.5 L/min, 4 h). In	AIIRs resulted positive in particle	al., 2020
samples from hospital rooms of COVID-19	one patient room, additional sampling with	sizes > 4 μ m and 1–4 μ m. Rooms	[80]
patients.	SKC filter cassette preloaded with 0.3-µm pore	with contaminated air had also	
	size PTFE filter (5 L/min, 4 h). RT-PCR and real	surface contamination.	
	time RT-PCR		
Industrial site of Bergamo Province (Italy): 34	Low-volume gravimetric air sampler (38.3	20 positivity for at least one of the	Setti et
PM10 samples from the outdoor air	L/min, 24 hr). Real time RT-PCR procedure for	three marker genes.	al., 2020
	three gene markers.		[81]

AIIRs = airborne infection isolation rooms; HCoV = Human Coronavirus; ICU = intensive care unit; PEDV = Porcine Epidemic Diarrhea Virus; PRCoV = Porcine Respiratory Coronavirus; PTFE = polytetrafluoroethylene; NIOSH = National Institute for Occupational Safety and Health

Disease	Place, Year, Setting Case Number	Study Type	Results	Ref.
	Hong Kong, 2003 Amoy Garden apartments	Epidemiological retrospective and fluid- dynamic analysis	The epidemiological findings were consistent with the origin from the plume of warm contaminated air in an air shaft from a toilet	Yu et al., 2004 [84]
	321 cases	Multizone airflow model	Cases concentrations in flats predicted with the use of multi- zone modeling	Li et al, 2005 [85]
		Clinical and virological analysis of patients	Nasopharyngeal viral load higher in patients living in adjacent units to index patient	Chu, et al. 2005 [86]
		Analysis of meteorological variables 6 days before outbreak	Marked decrease of temperature and temperature range permissive for virus survival	Yip et al, 2007 [87]
aks		Gas tracer to show air flux	Exhaust air coming out from a window of a floor that re-enters in open window at the immediate upper floor.	Niu & Tung, 2008 [88]
S outbre		Computational fluid dynamic technique	Wind influence the upward transport between flats	Gao et al, 2008 [89]
SAR: anity o		Eulerian-Lagrangian models	1 m particles dispersed like a. gas, while the ones of 20 m or more settled close to the source	Gao et al. 2009 [90]
ommı		Temporal and spatial description of the outbreak including nearby residences	The airborne spread (till 200 m) was the most probable explanation for cases around the Amoy Garden complex,	Yu et al., 2014 [91]
	Honk Kong, 2003 Aircrafts (3 flights)	Descriptive	In the second aircraft 7 infected farer than three rows (2.3 m) from the index case	Olsen et al. 2003 [92]
	0/315; 22/120; 1/246 cases	Eulerian-Lagrangian model	Passengers movements can influence the airborne transmission	Han et al. 2014 [93]
		Multi-route transmission model	Estimated airborne component: 21% (95% CI: 19%-23%)	Lei at al., 2018 [94]
		Simulation of different ventilation systems	Effectiveness in controlling cabin contaminant transport resulted higher for conventional displacement ventilation system	You et al., 2019 [95]
	Hong Kong, 2003 Hotel Metropole	Epidemiological investigation and environmental samples	Infected people were from the same floor and probably passed in front of the room of the index case (n.911).	CDC, 2003 (detailed

Table S3. Epidemiological studies taking into consideration aerosol transmission, classified according to the type of coronavirus

	17 + related cases in Canada, Hong Kong,		Positive environmental samples were taken from the air inlet of the recirculating elevator lobby fan on the 9th floor and also	by WHO, 2006) [96]
	Singapore, and Viet		from outside guest rooms 908, 909, 910, and 911 (carpet, door	
	Nam		sills, etc.).	
	Toronto (Canada), 2003	Epidemiological investigation	Lowest risk for distance from the index case > 3 m, but one	Varia et al.,
	Hospital		infected at 5 m	2003 [98]
	128 cases			
	Toronto (Canada)	Case report	Case study of possible airborne transmission in a	Christian et
			cardiopulmonary resuscitation despite the use of contact and	al, 2004 [99]
			droplet precautions	
	Hong Kong, 2003	Retrospective cohort study on medical	The highest relative risk was for distance < 1m from the index	Wong, et
	Hospital	students, study on the air ventilation system	case, but some people was infected also for at higher distances,	al., 2004
S	138 cases	and aerosol diffusion modelling	in the same room. Ventilation study and aerosol simulations	[101]
eak			gave results compatible with the airborne transmission but	
tbr			were incomplete.	
S: Ou		Ventilation study of airflow pattern, modelled	Authors found an imbalance between supply and exhaust	Li, et al.,
AR		with the computational fluid dynamics	airflows, predicted bio-aerosol concentration	2005 [100]
B. S		technique using CO2 as a marker	Air distribution in the ward seemed to agree fairly well with	
000			the spatial infection pattern of SARS cases.	
Nos		Retrospective cohort study on inpatients, study	The attack rate decreased with the increasing distance from the	Yu et al.,
~		on the air ventilation system and aerosol	index case. This agreed with the aerosol models results	2005 [102]
		diffusion modelling		
		Multi-zone model combining the two-way	Air exchange owing to temperature difference played a	Chen et al.,
		airflow effect was validated using	significant role in SARS transmission during the nosocomial	2011 [103]
		experimental tests	outbreak	
		Multi-agent mathematical model to simulate	The ways of spreading that resulted most probable to explain	Xiao et al.,
		the infection risk distributions of close	the epidemiological data were combined long-range airborne	2017 [104]
		contacts, airborne and fomite transmission.	and close contact route.	
5	Republic of Korea,	Multi-agent mathematical model to simulate	The ways of spreading that resulted most probable to explain	Xiao et al.,
ER	2015	the infection risk distributions of close contacts,	the epidemiological data were combined long-range airborne	2018 [105]
N	Hospital	airborne and fomite transmission.	and close contact route	
	11 cases			

	Republic of Korea, 2015	Computational fluid dynamics to analyze the indoor airflow and passive tracer diffusion	The tracer diffusion indicated a concentration in the ward where cases occurred although far from the ward of index	Jo et al., 2019 [106]
	Hospital	indoor annow and passive fracer diffusion	pathogen	2017 [100]
	30 cases			
	Mongolia, 2020, 1 case	Case reports	1 person living upstairs the index case	Wang &
	Jinyintan Hospital, 4			[107]
	cases			
	South Korea, 2020 Call center, 97 cases	Epidemiological investigation	Possible diffusion in crowded office settings such as a call center	Park et al., 2020 [108]
	Wenzhou (China), 2020 Shopping mall 23 + 11 related cases	Epidemiological investigation	Some customer had no contacts with index case. Indirect transmission through fomites or aerosol supposed	Cai et al, 2020 [109]
	Skagit County (Washington), 2020 Choir practice 32 + 20 related cases	Epidemiological investigation	Singing at small distance for 2.5 hours caused close contacts. Aerosol was one of possible ways of transmission	Hammer et al., 2020 [110]
COVID-19	Munich (Germany), 2020 Meeting 11 cases	Epidemiological investigation	Hand shaking, aerosolization in relatively small room that was heated by conventional radiators, and face-to-face contact have been supposed as relevant modes of transmission	Hijnen et al., 2020 [111]
	Guangzhou (China), 2020 Restaurant 10 cases	Epidemiological investigation and environmental sampling	A strong airflow from the air conditioner could have propagated aerosol to a distance greater than 1m. Environmental samples were negative	Lu et al., 2020 [112]
	California (USA), 2020	Contact tracing	A patient with respiratory symptoms was hospitalized, but	Heinzerlin
	Nosocomial		COVID-19 was not suspected, so HCWs did not wear PPE.	g et al.,
	3 cases		came in contact with index case, including performance/	2020 [113]
	Hong Kong 2020	Contact tracing and surraillance	assisting with aerosol-generating procedures	Wang at al
	Nosocomial		diagnosis of COVID-19 None of HCWs or patient came in	2020 [114]
	Only index case		contact with her get infection, thus confirming the importance of general precaution and PPE	2020 [114]

HCWs = healthcare workers; PPE = personal protective equipment