Supplemental Materials

Gathering pipeline methane emissions in Utica Shale using an unmanned aerial vehicle and ground-based mobile sampling

Authors:

Hugh Z. Li^{1*}, Mumbi Mundia-Howe², Matthew D. Reeder², Natalie J. Pekney³ ¹Oak Ridge Institute for Science and Education, National Energy Technology Laboratory, Pittsburgh, PA, 15236, USA ²Leidos, National Energy Technology Laboratory, Pittsburgh, PA, 15236, USA ³U.S. Department of Energy, National Energy Technology Laboratory, Pittsburgh, PA, 15236, USA

*Corresponding author: Zhongju.Li@netl.doe.gov National Energy Technology Laboratory 626 Cochrans Mill Rd. Pittsburgh, PA 15236 Phone: (412)386-6530

Calculation of dispersion coefficient

We use the Pasquill-Gifford correlation to estimate dispersion coefficients in the y and z directions. The specific equations are as follows [1].

$$\sigma_y(x) = \exp[I_y + J_y \ln x + K_y (\ln x)^2]$$

$$\sigma_z(x) = \exp[I_z + I_z \ln x + K_z (\ln x)^2]$$

 $\sigma_z(x) = \exp[I_z + J_z \ln x + K_z (\ln x)^2]$ I, J, K are all tabulated coefficients and depend on the atmospheric stability class. We estimate the stability class based on the wind speed and insolation measurements by the portable weather station 110-WS-25P-B (NovaLynx Corporation, Grass Valley, CA). Cloudiness is also logged every day and helps the determination of the stability class. The stability class is mostly B during the campaign.

Figure S1. Slope map of the sampling areas' terrain in Ohio.

Figure S2. Portable weather station used to measure ground wind speed and direction.

Figure S3: (A) Methane leaks from the two screws on the gathering pipeline accessories. (B) Black plastic gathering pipelines were hanging over the trees to cross the road.

Concentration (ppm)	Instruments	Response (ppm)
4.80	LGR	4.76
250	LGR	233

Table S1. Calibration check results for the LGR analyzer.