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Abstract: Recent advancement in lower-cost air monitoring technology has resulted in an increased
interest in community-based air quality studies. However, non-reference monitoring (NRM;
e.g., low-cost sensors) is imperfect and approaches that improve data quality are highly desired.
Herein, we illustrate a framework for adjusting continuous NRM measures of particulate matter
(PM) with field-based comparisons and non-linear statistical modeling as an example of instrument
evaluation prior to exposure assessment. First, we collected continuous measurements of PM
with a NRM technology collocated with a US EPA federal equivalent method (FEM). Next, we fit
a generalized additive model (GAM) to establish a non-linear calibration curve that defines the
relationship between the NRM and FEM data. Then, we used our fitted model to generate calibrated
NRM PM data. Evaluation of raw NRM PM2.5 data revealed strong correlation with FEM (R = 0.9)
but an average bias (AB) of−2.84 µg/m3 and a root mean square error (RMSE) of 2.85 µg/m3, with 406 h
of data. Fitting of our GAM revealed that the correlation structure was maintained (r = 0.9) and that
average bias (AB = 0) and error (RMSE = 0) were minimized. We conclude that field-based statistical
calibration models can be used to reduce bias and improve NRM data used for community air
monitoring studies.

Keywords: air pollution; citizen science; community-based participatory research; generalized additive
models; low-cost sensors

1. Introduction

Recent advancements in air monitoring have led to increased availability of ‘lower-cost’
non-reference method (NRM) technologies that are readily adaptable to a variety of air pollution
studies [1–5]. Such developments provide a tremendous opportunity to improve studies of air
pollution, particularly at smaller scales such as the community or neighborhood level, where collecting
air monitoring data was previously unfeasible. For example, The Community Assessment of Freeway
Exposure and Health (CAFEH) team collaborated with Boston neighborhoods near major highways to
assess traffic-related air pollution using a variety of sensors [6,7]. In 2016, the EPA worked with the
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Ironbound community in Newark to conduct community-based air monitoring using the Air Sensor
Toolbox [8]. A community with a heavy petrochemical industry presence in Richmond, CA, now has
the potential to alert the community during poor air quality episodes using their real time monitoring
tools [9]. Others, in their quest to collect their own community air monitoring data, have found
surprising results such as the use of illegal truck routes and the contribution of meteorology and
topography to local air quality [10–13].

However, monitoring ambient air pollution for comparison to the National Ambient Air Quality
Standards is a difficult task that requires federal- and state-operated air quality instruments and
frequent, rigorous calibration procedures to provide reliable data that meets regulatory standards that
are often not feasible in community studies of air pollution [14]. We also note that such demands
are often not met in the deployment of low-cost sensors and thus it has been shown that several
problems in the data can occur (e.g., bias and drift) [15]. For instance, Hagan et al. noticed drift in
instrument sensitivity over time during an assessment of SO2 sensors at two locations in Hawaii [16].
Another group have noted the lack of standard calibration “particulates” [17]. Unlike gaseous sensors
which can be calibrated with a pure form of the gas, ambient PM is not universal and there is no bottled
standard available to calibrate PM instruments. Furthermore, ambient PM mixtures to which the
general public are exposed may not be stable enough to be measured/captured and used as a standard
reference mass concentration [17]. As such, it is important for investigators and community groups
that use non-reference monitoring technologies to have access to tools that support evaluation of their
collected data against reference measurements and allow adjustment to be made to ensure appropriate
interpretation and application [18–22].

In this study, we seek to improve community air monitoring studies by developing a framework
that improves reporting of NRM measures of particulate matter (PM) by applying a statistical
approach that leverages data from a field performance evaluation designed to capture the observed
relationship between our NRM and a federal equivalent (FEM) method. We note that this work is
intended to be complimentary to US EPA’s voluntary sensor calibration program [22] as it presents a
statistical framework for improving the quality of the data reported by NRMs for citizen science and
community-based participatory research purposes.

2. Methods

We conducted this study in multiple stages. First, we performed a co-located air monitoring
campaign at a EPA National Core Multipollutant Network (NCore) [Air Quality Site ID: 45-079-0007,
Coordinates: +34.09398, -80.96230]) site (Figure 1) to collect continuous measurements of PM with a
NRM technology – the TSI DustTrak DRX (DRX) and the US EPA FEM Thermo Environmental Model
1405 F – tapered element oscillating microbalance method (TEOM) [23,24]. Data were collected from
16 January through 7 February 2018. Next, we fit a generalized additive model (GAM) to establish a
non-linear calibration curve that defines the observed relationship between the NRM and FEM data.
Then, we used our fitted model to generate calibrated NRM PM data. Finally, we evaluated raw and
calibrated versions of our data using Pearson correlations between FEM and DRX PM2.5 measurements
(R), root mean square error (RMSE), and average bias (AB).

2.1. Non-Reference Method (NRM) Monitoring Equipment

We used the TSI DustTrak™ DRX Aerosol Monitor Model 8533EP (TSI Inc, MN, USA) as the NRM
to monitor PM in this study. The DRX is an attractive NRM because it combines two approaches to
monitoring PM: (1) a photometer uses conventional light scattering technology to closely estimate
particulate mass concentrations; and (2) a particle counter is used to measure particle size and number
concentration by detecting the light scattered from individual particles [25]. The DRX is innovative in
how it obtains and processes particle signals, and ultimately records mass concentrations of different
PM size fractions (Figure 2). By individually sizing particles with an optical size larger than 1 µm
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diameter and calculating the mass of those particles, multiple mass fractions can be measured at the
same time while improving the accuracy of reported mass concentration values [26].Atmosphere 2020, 11, x FOR PEER REVIEW 3 of 13 
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The DRX was deployed at South Carolina’s only National Core Multipollutant Network (NCore)
site within a manufacturer-provided environmental enclosure (DUSTTRAK Environmental Enclosure
8537) on a platform adjacent to the FEM sample inlet. Given concerns over humidity [27,28], the DRX
was outfitted with a manufacturer-provided Heated Inlet Sample Conditioner (part number 801850)
that effectively adjusts sampled air to a relative humidity (RH) to 50%. The humidity correction is
intended to reduce potential measurement bias by maintaining a constant relative humidity level in the
sample air stream before it enters the DRX optics chamber [29]. This Heated Inlet Sample Conditioner
had an additional accessory, the Autozero Module (part number 801690) which was also attached to
the DRX and programed to automatically re-zero the instrument every 24 h.

2.2. Data Collection, Management, and Preparation

FEM PM2.5 used in this study was collected with a Thermo Environmental Model 1405 F tapered
element oscillating microbalance (TEOM) and reported at hourly intervals. Prior to reporting, data were
verified by South Carolina Department of Health and Environmental Control (SC DHEC) personnel.
NRM PM2.5 data were collected at one-minute intervals from the DRX and reported at hourly intervals
to facilitate comparisons. Data Quality Assurance/Quality Control involved multiple steps designed
to minimize instrumental errors. First, we only retained data if values of all PM size fractions were
reported, the concentrations were >0 µg/m3, and all smaller size fraction concentration measures were
equal or less than the larger size fractions’ concentration measures. Next, data were trimmed to retain
the central 99% (0.5–99.5%) for the DRX in order to avoid potential skewing by data outliers. Finally,
hourly data summaries were calculated for each size fraction if at least 80% of the one-minute data for
a particular hour block were available.

2.3. Statistical Analyses

The aims of our statistical analyses were to conduct a field performance evaluation of our NRM
and to construct a calibration curve for adjusting data based on observed differences with FEM.
For evaluation, we use descriptive statistics, correlation coefficients, root mean square error (RMSE)
and average bias (ab) to assess relationships between the DRX measurements and the FEM
measurements. To construct our calibration curve, we employ a generalized additive model (GAM)
to construct a non-linear function (i.e., penalized spline) that captures the relationship between FEM
and NRM across our observed concentration range. Specifically, smooth functions (within GAMs)
were developed using a combination of model selection and automatic smoothing parameter selection
with penalized regression splines, which optimized the fit and made an effort to minimize the number
of dimensions in the model [30]. Smoothing parameters were chosen through restricted maximum
likelihood (REML) and, standard errors and corresponding confidence intervals were estimated using
an unconditional Bayesian method [30].

2.4. Calibration Model

The framework of our generalized additive model can be expressed in following form:

Yi = α + s(NRM_PMi) + εi (1)

where Y is the hourly FEM referent PM2.5 concentration reported at time i during the co-located
monitoring period,α is the intercept term, s is the smooth function representing NRM PM2.5 summarized
measurements for hour i, and εi represents the error term, which is assumed to be normally distributed.
Our model was fit using the ‘mgcv’ package in R: A Language and Environment for Statistical
Computing [31].
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3. Results

3.1. Co-Location Study

Ambient Conditions during Monitoring Period

Our co-location monitoring campaign began on 17 January 2018, and ended on 7 February 2018,
giving us a 22 day (526 hr) observational period. Weather conditions during this time were generally
cool, as average (standard deviation) temperatures were 9.2 (6.2) ◦C but ranged from −4.4 to 21.7 ◦C
indicating modest variability. Relative humidity averaged 69.9 (25.6)% but ranged from 14.0 to 100%
revealing that relatively dry to complete saturation (i.e., rain) events were experienced. Average (SD)
wind speed was 1.6 (1.9) m/s and ranged from 0 to 9.3 m/s.

3.2. PM Data Summary and Evaluation

The focus of our co-location monitoring was to collect data that were suitable for comparison
of our NRM to a FEM. As such, we first chose to implement EPA criteria [32] in selection of our
comparison data and thus days in which 24 hr Federal Reference Method (FRM) measurements are
below 3.0 µg/m3 were excluded. This criteria resulted in the dropping of 1 day (i.e., approximately
22 hrs) from our comparison period when the collocated FRM PM2.5 reported concentration was
2.2 µg/m3 (on 01/29/2018). However, we note the FRM data collection was every 3rd day during this
study period and only available for 7 days (Table 1). As such, we chose to extend this criteria [32]
to FEM data and dropped hourly FEM PM2.5 values less than or equal to 2.9 µg/m3. This criteria
resulted in the additional exclusion of n = 98 h, where reported FEM TEOM values ranged from −3.6
to 2.9 µg/m3, giving us a final comparison period of 406 hrs in which PM conditions were deemed
suitable for comparison [33].

Table 1. Summary statistics for measurements during co-located monitoring.

Variable Instrument Approach Period n Avg Sd Min Max

PM2.5 (µg/m3) DustTrak DRX Non-Reference 1 hr 406 5.6 3.5 0.1 18

PM2.5 (µg/m3)
Thermo Model
1405F TEOM

Federal
Equivalent 1 hr 406 8.3 4.6 3 33.2

PM2.5 (µg/m3) DustTrak DRX Non-Reference 24 hr 7 5 2.7 1.9 8.8

PM2.5 (µg/m3)
Thermo Model
1405F TEOM

Federal
Equivalent 24 hr 7 7.1 3.7 3 12.7

PM2.5 (µg/m3) Gravimetric Federal
Reference 24 hr 7 7 3.5 3.4 12.6

PM10 (µg/m3) Low Volume Federal
Reference 24 hr 7 11.2 3.9 4.5 15.9

During the sample period, the 1 hr average (SD) FEM PM2.5 concentration was 8.3 (4.6) µg/m3,
indicating that air pollution levels were low to modest during our comparison. The 1 hr average (SD)
NRM PM2.5 was 5.6 (3.5) µg/m3, indicating that our DRX, on average, reported lower levels than the
FEM. Calculation of absolute bias (AB) confirms this difference at −2.54 µg/m3 during the comparison
period (n = 406 h). The corresponding root mean square error (RMSE) was 2.55 µg/m3. Another aspect
of interest in our evaluation was to determine how well our NRM tracked temporal changes in air
quality reported by the FEM. To examine this, we plot these data over time to visualize agreement
between the different measurement approaches (Figure 3). Here, we see that our NRM performed
rather well at capturing the peaks and valleys in reported air quality. Correlation analysis confirms
this, as we found strong positive agreement (R = 0.9) between hourly NRM and FEM data.
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Figure 3. Timeseries of raw hourly NRM PM2.5 and FEM measurements.

The final aspect of interest for our NRM evaluation is the reliability of our NRM to successfully
capture data during a period of interest. Here, we found that the DRX performed very strongly,
as we successfully monitored and retrieved data for nearly 526 hrs (31,528 min of data), indicating a
capture rate of 100%; however, our data cleaning steps retained 99% of the one-minute data. Additional
stringent criteria, such as removing hourly observations ≤ 2.9 µg/m3 (n = 98) and another 22 h with
corresponding FRM measurement of 2.2 µg/m3, resulted in 406 total hours of data (77% of the original
data: 406/526) which are used in subsequent analysis.

3.3. Statistical Calibration Model

Results from our GAM fit found that our non-linear calibration curve (Figure 4) was able to
explain 83% of the deviance (i.e., variability around the mean) of FEM reported 1 hr PM2.5 and had an
R2 = 0.82. Application of our model fit to produce calibrated data shows that adjusted data retained
the original correlation structure (R = 0.9) and that bias was successfully minimized, as average bias
is reduced from 33% to 6% (Figure 5a,b). The average (SD) for the calibrated PM2.5 was 8.3 (4.1),
with a range of 3–33 µg/m3. Examination of the calibration curve (Figure 4) reveals that the relationship
with our response was non-linear, as we found areas of the data with strong agreement (~12 ug/m3)
and areas where the ‘steepness’ of the curve varied (relatively low values, relatively high values).
A resulting scatter plot of our calibrated data (superimposed over raw data) reveals the general positive
shift in the data that our application of the model performs (Figure 5c,d).
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points before and after applying the GAM-based calibration, respectively.

4. Discussion

In this study, we aimed to illustrate how the development of statistical modeling tools can be used
to improve reporting of particulate matter in studies that rely on non-reference monitoring (NRM)
methodologies (e.g., low-cost sensors). The key finding from our study was that our statistical model
can be applied to identify and remove non-linear trends in biases observed in data collected by our
NRM monitor (Figure 5) and a FEM. Evaluations of raw NRM data identified a consistent negative
bias (i.e., underreporting) in the DRX data that, if not accounted for, could lead to erroneous reporting
in air quality studies. That said, raw DRX data tracked very well with reported FEM measures,
indicating that raw data can be used to successfully monitor trends.

An important aspect of discussion for these data is to relate our findings to performance goals
specified by EPA’s sensor evaluation guidelines [34]. To achieve this, we applied EPA formulations
to our raw and calibrated NRM DRX data to improve understanding of how the resulting approach
can be applied in community-based air quality studies. We found an overall bias error estimate
of 33.1% for our raw NRM DRX data, a finding that implies that the raw DRX measurements are
suitable for Education and Information only (TIER (or level) I, precision and bias error < 50%) [34].
However, when our calibration framework is employed, bias was reduced to 6.4%, indicating that
calibrated NRM data can be used for hotspot identification and characterization (TIER II), and personal
exposure monitoring (TIER IV). Guidelines for the precision and bias errors for TIERs II and IV are
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both < 30% [34]. We note that our findings may also be suitable to the requirements for supplemental
monitoring (TIER III, precision and bias error < 20%). Overall, we find these results to be encouraging,
as they demonstrate significant improvements in the reported data from our NRM and expand the
potential applicability of the monitoring approach.

A detailed study by Rivas et al. identified several technical problems affecting the performance of
the DRX including frequent artefact jumps, zero measurements and differences in actual ambient PM
levels and DRX measurement records [35]. The authors recommended zero offset calibrations and the
need to correct problematic data [35]. The field-based statistical calibration model illustrated in our
study can be used to reduce bias and improve reporting of NRM data. There are multiple reasons
why our NRM may have reported different values from the FEM TEOM method. First, we believe
this may be partially explained by a loss of volatile and semi-volatile compounds during the heated
inlet phase of air flow in the DRX monitoring schematic (Figure 2). This is postulated due to the
simple fact that heat increases volatilization. This is consistent with other studies as a comparison
study [36] in the United Kingdom observed differences in mass concentrations between a TEOM and a
gravimetric sampler that were attributed to volatilization. Here, the authors noted that adding the
calculated mass of ammonium nitrate significantly improved the mass concentration estimate and
suggested that higher amounts of semi-volatile compounds tended to be associated with elevated
PM levels [36]. Some of these semi-volatile compounds may have been lost at our sampling site.
Other researchers have also pointed to the relationships between water and certain properties of
PM components (e.g., inorganic or hygroscopic organic compounds) as important contributors to
differences in mass concentrations [37,38].

Together, these factors must be considered and can complicate comparisons between instruments.
Another possibility for our reporting of lower PM values is the potential for deposition to occur on
the inlet tubing of the DRX. The DRX setup uses a seven inch slightly curved conductive tubing that
connects to a 360o omni-directional sampling inlet and this may contribute to a longer than necessary
sampling pathway. Furthermore, the NRM and TEOM operated at different flow rates during our study,
a fact that impacted the amount of air pulled per volume and may have contributed to differences in
reporting (Table 2). More specifically, the total flow rate for the DRX is 3.0 L/min, with 2.0 L/min serving
as the measured sample volume and the remainder representing sheath flow. On the other hand,
the TEOM operates at a total flow rate of 16.67 L/min, with a measured sample volume of 3.0 L/min
and a bypass flow of 13.67 L/min. Additionally, both the NRM and the TEOM use heated inlets,
hence air is sampled at approximately 50 ◦C, as opposed to being sampled at ambient temperature and
pressure [29,36,39].

Table 2. Characteristics of the DRX and FEM monitors used for the current study.

Instrument Designation Measured Sample
Volume Total Flow Difference

DustTrak DRX Aerosol
Monitor 8533

Non-reference
monitor (NRM) 2.0 L/min 3.0 L/min Sheath Flow Rate:

1 L/min
Thermo Model 1405 F Tapered

element oscillating
microbalance (TEOM)

continuous PM monitor

U.S. EPA PM-2.5
Equivalent Monitor 3.0 L/min 16.67 L/min Bypass Flow Rate:

13.67 L/min

5. Limitations

As with all studies, our calibration framework is not without limitations. First, co-location
studies can always benefit from increased durational periods as the breadth of conditions is an
important factor to consider. As such, our campaign should only be viewed as an example because
our period was relatively short and thus limits the interpretability of our results and applicability
of the resulting calibration model. Ideally, co-location campaigns would capture the full range of
conditions experienced in a potential air shed; however, we note that this may not always be feasible
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in community air quality studies. Another limitation that stems from our relatively short campaign is
that our calibration curve may not be stable over the long term as we did not include data from other
times of the year (e.g., summer) that may change the relationships between our reported data. A recent
study highlighted the importance of re-evaluating model performance and new model development
over time [40].

Another potential limitation of this study was that we did not adjust for meteorology in our
calibration model. While inclusion of weather conditions may have improved model fit, we chose
not to include weather conditions given the use of the heated inlet mechanism and that the air used
to determine the mass concentrations was under relatively similar conditions. Finally, the scope of
this work is limited to a particular type of sensor (the DRX) calibrated with data from in a single
environment with low PM levels and for a limited period of time. As such, generalizing the specific
results to other pollutants from different manufacturers and in different environments may be difficult.
However, the concept of using GAMs to remove bias and improve data quality can be applied to
other instruments and in a variety of environments. Such extended applications of this concept can
improve the state of the science of low-cost air sensors and contribute to the further understanding of
air pollution mixtures and their effects on human health.

6. Future Directions

Ultimately, our goal is to improve community outreach and awareness, and aid the development
of community-based air pollution studies with accurate and interpretable data. As such, we plan to
continue developing our calibration models with the intent of supporting future monitoring efforts in
near port communities in Charleston, SC [41]. Our calibration framework may improve such efforts
as high-quality data are required to document baseline measurements and can serve as a reference
for potential future changes [42,43]. Additionally, gas- and particle-phase chemical analysis will be a
major strength of such comparison studies in the future.

7. Conclusions

This study reveals that field-based statistical calibration models can be used to reduce bias
and thus improve reporting of NRM in community air monitoring studies. This work also provides
pertinent information needed for the voluntary performance evaluation program suggested by the
US EPA. This work highlights the general usefulness of NRM technology for neighborhood-level
air quality characterization. We also demonstrate that care is needed to interpret results. However,
longer monitoring periods are recommended to understand neighborhood/community-level air quality.
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