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Abstract: This review aimed to provide an overview of the characterisation of indoor air quality
(IAQ) during the sleeping period, based only on real life conditions’ studies where, at least, one
air pollutant was considered. Despite the consensual complexity of indoor air, when focusing
on sleeping environments, the available scientific literature is still scarce and falls to provide a
multipollutants’ characterisation of the air breathed during sleep. This review, following PRISMA’s
approach, identified a total of 22 studies that provided insights of how IAQ is during the sleeping
period in real life conditions. Most of studies focused on carbon dioxide (77%), followed by particles
(PM2.5, PM10 and ultrafines) and only 18% of the studies focused on pollutants such as carbon
monoxide, volatile organic compounds and formaldehyde. Despite the high heterogeneity between
studies (regarding the geographical area, type of surrounding environments, season of the year, type
of dwelling, bedrooms’ ventilation, number of occupants), several air pollutants showed exceedances
of the limit values established by guidelines or legislation, indicating that an effort should be made in
order to minimise human exposure to air pollutants. For instance, when considering the air quality
guideline of World Health Organisation of 10 µg·m−3 for PM2.5, 86% of studies that focused this
pollutant registered levels above this threshold. Considering that people spend one third of their day
sleeping, exposure during this period may have a significant impact on the daily integrated human
exposure, due to the higher amount of exposure time, even if this environment is characterised by
lower pollutants’ levels. Improving the current knowledge of air pollutants levels during sleep in
different settings, as well as in different countries, will allow to improve the accuracy of exposure
assessments and will also allow to understand their main drivers and how to tackle them.

Keywords: indoor air quality; sleep; air pollutants; bedroom; particles; comfort parameters; car-
bon dioxide

1. Introduction

Sleep has an essential role in human life by promoting human welfare, daily perfor-
mance and health [1]. Since people spend around one third of their life sleeping, the quality
of air that people breathe during this period has started to gain worldwide attention as a
research topic in recent years aiming to understand, ultimately, how exposure to indoor
pollutants may influence sleep quality [2,3].

Sleeping environments usually have specific characteristics, such as low ventilation
rates [4] and a breathing area closer to potential sources of pollutants [2], that may pro-
mote acute or chronic exposure to specific air pollutants and, therefore, may significantly
contribute to the daily exposure of individuals.

In the last decades, the importance of indoor air quality (IAQ) on human health has
been confirmed throughout numerous studies conducted worldwide in different micro-
environments (from offices to schools and dwellings) [5]. A wide range of adverse health
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effects [5,6] associated to indoor air pollutants, from pulmonary to cardiovascular diseases,
has been reported, along with human mortality due to indoor air pollution [7].

Sleep is known to be a neurologically dynamic behaviour that is regulated by circa-
dian and homeostatic processes [8]. In mammals, sleep is organised in cycles composed
of two different states: rapid eye movement (REM) and non-REM sleep (NREM), with
NREM being divided in two different stages (namely, deep and light) [8]. These different
stages of the sleeping process have different neurological and physical manifestations [8],
including reductions on the responsiveness to external stimuli, electromyographic activity,
body movement, breathing rates, along with closed eyes, altered body position and brain
wave architecture [9]. Sleep is influenced by several factors, from physical and mental
conditions [10,11] to environmental factors, such as temperature [12,13], light [14] and
noise levels [15], and carbon dioxide (CO2) levels [1]. However, taking into account the
IAQ complexity by which it can be characterised, until now very few studies have focused
on understanding if any other IAQ parameter may have an impact on sleep quality and to
what extent. This valuable information would be useful to propose mitigation measures to
improve the IAQ conditions of sleeping environments and, ultimately, the sleep quality of
the individuals.

Moreover, a comprehensive characterisation of IAQ during sleep is still scarce in
the literature [16], with most studies focusing only on comfort parameters [17] or single
pollutants, such as CO2 [1]. In addition, although very few studies have provided an
overview of IAQ during sleep in real life conditions until now, one of their main outcomes
is that some pollutants presented levels above the established guidelines, such as particulate
matter (PM), volatile organic compounds (VOCs), formaldehyde (CH2O) and CO2 [18].

Even if exposure levels to indoor air pollutants during sleep may be low it is important
to highlight that, taking into account the daily time spent in this essential activity to human
life and welfare (hopefully 8 h per day and, ultimately, one third of human life), it may
have an important impact on the daily integrated human exposure and it potentially may
have an impact on the sleep quality. Therefore, understanding the exposure levels during
sleep in the bedroom microenvironment is crucial to improve daily integrated exposure
assessments and to provide information for further research of how IAQ may influence
sleep quality.

Therefore, this study aims to perform a review of field studies of IAQ during sleep,
mainly focusing on air pollutants and comfort parameters (when available simultaneously),
and also by evaluating their compliance with IAQ guidelines. Overall, the main goal is to
supply to the scientific community a worldwide overview of the studies about this topic in
order to understand how the exposure during sleep can be characterised.

2. Methods

The procedure to perform this review followed the guidelines defined by PRISMA
(Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement [19].

2.1. Search Strategy

Literature search was done during August 2020 using Web of Science and Scopus
to identify research articles within our defined scope. This database was searched using
simultaneously (using “AND”) both terms “indoor air quality” and “sleep” together in the
“Topic” field, which includes search in the title of the article, its abstract and keywords. A
total of 127 articles were identified as potential articles to include in the review.

2.2. Inclusion Criteria

Considering the aim of this review, only studies conducted in real life conditions
(dwellings, students dorms, elderly care centres) were considered, focusing only on the
exposure to indoor air pollutants (considering comfort parameters only when associated)
during the sleeping period (individuals had to be sleeping during the IAQ assessment).
Therefore, only studies with, at least, the assessment of one air pollutant during the sleeping



Atmosphere 2021, 12, 110 3 of 22

period were considered. Studies based on experimental environments and review articles
were excluded from our analysis. Additional articles from other sources that met the
inclusion criteria were included in the review analysis.

The set of articles identified through the search phase was retrieved and their full
text was evaluated regarding the inclusion criteria. References were also evaluated for
additional articles suitable for inclusion.

2.3. Data Extraction

Data from suitable publications was extracted including year of publication, location
and type of environment, characteristics of participants and their bedrooms, air pollutants
(assessed levels and methodology), and comfort parameters and ventilation conditions
(when available). Whenever possible, statistical data such as mean, standard deviation,
median, minimum and maximum for each setting and pollutant was extracted.

3. Results

A total of 22 articles from 2003 to 2020 were found to be suitable to be included in this
review. The search and selection process is summarised in Figure 1.
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Figure 1. PRISMA workflow of the article selection process for the identification of suitable articles to be included in our
review analysis. * Exclusion criteria is defined in the Methods section.

3.1. Studies’ Settings

The selected studies were conducted in a total of 12 different countries distributed over
four continents: Australia [20,21], Asia (Bhutan [22], China [23–27], Singapore [28,29] and
South Korea [30]), Europe (Belgium [31], Denmark [1], Italy [32], Poland [33], Portugal [18,34–37]
and the Netherlands [38]) and North America (USA [39]). Table 1 provides an overview of
the characteristics of the selected studies, being that the urban environment stands out as
the more common environment where the studies were done (64%), followed by mixed
types of environment (urban/suburban and urban/rural) in 27% of the cases and only 9%
of the studies were done in suburban or rural environments.
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Table 1. Characteristics of selected studies regarding type of environment, housing, ventilation, number of occupants per
bedroom and season.

Number of Studies

Parameter Setting Australia Asia Europe North America Total

Type of
environment

Urban 2 6 5 1 14

Suburban 1 1

Mixed (urban and suburban) 2 2

Rural 1 1

Mixed (urban and rural) 2 2 4

Total 2 9 10 1 22

Type of
housing

Apartment 5 3 1 9

Detached house 1 1 2

Mixed (apartment and
detached house) 2 2 2 6

Scholar residence 1 2 3

Elderly care centre 2 2

Total 2 9 10 1 22

Type of
ventilation

Natural 1 5 5 1 12

Mixed (natural
and mechanical) 3 4 7

No info available 1 1 1 3

Total 2 9 10 1 22

Number of occupants
per bedroom

1 3 7 10

2 2 3 5

1 or 2 1 1

4 or 6 1 1

No info available 1 3 1 5

Total 2 9 10 1 22

Type of
Season

Warm season 3 2 1 6

Cold season 1 2 8 10

Both seasons 1 3 5

No info available 1 1

Total 2 9 10 1 22

From the set of select studies, 77% were done in dwellings, focusing only on apart-
ments (41%) or only on detached houses (9%) or a mix of both (27%). The remaining studies
were conducted in scholar residences (14%) and in elderly care centres (9%). Regarding
the type of ventilation, 54% of the studies were related to bedrooms with natural ventila-
tion, 32% focused on bedrooms with both natural and mechanical ventilation conditions,
and 14% of the studies did not report any information regarding the type of ventilation
conditions for the studied bedrooms. Another parameter that varied within the selected
studies was the number of occupants of the bedrooms, a factor that will condition IAQ
during sleep since human presence is a potential source of some IAQ parameters, such as
CO2, due to human respiration. Overall, 46% of the selected studies were performed in
single-occupied bedrooms, while 23% with two occupants, 4% with a mixture between one
or two occupants, 4% with four or six occupants and 23% of the studies did not supply any
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information regarding the type of occupancy. The age of occupants also varied, ranging
from 8 (children) to 104 (elderly).

It is also noteworthy to highlight that the studies were done in different seasons and
periods of the year and the average sleeping period of the occupants, when available, was
also highly variable, ranging from 4 h 30 min [36] to 10 h [33].

A summary table (Table S1) with all the relevant details and results of the selected
studies is available in Supplementary Materials.

3.2. Evaluation of Environmental Parameters

World Health Organisation (WHO) highlighted the importance of IAQ through its set
of statements entitled “The right to healthy indoor air” [40] and developed a set of IAQ
guidelines [41] aiming to minimise human exposure to indoor air pollutants taking into
account IAQ as a main determinant for human health. Regionally, different international
bodies and national legislations have implemented IAQ guidelines and limit values [42,43].
Therefore, IAQ parameters analysed in this review were evaluated regarding WHO’s guide-
lines, such as carbon monoxide (CO), CH2O, PM2.5 and PM10, and, when necessary, specific
national legislation [44] (specifically for CO2 and VOCs since WHO’s guidelines did not
provide information regarding these pollutants). In these cases, Portugal’s IAQ legislation
was applied since, for the WHO’s target pollutants, it applies limit values similar to the
WHO guidelines for short exposures and it is based on European Directives [45]. For the
remaining parameters, the international guideline ISO 7730:2005 [46] was used for temper-
ature (T) and relative humidity (RH), and the international guideline EN 16798-1:2019 [47]
for air changes per hour. Table 2 provides an overview of the limit and guideline values for
each parameter. For PM levels, the air quality guideline (AQG) values recommended by
WHO consider only outdoor levels (no indoor AQG is available yet) and were considered
for 24 h but also for the lower AQG of one year exposure, namely 10 µg·m−3 for PM2.5 and
20 µg·m−3 for PM10 (regarding annual mean) [48], taking into account the awareness of
their impact on human health [49].

Table 2. Limit values and guidelines for each considered environmental parameter in indoor environments and their source
legislation/guideline.

Parameter WHO Air Quality Guideline Reference Value Reference

CO2 - 2250 mg·m−3 (8 h) [44]
CO 10 mg·m−3 (8 h) - [41]

VOC - 600 µg·m−3 (8 h) [44]
CH2O 0.1 mg·m−3 (30 min) - [41]
PM2.5 25 µg·m−3 (24 h), 10 µg·m−3 (1 year) - [41]
PM10 50 µg·m−3 (24 h), 20 µg·m−3 (1 year) - [41]

T
- 20–24 ◦C (cold season)

[46]- 23–26 ◦C (warm season)
RH - 30–70%

Air changes per hour - 0.7 h−1 [47]

3.2.1. Temperature

Figure 2 provides an overview of the temperature values registered in the studies that
provide such information, along with discrimination regarding the type of ventilation used
in the monitored bedrooms. During the cold season, the mean air temperature registered
during sleep was 21.5 ± 2.9 ◦C, ranging from 15.9 [24] to 26.4 ◦C [21]. During the warm
season, the mean air temperature monitored in the bedroom during sleep was 26.1 ± 2.8 ◦C,
ranging from 21.8 [31] to 29.3 ◦C [29].
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Considering the international guideline ISO 7730 [46] that establishes temperature
ranges for the occupants’ comfort in cold and warm seasons, only 42% (8 of 19) of the cases
were within the acceptable range. Natural ventilation (NV) was the common ventilation
setting of the monitored bedrooms with an incidence of 74% (14 of 19) but only providing
acceptable temperature levels in 43% of the cases (6 of 14). Mechanical ventilation (MV)
was available in three studies (16% of the cases) and assured temperature levels within the
acceptable ranges only in two cases. Two studies (11% of the cases) specified the ventilation
setting as a mix between natural and mechanical (NMV) and none of them managed to
assure an acceptable level of temperature during the sleeping period.

3.2.2. Relative Humidity

The summary of relative humidity levels registered in 17 cases provided by the
selected studies are shown in Figure 3. During the cold season, the mean relative humid-
ity registered in bedrooms during sleep was 47.5 ± 13.4%, ranging from 27.0% [24] to
63.7% [21]. During the warm season, the mean relative humidity registered in bedrooms
during sleep was 56.1 ± 11.7%, ranging from 40.8% [31] to 73.5% [28].
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Considering the acceptable range between 30% and 70% for the comfort of occupants
established by international guideline ISO 7730 [46], mechanical (MV) and mixed (NMV)
ventilation settings provided relative humidity levels within this range for all their cases
(3 and 2, respectively). Natural ventilation settings only managed to provide acceptable
levels of relative humidity for 77% of the cases (10 of 13), with two cases during the cold
period (with relative humidity levels below the lower limit of 30% of the acceptable range)
and one during the warm period (with levels above the upper limit of 70%).

3.2.3. Carbon Dioxide

Figure 4 provides the CO2 levels in the selected 17 studies. These were made in scholar
residences (18%), in apartments (47%), in detached houses (6%) and simultaneously in
apartments and detached houses (29%).
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Considering the ventilation types, measurements were made mainly in bedrooms
with natural ventilation (65%), but also in rooms with mechanical ventilation (20%), with
both natural and mechanical ventilation (10%) and in a room where the type of ventilation
used was not specified (5%). Overall, CO2 levels during sleep registered a mean value
of 1840 ± 700 mg·m−3, ranging from 870 [29] to 3440 mg·m−3 [18]. Exceedances in CO2
average concentrations regarding the limit value of 2250 mg·m−3 (1250 ppm) established
by the Portuguese legislation [44] were registered in four studies, in which natural (three
studies) and mixed (one study) ventilations were used. There were no exceedances of the
limit value in any of the four cases where only mechanical ventilation was used.

In the bedroom, CO2 is generated exclusively by the occupants through the breathing
process and its individual generation rate depends on different factors (age, gender or
physiological parameters such as body mass) [50]. For instance, a couple (one female
and one male) has a CO2 generation rate of 0.0036 L·s−1 [50]. Therefore, CO2 levels may
indicate if the bedroom’s ventilation is good or not, since high CO2 levels are usually
associated with low ventilation rates [51].

3.2.4. Carbon Monoxide

Figure 5 provides CO levels during the sleeping period in bedrooms, where mean
levels of 1.30 ± 0.94 mg·m−3 were found, ranging from 0.55 [35] to 2.92 mg·m−3 [34].

It is important to highlight that only four studies provided such information and all
of them were performed in Portugal using real time monitors (namely, Graywolf (IQ-610
probe, GrayWolf Sensing Solutions, LCC, Shelton, USA)). Taking into account that the
source of this pollutant is incomplete combustion processes from, for example, in indoor
environments [52], namely cooking appliances, water heating systems or fireplaces [53],
which are not located in the bedroom, it would be plausible to speculate that CO levels
in bedrooms would be very low. However, although all studies showed values below
the WHO’s AQG of 10 mg·m−3 [41], the values are not negligible, which may indicate
infiltration from other rooms of the dwellings (such as kitchen or living room where
potential sources exist such as gas appliances) or from the outdoor (considering sources
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such as traffic exhaust emissions [54]). In fact, in the study where the highest levels of
CO were registered, the authors highlight that the studied apartment was located above a
restaurant where, besides the existence of exhaust of the restaurant’s cooking appliances,
clients smoked outdoors which may have promoted the CO infiltration through the window
and potential exposure to second hand smoke [34].
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of them were performed in Portugal using real time monitors (namely, Graywolf (IQ-610 
probe, GrayWolf Sensing Solutions, LCC, Shelton, USA)). Taking into account that the 
source of this pollutant is incomplete combustion processes from, for example, in indoor 

Figure 5. Carbon monoxide levels monitored during the sleeping period at bedrooms in different
types of building (A—apartment; A/DH—mixed (apartment and detached house); DH—detached
house) and different types of ventilation settings (NV—natural; mechanical—MV; mixed—NMV).
Bars provide mean values (along with standard deviation when available). WHO AQG stands for
the air quality guideline value recommended by WHO [41], and max and min stand for maximum
and minimum values, respectively.

Low levels of CO can also be released due to normal human metabolism where it
is a product of degradation of haemoglobin via heme oxygenase enzyme (85%) and of
the degradation of myoglobin, guanylyl cyclase and cytochromes (15%) [55], where the
production rate of CO in the human body has been estimated to be around 16.4 µmol CO
per hour [56].

3.2.5. Volatile Organic Compounds

Only four studies provided data for VOCs levels during the sleeping period using
real time monitors (namely, Graywolf (IQ-610 probe, GrayWolf Sensing Solutions, LCC,
Shelton, USA)) and are displayed in Figure 6. Mean VOCs levels of 1.33 ± 0.76 mg·m−3

were registered in bedrooms’ indoor, ranging from 0.55 [34] to 2.40 mg·m−3 [36]. Consid-
ering the limit value of 0.6 mg·m−3 established by the Portuguese legislation [44], only
one study managed to provide a mean VOCs level below that threshold. It is important
to highlight that the monitoring season of that study was summer [34], which is charac-
terised by improved natural ventilation (due to the atmospheric conditions typical of south
European countries) and may explain this compliance. The remaining studies were all
conducted during the winter period, which is associated with a deficit of natural ventila-
tion of dwellings due to atmospheric conditions [57], and, therefore, it may explain the
registered exceedances.
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Figure 6. Volatile Organic Compounds levels monitored during the sleeping period at bedrooms
in different types of building (A—apartment; A/DH—mixed (apartment and detached house);
DH—detached house) and different types of ventilation settings (NV—natural; mechanical—MV;
mixed—NMV). Bars provide mean values (along with standard deviation when available). LV stands
for the limit value established by the Portuguese Ordinance no. 353-A/2013 [44], and max and min
stand for maximum and minimum values, respectively.

Indoor levels of VOCs can be emitted by common household products (such as
carpets [58]) and building materials (such as varnishes and paints [59]), as well as by
consumer and cleaning products [60–62]. From the exceedances found in the selected
studies, one study was performed in an elderly care centre [35] and, based on the temporal
analysis of VOCs and the associated time activity diary of the individuals, the use of
cleaning products during the elders uprising was associated to the morning VOCs’ peaks.
Regarding the remaining studies [18,36] that showed VOCs levels above the considered
threshold, the authors indicated the indoor sources specified previously, along with the
potential contribution of infiltration of smoking emissions [63,64] or due to the contribution
of thirdhand smoke (THS), which is the reemission of the persistent residue generate from
aged secondhand smoke (SHS) that adheres to surfaces, clothing, hair and skin [65].

It is relevant to highlight that humans are also considered as sources of VOCs in
relatively crowded environments, where VOCs emissions occur via exhalation [66,67] or
dermal emission (for example, the increase of odour intensity in unappropriated ventilated
environments can be originated from human bioeffluents [68]).

3.2.6. Formaldehyde

Only four studies supplied information about CH2O levels monitored during the
sleeping period, and all of them were from the same country, Portugal. Other studies can
be found in the literature with monitored levels of CH2O in bedrooms but the monitoring
procedure has a different timeframe than the sleeping period (e.g., during six consecu-
tive days in the bedrooms, including sleeping and no sleeping periods [52], or without
specifying the monitoring period [69]) and, therefore, were excluded from this analysis.

Overall, mean CH2O levels of 0.092 ± 0.043 mg·m−3 were found, ranging from
0.050 [35] to 0.160 mg·m−3 [18]. By analysing the selected studies and considering the
air quality guideline of 0.1 mg·m−3 established by WHO [41], only two studies (one con-
ducted in naturally ventilated bedrooms and the other one in mixed ventilated bedrooms)
provided mean values of CH2O above this guideline value, while the others cases were
all below this threshold, as shown by Figure 7. It is important to highlight that in those
two studies with mean values above the guideline value, maximum levels of 6 [18] and
around 8 [34] times that threshold were found in bedrooms during the sleeping period.
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In all these studies, a real-time monitor (namely, Formaldemeter htV-M, PPM Technology
Ltd, Caernarfon, Wales, UK) was employed instead of passive samplers required by the
national legislation [44], which may present some limitations already highlighted (such
as lower specificity for lower concentrations which may result in an overestimation of
CH2O levels [34]). However, this monitoring strategy allows to identify concentrations
specifically during the sleeping period.
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Figure 7. Formaldehyde levels monitored during the sleep period at bedrooms in different types of
building (A—apartment; A/—mixed (apartment and detached house); DH—detached house) and
different types of ventilation settings (NV—natural; mechanical—MV; mixed—NMV). Bars provide
mean values (along with standard deviation when available). WHO AQG stands for the air quality
guideline value recommended by WHO [41], and max and min stand for maximum and minimum
values, respectively.

This pollutant is common in indoor environments due to its widespread use in the pro-
duction of binders and resins (typically used in wood products as furniture and plywood),
paints and coatings, plastics, building and flooring materials, and consumer products [70].
Combustion processes developed in dwellings, such as smoking, candle burning and
heating, are also indoor sources of formaldehyde [71]. It is also important to highlight that
indoor emission rates of formaldehyde may be promoted by the increase of temperature
and relative humidity [72,73].

3.2.7. Particles

Despite the importance of assessing PM levels due to its potential health hazard
to humans [49], very few studies focusing on sleeping environments still evaluate these
parameters. Only 23% (5 out of 22) of the studies provided levels for both PM2.5 and PM10
during the sleeping period in bedrooms. Some available studies in the literature were
excluded from this review because the monitored period was not exclusive to the sleeping
period. It is also important to highlight that the used monitoring/sampling methods
differed between studies, from using laser photometer based on light scattering technology
(such as the DustTrak DRX monitor from TSI, Shoreview, Minnesota, USA) [18,34–36],
gravimetric method (using a TCR-Tecora sampler) [37] to a commercially available low
cost sensor (Awair—only for PM2.5, with an accuracy of 15% and a measuring range from 0
to 500 µg·m−3) [31]. From the select studies, a great majority was done in Portugal (around
83% of the cases) [18,34–37], while the remaining one was conducted in Belgium [31],
which highlights the need to conduct such assessments in other countries to understand
the human exposure to these pollutants during sleep.

One of the main constraints of PM sampling using reference methods (such as gravi-
metric ones) is the noise of sampling equipment that may interfere in the sleep quality
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of the occupants (an optimal sleep environment is characterised by a noise level below
35 dB [74]) and, moreover, the impossibility of obtaining real time data during the sleeping
period. Therefore, real time monitors, such as the ones based on light scattering, are a viable
and interesting option to use, despite still having a potential noise interference (due to
internal pumps) and, more importantly, the need of calibration with reference gravimetric
methods to assure the reliability of the monitoring (in addition to a factory calibration
of the devices) [75,76]. The same procedures of intercalibration with reference methods
should also be applied to low cost sensors to assure the reliability of the results [77,78].

Figure 8 presents PM2.5 and PM10 levels monitored during sleep in the selected studies,
where PM2.5 mean levels of 19.0 ± 10.9 µg·m−3 (ranging from 5.0 [35] to 35.1 µg·m−3 [36])
and PM10 mean levels of 20.4 ± 10.0 µg·m−3 (ranging from 10.0 [37] to 39.2 µg·m−3 [36])
were found. Regarding PM2.5, only the study in naturally ventilated bedrooms of apart-
ments and detached houses [36] surpassed the AQG for 24 h of 25 µg·m−3 recommended
by WHO [41], with levels of 35.1 ± 32.4 µg·m−3. These high PM2.5 levels along with a
high standard deviation may be attributable to the fact that 6 of 12 studied bedrooms were
of smokers (despite no smoking in bedrooms). Considering the WHO’s AQG for 1 year
of 10 µg·m−3, only the bedroom with mechanical ventilation provided levels below this
level [35] (17% of the studied cases). Regarding PM10 levels, all studies monitored mean
PM10 levels below the AQG for 24 h of 50 µg·m−3 recommended by WHO [41], with only
43% of the cases (three out of seven) with values below the AQG for 1 year of 20 µg·m−3,
obtained in bedrooms with natural [37] or mechanical ventilation settings [35,37].
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Figure 8. PM2.5 (top) and PM10 (bottom) levels monitored during the sleep period for three types
of ventilation setting. Studies index is regarding type of building: A—apartment; A/DH—mixed
(apartment and detached house); DH—detached house; EEC—elderly care centre. Bars provide mean
values (along with standard deviation when available). AQG stands for the air quality guidelines
(red—24 h; green—1 year) recommended by WHO [41].
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Ultrafine particles (UFP), usually measured by their particle number concentration
(PNC, number of particles of diameter above 10 nm in one cm3 of air), are not yet legislated,
despite the growing concern of their potential health hazard to humans [79,80]. Figure 9
provides mean UFP levels found in the selected studies, ranging from 1.7 × 103 [36] to
33.3 × 103 particles·cm−3 [23] (with an overall mean of (14.0 ± 13.7) × 103 particles·cm−3),
which shows a great variability between studies. In 80% of the studies (four of five), the
same monitoring device was used, namely a Philips Aerasense NanoTracer, while in one of
the studies a different device was used (Pegasor AQTM Indoor Air Quality form Coorstek
Amazing Solutions).
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building: A—apartment; A/DH—mixed (apartment and detached house); DH—detached house. Bars provide mean values
(along with standard deviation when available). * These studies do not specify the type of bedroom ventilation.

Indoor levels of ultrafine particles in dwellings are influenced by outdoor levels (due
to infiltration to indoors) [81], building characteristics [82], along with indoor sources (such
as candle burning, cooking, environmental tobacco smoke and heating devices [83,84]) and
human-related activity [85].

3.2.8. Air Changes per Hour

Six studies selected from the present review provided simultaneously levels of some
air pollutants along with information regarding air changes per hour (ACHs) during the
sleeping period. Figure 10 provides mean ACHs for the selected studies (with an overall
mean of 1.31 ± 0.81 h−1, ranging from 0.29 [26] to 2.84 h−1 [34]), where it is possible that
only one study did not manage to provide the minimum value of 0.7 h−1 established by
the guideline EN 16798-1:2019 [47]. In this specific case, a total of 164 bedrooms were
evaluated in Chinese dwellings with natural ventilation (namely, bedrooms of children
with closed doors and windows) during the different seasons, ranging from median values
of 0.25 h−1 in spring and summer to 0.37 h−1 in winter. In natural ventilation settings,
the users’ behaviour regarding opening or closing doors and/or windows is crucial to
improve ACHs and, therefore, the bedrooms’ ventilation [34]. For instance, in the same
study, 198 bedrooms with natural ventilation but with the opening of a door (and with
or without the opening of windows) during sleep provided median values ranging from
0.66 h−1 in spring and 2.46 h−1 in summer. A detailed review of 46 studies focusing on
bedroom ventilation [86] highlighted that ACHs ranged from 0.2 to 4.9 h−1, with lower
levels during heating seasons, especially for naturally ventilated bedrooms.
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Figure 10. Air changes per hour during the sleep period in bedrooms in different types of building
(A—apartment; A/DH—mixed (apartment and detached house); SR—scholar residence) and differ-
ent types of ventilation settings (NV—natural; mechanical—MV; mixed—NMV). Bars provide mean
values (along with standard deviation when available). Red line stands for the minimum value of
0.7 h−1 established for bedrooms by EN 16798-1:2019 [47].

Ventilation is essential to provide the dilution conditions for air pollutants concen-
trations in the bedrooms [34], being one of the best solutions to attain an acceptable IAQ
in terms of cost-effectiveness [87]. However, even if the ACHs are above the considered
minimum value of 0.7 h−1, compliance of indoor air pollutants levels during sleep with
the legislation may not be warranted, as concluded in a study performed in Portugal [18].

4. Discussion
4.1. Correlation between Air Pollutants during Sleep—Understanding Their Sources

Some of the studies evaluated potential associations between air parameters during
sleep in order to understand their common sources. A study conducted in Lisbon during
the sleeping period of 10 couples [18] found out that relative humidity was positively
correlated with CO2 levels (Spearman’s correlation coefficient of 0.71, p-value < 0.050) and
bacterial loads (Spearman’s correlation coefficient of 0.70, p-value < 0.050) assessed in the
bedrooms. The latter two parameters are intrinsically associated with the human presence,
namely CO2 [88], which is released during the breathing process by the occupants and
bacteria that are directly shed from human skin [89]. Higher ACHs were also associated
with lower levels of CO2 (Spearman’s correlation coefficient of −0.78, p-value < 0.050)
during the sleeping period since higher ventilation promotes higher dilution of CO2. Other
positive associations were also found between CO2 and CH2O (Spearman’s correlation
coefficient of 0.66 with p-value < 0.050), highlighting that CH2O is emitted by indoor
sources present at the bedroom, such as building materials and consumer products; and
between CO and VOCs (Spearman’s correlation coefficient of 0.67 with p-value < 0.050),
confirming their common source, such as outdoor infiltration from traffic sources [18]. This
study also evaluated fungi levels before and after the sleeping period finding a positive
association between them (Spearman’s correlation coefficient of 0.83, p-value < 0.050),
which highlighted the nonexistence of local indoor sources of fungi during sleep.

4.2. Impact of Air Pollutants on Sleep Quality

Some studies in the literature aimed to understand what is the impact of high levels
of air pollutants during the sleeping period on the sleep quality of individuals. Usually,
the target air pollutant is exclusively CO2 and sleep quality assessment is done by stan-
dardised questionnaires [90], actigraphy (or similar devices that provide some information,
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such as Fitbit) or polynomsonography [91,92]. In Australia, a study in dwellings with
48 individuals using wrist-worn sensors concluded that the percentage of deep sleep was
negatively related with the CO2 levels during the sleeping period, with a decrease of 4.3%
for every increase of 180 mg·m−3 in the overnight mean of CO2 levels [21].

In Denmark, a study performed in 20 single bedrooms of university dorms showed
that CO2 levels could be reduced from 4311 to 1503 mg·m−3 by changing the ventilation
conditions (from no mechanical ventilation conditions to using a fan in the air intake
vent), which lead to a significant improvement of sleep quality (measured by means
of actigraphy), along with the perceived freshness of the bedroom air. Lower levels of
CO2 were also associated to a lower next-day reported sleepiness, a higher ability to
concentrate and also an improvement of the performance of individuals in logical thinking
tests [1]. Another study in 17 single bedrooms in the Netherlands also showed the impact
of reducing CO2 levels, by means of controlling the bedroom ventilation, on the sleep
quality (assessed by questionnaires and actigraphy) [38]. Open conditions (open window
or door) provided mean CO2 levels of 1310 ± 360 mg·m−3 during sleep, while closed
conditions (closed window and door) registered mean levels of 2100 ± 850 mg·m−3. Lower
CO2 levels promoted better sleep depth (subjectively assessed by questionnaires), lower
number of awakenings and better sleep efficiency (being the latter two parameters obtained
by actigraphy) [38].

A study conducted in China, using experimental chambers decorated as bedrooms
with three different experimental conditions regarding CO2 levels (namely, 1440, 3420
and 5400 mg·m−3) [93], evaluated the sleep quality of 12 young adults (six males and
six females) by questionnaires and polysomnography. Sleep quality was found to be
significantly lower with the increase of CO2 levels, with a positive linear correlation
between sleep onset latency and CO2 levels and a negative linear correlation between
slow-wave sleep and CO2 levels. A significant difference in sleep quality at lower CO2
levels was also found between genders.

In Belgium, a study at Ghent University dorms with a total of 27 individuals assessed
several IAQ parameters (T, RH, CO2, TVOCs and PM2.5) and sleep quality by actigraphy,
polysomnography and standardised questionnaires [31]. One of the main outputs from
this study was that higher PM2.5 levels were associated with a higher percentage of time
awake and lower sleep efficiency [31].

A study in Peru aimed to understand the impact of the reduction of PM2.5 indoor levels
due to indoor fuel pollution in the sleep symptoms (using questionnaires) of 38 children,
by changing the used stoves to less-polluting cooking stoves [94]. The new stoves have
shown a reduction of 74% of the PM2.5 emitted levels and children reported less problems
during sleep, more willingness to go to bed and ease of falling asleep, along with greater
ease to wake up and less morning headache.

A review focusing on the impact of air pollution exposure into adverse sleep health
selected 22 studies [3], with 21 reporting generally positive associations between exposure
and poor sleep quality in children, adolescents and adults. However, from these, only
five considered indoor exposure [94–98], with three focusing specifically on the effect of
IAQ on sleep quality: two intervention studies in Peru for reducing PM exposure due to
household exposure to biomass pollution, as described above [94,98], and a study focusing
on the exposure to cooking oil fume (COF), which was positively associated with poor
sleep quality [95].

4.3. Considerations and Future Perspectives

Several remarks need to be considered when comparing results from field studies
since several factors differ between them, such as, occupancy (studies considered between
one or two occupants during their sleeping period) and the occupant characteristics (age,
gender, among others), type of surrounding outdoor environment, and ventilation settings.

The age of individuals has also been shown to be an important factor when considering
the impact of air pollution on sleep outcomes [99,100] since it varies with the development
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stage due to higher vulnerability of children [101] and elderly [102] to adverse environ-
mental exposure and, consequently, to their health effects [103]. In the present review,
six studies focused specifically on assessing the exposure of children [20,23,26,32,33], while
three studies targeted the elderly population [24,35,37]. Another relevant issue affecting
sleep quality is the gender of subjects, which has been shown to have an impact on sleep
quality [104,105], with women usually reporting worse sleep quality than men [106]. This
difference may be attributable to morphologic differences between genders, along with
social patterns of behaviour and stress responses that affect sleep mechanisms [107].

Therefore, to assess IAQ during sleep and its impact on the sleep quality of individuals
it is crucial to provide a comprehensive characterisation of the individuals, regarding
their personal, social and demographic details, in order to exclude potential cofounders
that may influence sleep quality assessments. In this way, or focusing on similar study
populations, it will allow to understand with reliability the impact of environmental factors
on sleep quality.

Regarding ventilation, the studied bedrooms differed in type (from natural, mechan-
ical and mixed settings), along with differences in the user behaviour, namely towards
the opening of doors and windows during the sleeping period. Either way, these studies
always reflected real life conditions, allowing to understand how the IAQ is during sleep
and to identify which mitigation measures can be applied to improve it and to minimise
the pollution sources [87].

When performing the present review of the literature, one issue that was highlighted
and responsible for the exclusion of several studies was that the monitoring period was
not exclusively the sleeping period. As an example, a study in social housing with elderly
occupants in Spain monitored comfort parameters and CO2 in bedrooms but during a
minimum period of 48 continuous hours [108]. In order to perform a correct assessment
of IAQ during sleep, it is important to only monitor IAQ parameters during this period,
rather than monitoring the bedroom without occupancy, since this will promote an under
evaluation of the pollutants levels due to the dilution of pollutants during the nonoccu-
pancy period [6]. Therefore, standardised protocols (from monitoring and experimental
set-ups to the gathering of relevant information) need to be employed in order to obtain
comparable studies that provide accurate information about IAQ during sleep.

The assessment of PM levels during the sleeping period using the gravimetric method
(through filter sampling) [109] is essential to allow a detailed chemical characterisation of
particles [110] and, therefore, to identify their sources and respective contributions to the
overall levels [111]. However, filter sampling is a critical issue due to the interference with
the sleep of occupants taking into account the noise of pumps required in such equipment.
The information of particles’ sources is crucial to understand their health impact and to
identify specific mitigation measures to decrease the exposure to this pollutant. Sources
affecting PM levels can be from the indoors, namely from the bedroom or from infiltration
from other rooms of the dwelling due to a variety of human activities (such as cooking [53],
vacuum cleaning [112], cleaning [113], burning candles [114], smoking [36,63], walking due
to PM resuspension [115]) or even from textiles and human skin desquamation (mainly
regarding PM10) [116]. Outdoor infiltration may also be a source of indoor PM levels if
an active source is found outside the dwelling (such as traffic for PM2.5 [117]). There-
fore, special efforts should be promoted by researchers to fulfil this gap of knowledge
in the future.

One strategy to understand the potential source of the air pollutants during sleep
could also be the assessment of indoor-to-outdoor (I/O) ratios since it is a very useful
tool. At present, no information regarding these ratios can be found in the literature for
bedrooms’ environments.

From the 22 studies selected in the present review, most of them provided levels for
CO2 (17 out of 22, 77%), followed by PM10, PM2.5 and ultrafine particles (with 5 out of 22,
23%) and, finally, CO, VOCs and CH2O (with 4 out of 22, 18%). The indoor air pollutants
monitored only in 18% of the studies, were all conducted in Portugal, showing a lack of
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information of how the levels of these pollutants may vary during the sleeping period in
other countries and regions of the world [118–120]. Overall, sleeping environments still
have very scarce information in the literature regarding the exposure levels of air pollutants
commonly associated to indoor environments. Future studies should be undertaken in
order to provide a more comprehensive characterisation of these environments to assess
accurately the human exposure during sleep, which would potentiate the understanding
of the overall IAQ impact on sleep quality, for instance.

5. Conclusions

Monitoring air pollutants while sleeping can be very challenging due to the fact that
the traditional instruments that monitor air quality can produce, for instance, some noise
that affects sleeping quality. This fact may be one the reasons why the quantity of studies
that access IAQ while sleeping is so scarce. This review only identified 22 studies that
assessed exposure to the main indoor air pollutants during the sleeping period, which
provided indications of potential sources of indoor air pollutants and how different types
of ventilation, along with other characteristics, may influence IAQ.

Exceedances of the AQG and limit values were consistently verified for every pollu-
tant, except for CO, in the majority of the 22 studies analysed (CO2: 870–3440 mg·m−3;
VOCs: 0.55–2.40 mg·m−3; CH2O: 0.050–0.160 mg·m−3; PM2.5: 5.0–35.1 µg·m−3; PM10:
10.0–39.2 µg·m−3). Although air changes per hour were generally higher than the mini-
mum value required, the presence of high air pollutants levels may indicate the presence
of pollution sources and the necessity of a higher ventilation rate than what is verified in
each bedroom to promote a better dilution of pollutants.

Until now, very few studies have managed to provide an overall characterisation
of sleeping environments (focusing simultaneously on comfort parameters and indoor
air pollutants: CO2, CO, VOCs, CH2O and particles). Moreover, the existent studies
varied in great range of factors: the country and type of dwellings/environments, to
the number of individuals present in the bedrooms, seasons and types of ventilation.
Therefore, it would be essential to focus future research on obtaining a more complete
characterisation of a wider range of settings (including in different countries), always
providing essential information about the study design in order to allow the comparability
between studies. This valuable information would allow to improve the accuracy of
exposure assessments and to understand the main drivers of IAQ’s degradation and how
to tackle them. Simultaneously to IAQ characterisation during sleep, it is also essential to
focus on sleep quality assessments, which may allow to understand the potential impact of
IAQ on the sleep quality of individuals. Taking into account the vital role that sleep plays
in the human life and welfare, this knowledge would allow to improve sleep quality by
means of changing the quality of air that we breathe during sleep.
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