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Abstract: This study compares and analyzes simulations of ozone under different scenarios by three
CMIP6 models (IPSL-CM6A, MRI-ESM2 and CESM-WACCM). Results indicate that as the social
vulnerability and anthropogenic radiative forcing is increasing, the change of total column ozone in
the tropical stratosphere is not linear. Compared to the SSP2-4.5 and SSP5-8.5 scenarios, the SSP1-2.6
and SSP3-7.0 are more favorable for the increase in stratospheric ozone mass in the tropics. Arctic
ozone would never recover under the SSP1-2.6 scenario; however, the Antarctica ozone would
gradually recover in all scenarios. Under the SSP1-2.6 and SSP2-4.5 scenarios, the trend of tropical
total column ozone is mainly determined by the trend of column ozone in the tropical troposphere.
Under the SSP3-7.0 scenario, tropospheric ozone concentration will significantly increase; under the
SSP5-8.5 scenario, ozone concentration will distinctly increase in the middle and lower troposphere.

Keywords: stratospheric ozone; tropospheric ozone; trend; CMIP6

1. Introduction

Ozone is one of the important trace constituents in the atmosphere. Stratospheric
ozone can absorb solar ultraviolet radiation and protect the Earth’s biosphere. Meanwhile,
ozone has a strong absorption band at 9.6 µm, where the solar radiation absorbed by ozone
is the main heat source for the stratosphere. Changes in ozone will alter the atmospheric
radiation balance [1].

Unlike stratospheric ozone, tropospheric ozone is a pollutant that is harmful to or-
ganisms. It is one of the components of photochemical smog and is closely related to the
safety of life on earth. Therefore, ozone plays an important role in global climate change
and social development.

In the past few decades, there have been a lot of research studies on the impact of
the increase in chemical emissions caused by anthropogenic activities on the stratospheric
ozone layer. In the 20th century, anthropogenic emissions of ozone depleting substances
led to obvious depletion of stratospheric ozone [2–4]. This depletion was most obvious
in the upper and lower stratosphere, and the rate of depletion in the middle stratosphere
was less obvious [5]. With the signing of the Montreal Protocol, tropospheric chlorine (Cl)
attributable to anthropogenic halocarbons stopped increasing at the beginning of 1994 [6],
and stratospheric halogen levels peaked at the late 1990s [7], and since 1997 there is a
slowdown in stratospheric ozone losses [8]. In the 21st century, as the concentration of
Cl and Bromine (Br) in the stratosphere has decreased while the concentration of long-
lived greenhouse gases (GHGs) such as CO2 has increased, which will lead to increase
in ozone [9,10]. This is because CO2 is the most important greenhouse gas emitted by
human activities, which can result in stratospheric cooling and subsequently slow down
the gas-phase reaction rate of ozone depletion. As a result, stratospheric ozone increases.
The combined effect of the above two factors leads to an increase in stratospheric ozone.
The radiative effects of changing GHGs concentrations and ozone-induced temperature
changes can accelerate the Brewer–Dobson (BD) [11,12] circulation [13–18], which is likely
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to play a more important role in the evolution of ozone through the 21st century [19].
This is because the acceleration of BD circulation can decrease the tropical low stratospheric
ozone, and may result in tropical total column ozone never recovering to the 1980 value.
In addition, the evolution of nitrous oxide and methane can impact ozone recovery by both
chemistry and climate processes [20–23]. There are also natural forcing processes that are
important for ozone layer. The enhanced solar ultra violet radiation played an important
role in the evolution of the total column ozone changes during the early 20th century [24].
Estimation shows that the sea surface temperature and sea ice would play important
role in evolution of atmospheric ozone in the tropics and the extra tropical regions of the
Northern Hemisphere during the second half of the 21st century [25]. Hence, the recovery
rate of ozone varies greatly at different latitudes and altitudes [26–29]. How the ozone
concentration will change in the future still remains an issue that needs to be studied.

At present, climate models are among the most effective tools for understanding the
climate system and projecting possible future climate changes, and the most important
method for studying the future trend of ozone is the climate model.

The International Coupled Model Intercomparison Project (CMIP), whose foundation
and prototype is the atmospheric model intercomparison project (AMIP) (1989–1994), was
initiated and organized in 1995 by the Working Group on Coupled Modeling (WGCM) of
the World Climate Research Programme (WCRP). The original purpose of CMIP was to
compare the performance of a limited number of global coupled climate models at that
time. It then gradually developed into a huge project with the goal of ‘promoting model
development and enhancing scientific understanding of the Earth’s climate system’. So far,
WGCM has organized six model comparison projects (CMIP 1-6).

Climate projections under different scenarios are one of the core contents of previous
IPCC scientific assessment reports. The results can show the climate impact and socio-
economic risks brought about by different policy choices. They serve as an important
scientific basis for decision-making in government.

The scenario model intercomparison project (ScenarioMIP) is one of the most impor-
tant sub-programs of CMIP6 [30], which provides key data support for future climate
change mechanism study as well as climate change mitigation and adaptation research.
The simulation of ozone in ScenarioMIP is an effective way to study future changes in
ozone.

Since the previous round (CMIP5), the CMIP6 participating models have been further
developed and new emission scenarios, so-called shared socioeconomic pathways (SSPs),
have been established [31–34]. The focus of this study is to examine the stratospheric and
tropospheric ozone evolution in three model simulations under varying SSPs.

The paper is organized as follows. Section 2 briefly describes the models, scenarios and
simulations. Section 3 presents our main results on the return. We close with a conclusion
in Section 4.

2. Data and Models

The ozone data extracted from European Centre for Medium-Range Weather Forecasts
(ECMWF) interim reanalysis product (ERA-I) for the period of 1979–2014 are used to verify
model simulations. The ERA-I dataset is a global dataset with 1.5 latitude × 1.5 longitude
spatial resolution [35].

Three models that participated the CMIP6, i.e., the IPSL-CM6A, MRI-ESM2 and CESM-
WACCM, are used in the present study, all the three models are interactive chemistry
models, which are expected to simulate reasonable ozone variation.

The IPSL-CM6A-LR [36], developed in the Institute Pierre-Simon Laplace Climate
Modelling Centre (IPSL CMC), is the latest version of the IPSL climate model with
1.25 latitude × 2.5 longitude spatial resolution. It is composed of the LMDZ atmospheric
model Version 6A-LR [37], the NEMO oceanic model Version 3.6 [38] and the ORCHIDEE
land surface model Version 2.0 [39]. The carbon cycle is also described in the IPSL-CM6A-
LR. The MRI-ESM2 is developed in the Meteorological Research Institute (MRI) [40].
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Its horizontal resolution is 2.8 latitude x 2.8 longitude. The MRI-ESM2 consists of four
major components, i.e., an atmospheric general circulation model (AGCM) with land
processes and an ocean–sea ice general circulation model. The community Earth system
model version 2—the whole atmosphere community climate model (CESM2-WACCM)—is
a comprehensive earth system model with coupled atmosphere, land, ocean, river, sea-ice,
land-ice, and ocean-wave [41]. It has been reported that the CESM1-WACCM is one of the
best CMIP5 models in simulating various processes in the stratosphere [42]. Compared
with the CESM1-WACCM, the improvements in the CESM2-WACCM include modifica-
tions of atmospheric physics parameterizations, significant new capabilities to describe
physical and dynamic processes the middle and upper atmosphere, and improvements in
the chemical modules, etc.

Historical simulations over the period of 1979–2014 under realistic forcing are veri-
fied to evaluate the model performance. Predictions under four scenarios for the period
2015–2100 are assessed. The future climate projections by the CMIP6 ScenarioMIP are a
rectangular combination of different SSPs and radiative forcing. Based on anthropogenic
emissions and land use changes that may occur in the energy structure of different SSPs,
integrated assessment models (IAM) are used to generate quantitative greenhouse gas
emissions, atmospheric composition and land use changes; that is, to generate SSP-based
forecasts. The CMIP6 ScenarioMIP consists of a total of eight suites of future scenario exper-
iments, which are divided into two levels based on their relative priority. The two levels of
experiments are named Tier-1 and Tier-2, and Tier-1 experiments are the core experiments.
In the present study, we analyze the simulations of the above three models under four
Tier-1 scenarios including the SSP5-8.5, SSP3-7.0, SSP2-4.5 and SSP1-2.6. Among the four
scenarios, the SSP5-8.5 is the only scenario of shared social economic path and anthro-
pogenic radiative forcing that could reach up to 8.5W/m2 in 2100; the SSP3-7.0 represents
the scenario of high social vulnerability combined with relatively high anthropogenic radia-
tive forcing; the SSP2-4.5 represents the scenario of medium social vulnerability combined
with moderate radiative forcing; the SSP1-2.6 scenario can support the study of the 2 ◦C
warming target, which represents the comprehensive impacts of low social vulnerability,
low mitigation pressure and low radiative forcing.

3. Results
3.1. Verification of Model Data

Figure 1 shows the distributions of climatological average ozone concentration extracted
from the ERA-I reanalysis and simulated by three models. Compared with Figure 1a, all the
three models (Figure 1b–d) can reproduce the climatological distribution of ozone in their
historical simulation experiments under realistic forcing. Ozone concentration is high in
the stratosphere, where the maximum concentration occurs at 10 hPa [1]. The meridional
variation shows that ozone concentration is higher in the equatorial region and lower in the
polar regions.

Total column ozone averaged over 30◦ S–30◦ N (Figure 2) shows that the correlation
coefficients between the annual average total column ozone from the ERA-I and that simu-
lated by the IPSL, the MRI-ESM2 and the CESM-WACCM models are 0.54, 0.61, and 0.59,
respectively, which are significant at the 99% confidence level. This result indicates that the
three models selected for the present study can realistically simulate the interannual varia-
tion of column ozone. As displayed in Figure 2, the climatological column ozone values
simulated by the IPSL and the CESM-WACCM are 266.6 and 263.9DU, respectively, which
are close to the value shown in the ERA-I reanalysis data (265.7 DU). The climatological
column ozone value simulated by the MRI-ESM2 is 295.4 DU, which is much higher than
that in the ERA-I. Generally, the historical simulation results indicate that climatological
average total column ozone simulated by the IPSL and CESM-WACCM is close to that in
the ERA-I in magnitude, whereas the MRI-ESM2 model can better simulate the interannual
variation of the total column ozone.
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reanalysis and model simulations (units: DU).

3.2. Future Trend of Ozone Change

Figure 3 displays changes in total column ozone under various SSP scenarios at
different latitudes. For the low latitudes (Figure 3a–c) the total column ozone would
decrease under the SSP1-2.6 and SSP2-4.5 scenarios, and the decrease rate is the fastest
under the SSP1-2.6 scenario with the largest value of 1.53 DU/decade simulated by the
MRI-ESM2. Under the SSP-3.7 scenario, simulations of the IPSL and the CESM-WACCM
indicate that the total column ozone would increase at the rates of 0.91 and 0.57 DU/decade,
respectively. The decrease trend of the total column ozone is the slowest in the simulation
of the MRI-ESM2 at the rates of 0.08 DU/decade. Under the SSP5-8.5 scenario, the IPSL
and CESM-WACCM results indicate that the total column ozone would increase at the
rates of 0.4 and 0.07 DU/decade, respectively, while result of the MRI-ESM2 indicates that
the total column ozone would decrease at the rate of 0.88 DU/decade.
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result of IPSL (a,d,g,j,m), MRI-ESM2 (b,e,h,k,n) and CESM-WACCM (c,f,i,l,o) model, respectively. The first (a–c), second
(d–f), third (g–i), fourth (j–l) and fifth (m–o) row is the trends of total column ozone change between 30◦ S and 30◦ N, 30◦ N
and 60◦ N, 30◦ S and 60◦ S, 60◦ N and 90◦ N, and 60◦ S and 90◦ S for the period from 2015 to 2100, respectively. Black, blue,
green and red lines represent the SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5 scenarios, respectively. Solid lines represent the
simulated values, and dashed lines are trend lines (unit: DU).

For the mid-latitudes of the Northern Hemisphere (Figure 3d–f) the total column
ozone would decrease under the SSP1-2.6 scenario, and the decrease rate is the fastest with
the largest value of 1.65 DU/decade simulated by the MRI-ESM2. Under the SSP2-4.5
scenario, the MRI-ESM2 result indicates that the total column ozone would decrease at
the rate of 1.01 DU/decade, while results of the IPSL and CESM-WACCM indicate that
the total column ozone would increase. The total column ozone would increase under the
SSP3-7.0 and SSP5-8.5 scenarios. The changes of total column ozone is 3.95 DU/decade,
2.42 DU/decade and 4.71 DU/decade under the SSP5-8.5 scenario, respectively, which has
the fastest increase rate among the four scenarios.

For the mid-latitudes of the Southern Hemisphere (Figure 3g–i) the total column ozone
simulated by MRI-ESM2 model would decease at the rate of 0.55 DU/decade under the
SSP1-2.6 scenario, and the other variation trends all increase in the future. The changes
of total column ozone are 3.54 DU/decade (IPSL), 2.72 DU/decade (MRI-ESM2) and
4.12 DU/decade (CESM-WACCM) under SSP5-8.5 scenarios, respectively, which is the
fastest increase rate among the four scenarios. Compared with the results in Northern
Hemisphere (Figure 3d–f), the increase rate of IPSL and CESM-WACCM is larger and
MRI-ESM2 is smaller under the SSP5-8.5 scenario.
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The trends at the high-latitudes of the Northern Hemisphere (Figure 3j–l) are similar
to that at the mid-latitudes of the Northern Hemisphere. The total column ozone would
decrease under the SSP1-2.6 scenario, and the decrease rate is the fastest with the largest
value of 0.81 DU/decade simulated by the MRI-ESM2. Under the SSP2-4.5 scenario,
the MRI-ESM2 result indicates that the total column ozone would decrease at the rate
of 0.71 DU/decade, while results of the IPSL and CESM-WACCM indicate that the total
column ozone would increase. The total column ozone would increase under the SSP3-7.0
and SSP5-8.5 scenarios. The changes of total column ozone are 6.94 DU/decade (IPSL),
4.69 DU/decade (MRI-ESM2) and 7.93 DU/decade (CESM-WACCM) under the SSP5-8.5
scenario, respectively, which has the fastest increase rate among the four scenarios.

For the high-latitudes of the Southern Hemisphere (Figure 3m–o) the trends all increase
under different scenarios. Under the SSP1-2.6 (SSP5-8.5) scenario, the total column ozone
increase trend is the slowest at the rate of 1.61 DU/decade (4.94 DU/decade) simulated by
the MRI-ESM2 and fastest at the rate of 5.59 DU/decade (9.97 DU/decade) simulated by
the CESM-WACCM.

In the extratropic, the increase rate of the total column ozone simulated by the three
models is the largest under the SSP5-8.5 scenario, and the increase rate is the smallest or
the decrease rate is the largest under the SSP1-2.6 scenario. In this region, CESM-WACCM
shows the largest increase rate and the MRI-ESM2 shows the largest decrease or smallest
increase rate. In the low latitudes, IPSL shows the largest increase or smallest decrease rate,
and the MRI-ESM2 shows the largest decrease rate.

The total column ozone at high-latitudes of the Southern Hemisphere simulated by
the three models increases under all scenarios, i.e., the Antarctica ozone would gradually
recover in the future.

However, the total column ozone at high-latitudes of the Northern Hemisphere
simulated by the three models decreases under the SSP1-2.6 scenario, and it also decreases
in the MRI-ESM2 model under the SSP2-4.5 scenario, which indicates that the Arctic ozone
would never recover under the SSP1-2.6 scenario.

In the early spring of 1997 [43] and 2011 [44], an “ozone hole” appeared over the
Arctic, and stratospheric ozone values over large parts of the Arctic in 2020 spring are
lower than observed in any previous year [45–49]. All of the three ozone loss events related
to extremely strong and cold polar vortices, when the temperature was low enough to form
polar stratospheric clouds (PSCs), resulting in large stratospheric ozone losses [50]. Since
the majority of the world’s population lives in the Northern Hemisphere, the research on
Arctic ozone hole has great social significance. However, compared with the Antarctic
ozone hole, ozone depletion in the Arctic has a much higher interannual variability because
of higher dynamical activity in the Northern Hemisphere [44,51]. Austin and Wilson [52]
pointed out that, despite interannual variability being greater in the future than in the
past, the Arctic ozone would recover to the 1980 value in all recovery criterion. Bednarz
et al. [53] also pointed out that, despite the large interannual dynamical variability being
expected to continue in the future, resulting in reductions in springtime ozone columns,
the recovery of Arctic ozone would continue in future. WMO [54] and Pommereau [55]
pointed out that Arctic ozone loss will remain possible in cold winters in the future if
the ozone depletion substance concentrations are above natural levels; this is because the
increasing GHGs may cool the lower stratosphere and resulting in enhanced formation of
PSCs in the Arctic. However, the result in Langematz et al. [56] indicates that no cooling
would appear in March, which is the month when persistent low temperatures lead to large
chemical ozone losses. Meanwhile in our result, the Arctic ozone would never recover
under SSP1-2.6 scenario, and would gradually recover under other scenarios. There are
some differences between our results and previous WMO assessment [54], which may be
related to the scenario for the baseline estimate and some model updates. In addition to
the Arctic ozone losses, Zhang et al. [57] found that the Arctic stratospheric polar vortex
has been shifted toward Siberia during late winter over the period 1980–2015. Therefore,
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how the future Arctic ozone will change is far from conclusive and is worthy of further
in-depth study.

Figure 4 presents changes in stratospheric ozone concentration during 2091–2100
compared to that during 2015-2024 under different SSP scenarios. All the three models
indicate that ozone would decrease in the lower tropical stratosphere, whereas it would
increase outside the tropics and in the middle and upper tropical stratosphere. Under the
four scenarios, the magnitude of ozone decrease in tropical middle and lower stratosphere
would increase following the increase in social vulnerability and anthropogenic radiative
forcing. Ozone in the middle and lower tropical stratosphere will decrease by 10% under
the SSP1-2.6 scenario and by 30% under the SSP5-8.5 scenario, which is consistent with
Eyring et al. [19] that in the topical lower stratosphere ozone decrease continuously from
1960 to 2100 due to projected increase in tropical upwelling because of the acceleration BD
circulation. Outside the tropics and in tropical middle to upper stratosphere, the magnitude
of ozone increase also would become lager as the social vulnerability and anthropogenic
radiative forcing increase. Under the SSP1-2.6 scenario, ozone will increase by around 10%
in upper levels in the extratropics; under the SSP8.5 scenario, the change can be up to 20%
(MRI-ESM2 and CESM-WACCM) and 30% (IPSL).
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In order to better analyze ozone changes in different regions, Figure 5 displays ozone
concentration changes at 10 hPa, which is the level where the maximum stratospheric ozone
concentration occurs. Figure 5 shows that ozone concentration at 10 hPa will increase under
all the four scenarios. Under the SSP1-2.6 scenario, ozone concentration at 10 hPa shows
little change. Following the increase in social vulnerability and anthropogenic radiative
forcing, the magnitude of ozone change in the middle stratosphere would increase, and the
largest increase would occur in high-latitude regions. Under the SSP5-8.5 scenario, all three
models indicate that ozone concentration will increase by 10% in the tropics and 15–20% in
high-latitude regions.
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Figure 6 displays the three model simulations of tropospheric ozone concentration
change during 2091–2100 compared to that during 2015–2024 under various SSP scenarios.
Under the SSP1-2.6 scenario, tropospheric ozone concentration will decrease with the
largest decrease of up to 30% occurring in the middle and lower tropical troposphere.
Following the increase in social vulnerability and anthropogenic radiative forcing, tropo-
spheric ozone concentration gradually increases. The results are consistent with previous
research results as in a warming climate, tropospheric ozone loss can increase due to higher
absolute humidity [58,59]. However, as the social vulnerability and anthropogenic radia-
tive forcing is increasing there is a positive relationship between anthropogenic emissions
and tropospheric ozone [60,61] as shown in Figure 6. Under the SSP2-4.5 scenario, the
magnitude of decrease in tropical tropospheric ozone concentration is about 10%. The
CESM-WACCM result indicates that ozone concentration obviously increases in mid and
high-latitude regions. Under the SSP3-7.0 scenario, tropospheric ozone concentration
overall will increase. Under the SSP5-8.5 scenario, the IPSL result indicates that tropical
lower tropospheric ozone concentration will decrease; while results of the MRI-ESM and
CESM-WACCM show that ozone concentration will decrease in the upper and lower levels
of tropical troposphere.

Spatial pattern of ozone concentration change in the middle troposphere is further
analyzed (Figure 7). Under the SSP1-2.6 and SSP2-4.5 scenarios, ozone concentration will
decrease with the largest decrease occurring in the equatorial region. Under the SSP7.0
scenario, 500 hPa ozone concentration will increase. Under the SSP5-8.5 scenario, 500 hPa
ozone concentration will increase outside the tropics and decrease in some areas of the
tropics. The IPSL result shows large ozone concentration decrease in the tropical regions of
the Eastern Hemisphere, while results of the MRI-ESM2 and CESM-WACCM indicate that
the largest decrease will occur in the tropical regions of the Western Hemisphere. Overall,
following the increase in social vulnerability and anthropogenic radiative forcing, 500 hPa
ozone concentration will increase.
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3.3. Variation Trend of Ozone in Tropic

Stratospheric ozone absorbs ultraviolet (UV) radiation and protects life on earth from
harmful UV radiation. Therefore, it is very important to study the trend of stratospheric
ozone change. Figure 1 shows that the ozone concentration is largest at the low latitudes,
so the ozone variation trends at low latitudes are analysed next.

Table 1 lists changes in tropical total column ozone. Tables 2 and 3 list changes in
tropical stratospheric and tropospheric total column ozone, respectively. The IPSL and
CESM-WACCM results indicate increase trends in tropical stratospheric column ozone,
while the MRI-ESM2 shows a decrease trend, although the results of the CESM-WACCM
suggest that stratospheric column ozone will slightly increase under the SSP5-8.5 scenario.
In all three models, there are decrease trends under the SSP1-2.6 and SSP2-4.5 scenarios
in tropical tropospheric column ozone, and an increase trend under the SSP3-7.0 scenario.
Under the SSP5-8.5 scenario, the MRI-ESM2 and CESM-WACCM results indicate decrease
trends, while the IPSL result indicates slightly increase trend. That is, although total tropical
column ozone shows a decrease trend under the SSP1-2.6 and SSP2-4.5 scenarios (Figure
3) and an increase trend can also be found in some model simulations under the SSP3-7.0
and SSP5-8.5 scenarios, relatively large differences can be found in stratospheric ozone
change between the three model results. Nevertheless, certain regularities of changes in
stratospheric and tropospheric ozone can still be found in these results.

Table 1. Changes in tropical column ozone (Unit: DU/decade).

Model SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5

IPSL −0.64 −0.25 0.91 0.4

MRI-ESM2 −1.53 −1.44 −0.08 −0.88

CESM-WACCM −0.77 −0.46 0.57 0.07

Table 2. Changes in tropical stratospheric column ozone (Unit: DU/decade).

Model SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5

IPSL 0.28 0.19 0.36 0.33

MRI-ESM2 −0.44 −0.73 −0.4 −0.71

CESM-WACCM 0.21 0.06 0.26 0.09

Table 3. Changes in tropical tropospheric column ozone (Unit: DU/decade).

Model SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5

IPSL −0.92 −0.44 0.55 0.07

MRI-ESM2 −1.10 −0.72 0.32 −0.17

CESM-WACCM −0.98 −0.52 0.3 −0.02

Table 2 shows that with the increases in social vulnerability and anthropogenic ra-
diative forcing, the change of the stratospheric column ozone in tropical regions is not
linear. Compared with the SSP2-4.5 and SSP5-8.5 scenarios, the SSP1-2.6 and SSP3-7.0
scenarios are more conducive to the increase in total stratospheric ozone. Comparing the
results under the SSP1-2.6 and SSP2-4.5 scenarios shown in Figures 4 and 5, it is found
that the increase in stratospheric ozone is not obvious, while the decrease in tropospheric
ozone can reach up to 30%. Comparing with the results under the SSP1-2.6 and SSP2-4.5
scenarios shown in Tables 2 and 3, it can be found that the decrease trend of the total
column ozone in the tropical area under the SSP1-2.6 and SSP2-4.5 scenarios shown in
Figure 3 is largely attributed to the decrease in tropical tropospheric ozone. Taking the
IPSL model simulation under the SSP2.6 scenario as an example, the trend of the total
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column ozone in the tropics is −0.64 DU/decade, of which the trend of the tropospheric
ozone column is −0.92 DU/decade and the trend of the stratospheric column ozone is
0.28 DU/decade. In other words, the ozone concentration in the stratosphere is increasing,
yet the decrease in the total ozone column in the tropical troposphere has led to a decreasing
trend in the total ozone column in the entire tropical region. In these three models, the
trend of the stratospheric column ozone in the tropics is almost the same under the SSP1-2.6
and SSP3-7.0 scenarios. However, the tropospheric total column ozone under the SSP1-2.6
scenario has a decreasing trend, whereas it has an increasing trend under the SSP3-7.0
scenario. As a result, the decreasing trend of the total column ozone is the fastest under
the SSP1-2.6 scenario (Figure 3) and the slowest under the SSP3-7.0 scenario, or the total
column ozone may even increase under the SSP3-7.0 scenario.

Tropospheric ozone decreases under the SSP1-2.6 and SSP2-4.5 scenarios. In contrast,
under the SSP3-7.0 scenario, the tropospheric ozone concentration increases significantly,
with an increase rate of up to 10%. Under the SSP5-8.5 scenario, although the ozone
concentration decreases in the middle and lower troposphere in tropics, it increases in the
middle and lower troposphere outside the tropics. Tropospheric ozone is a pollutant that is
harmful to organisms and is one of the components of photochemical smog. The increase
in tropospheric ozone concentration will have adverse effects on life on Earth.

4. Conclusions

In CMIP6, the participating models have been further developed and new emission
scenarios, so-called SSPs, have been established. This study compares and analyzes simula-
tions of ozone under different scenarios by three CMIP6 models (IPSL-CM6A, MRI-ESM2
and CESM-WACCM). It is found that in the extratropic, CESM-WACCM shows the largest
increase rate and the MRI-ESM2 shows the largest decrease or smallest increase rate of the
total column ozone. In the tropics, IPSL shows the largest increase or smallest decrease
rate, and the MRI-ESM2 shows the largest decrease rate.

Results indicate that, as the social vulnerability and anthropogenic radiative forcing
is increasing, the change of total column ozone in the tropical stratosphere is not linear.
Compared to the SSP2-4.5 and SSP5-8.5 scenarios, the SSP1-2.6 and SSP3-7.0 are more
favorable for the increase in stratospheric ozone mass in the tropics. The total column
ozone at the mid to high latitudes shows decrease trends under SSP1-2.6 scenario, which
indicates that the Arctic ozone would never recover under SSP1-2.6 scenario. In addition,
under SSP2-4.5 scenario, the MRI-ESM2 model result also shows a decrease trend. However
the total column ozone at high-latitudes of the Southern Hemisphere simulated by the three
models increase under all scenarios, i.e., the Antarctica ozone would gradually recover in
all scenarios.

Under the SSP1-2.6 and SSP2-4.5 scenarios, the trend of tropical total column ozone is
mainly determined by the trend of column ozone in the tropical troposphere. Under the
SSP3-7.0 scenario, tropospheric ozone concentration will significantly increase; under the
SSP5-8.5 scenario, ozone concentration will distinctly increase in the middle and lower
troposphere. High social vulnerability and relatively strong anthropogenic radiative forcing
will lead to increases in tropospheric ozone concentration, which will have adverse impacts
on life on Earth.
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