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Abstract: Scientists occasionally predict projected changes in extreme climate using multi-model
ensemble methods that combine predictions from individual simulation models. To predict future
changes in precipitation extremes in the Korean peninsula, we examined the observed data and
21 models of the Coupled Model Inter-Comparison Project Phase 6 (CMIP6) over East Asia. We
applied generalized extreme value distribution (GEVD) to a series of annual maximum daily precipi-
tation (AMP1) data. Multivariate bias-corrected simulation data under three shared socioeconomic
pathway (SSP) scenarios—namely, SSP2-4.5, SSP3-7.0, and SSP5-8.5—were used. We employed a
model weighting method that accounts for both performance and independence (PI-weighting).
In calculating the PI-weights, two shape parameters should be determined, but usually, a perfect
model test method requires a considerable amount of computing time. To address this problem, we
suggest simple ways for selecting two shape parameters based on the chi-square statistic and entropy.
Variance decomposition was applied to quantify the uncertainty of projecting the future AMP1.
Return levels spanning over 20 and 50 years, as well as the return periods relative to the reference
years (1973–2010), were estimated for three overlapping periods in the future, namely, period 1
(2021–2050), period 2 (2046–2075), and period 3 (2071–2100). From these analyses, we estimated
that the relative increases in the observations for the spatial median 20-year return level will be
approximately 18.4% in the SSP2-4.5, 25.9% in the SSP3-7.0, and 41.7% in the SSP5-8.5 scenarios,
respectively, by the end of the 21st century. We predict that severe rainfall will be more prominent in
the southern and central parts of the Korean peninsula.

Keywords: climate change; Dirichlet distribution; exceedance probability; expected waiting time;
generalized extreme value distribution; heavy rainfall; L-moment estimation; return period

1. Introduction

Heavy precipitation can have cascading effects on communities, infrastructure, agricul-
ture, and livestock, as well as on economically and culturally important natural ecosystems.
For example, extreme rain events can result in costly damage to wastewater treatment
plants, culverts, and roads. Extreme precipitation can result in landslides and floods,
accompanied with a loss of life and the deterioration of infrastructure. Thus, understand-
ing and projecting heavy rainfall is of significant importance to climate change impact,
adaptation, and vulnerability assessments.

Atmosphere 2021, 12, 97. https://doi.org/10.3390/atmos12010097 https://www.mdpi.com/journal/atmosphere

https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com
https://orcid.org/0000-0001-6966-6511
https://orcid.org/0000-0003-1297-5430
https://orcid.org/0000-0002-8704-5580
https://orcid.org/0000-0002-0871-3676
https://orcid.org/0000-0002-6074-4461
https://orcid.org/0000-0002-1505-578X
https://orcid.org/0000-0001-6195-6231
https://orcid.org/0000-0002-4871-1341
https://orcid.org/0000-0002-8460-4869
https://doi.org/10.3390/atmos12010097
https://doi.org/10.3390/atmos12010097
https://doi.org/10.3390/atmos12010097
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/atmos12010097
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/2073-4433/12/1/97?type=check_update&version=3


Atmosphere 2021, 12, 97 2 of 26

Numerous studies have reported that extreme precipitation events have become
more frequent during the last century, and are occurring even more often over the 21st
century ([1–7], for example). A simplified and major reason for more frequent extreme
rainfall is the following: Warming conditions mean more evaporation, which leads to more
water vapor in the air. When rain-triggering conditions are favorable, more saturated
air leads to heavier precipitation [8,9]. This has been the case across some areas of the
world during the last century [10]. For example, heavy daily rainfall has accounted for an
increased proportion of total annual rainfall over an increasing fraction of the Australian
continent since the 1970s ([11], Section 4.2.3). The average annual rainfall has already
increased by nearly 50% over parts (including the Netherlands, Belgium, and Luxembourg)
of northern Europe [12]. This trend is likely to be accelerated with increased global warming
over the 21st century [10,12]. Some studies have projected that global warming leads to
a higher intensity of precipitation and longer dry periods, for example, in Europe and
Asia [13–16]. Seemingly paradoxically, as written by Mann and Kump [12], “While many
regions are likely to become drier, scientists predict that even in those regions individual
rainfall or snowfall events will become more intense, although longer dry spells will
separate them.”

Extreme rainfall occurs frequently over the Korean peninsula during the warm sea-
son from June through September, in association with synoptic disturbances, typhoons,
or convective changes within the air masses over the region. Previous studies [17–19]
have reported an increase in observed extreme precipitation in Korea. Lee et al. [20] pre-
dicted that the increasing changes in the future heavy rainfall across East Asia appear
more distinctly in Korea at a local scale, which indicates a higher sensitivity of the Korean
peninsula to global warming. It is thus crucial to project and assess the changes in extreme
precipitation events in Korea under different scenarios.

Some authors [21–27] have predicted increasing changes in future extreme rainfall
over Korea by using a single model, ensembles of regional climate models, or multiple
Coupled Model Inter-Comparison Project Phase 5 (CMIP5) models. In this study, we
update the previous studies based on the multiple CMIP6 models under the three shared
socioeconomic pathway (SSP) scenarios—namely, SSP2-4.5, SSP3-7.0, and SSP5-8.5 [28].

Studies on the projection of future climate change have used ensembles of multiple cli-
mate simulations. Multi-model ensemble (MME) methods of climatic projection have been
proven to improve upon the systematic bias and to have fewer of the general limitations
that are typically associated with single simulation models. Among the many ensemble
methods, model weighting or averaging is typically employed ([29–31], for example).
Model averaging is a statistical method in which unequal or equal weights are assigned to
those models. Despite some arguments, the equal weighting or “model democracy” [30]
has been criticized because it does not take into account the performance, uncertainty,
and independency of each model in constructing an MME ([32–34], for example).

One typical unequal weighting scheme involves giving more weights to those models
that are more skillful and realistic for a specific process or application. This performance-
based weighting method and its variants, including Bayesian model averaging (BMA), have
been employed in many different studies. It has improved the accuracy of the projections
and reduced the prediction uncertainty. However, it has been reported that only a few
models often exhibit extremely high weights, and most others have very low weights [27,35].
This phenomenon may be because some models are more fit to the observations for given
applications than others, and thus, they receive extremely high weights in a multi-model
estimate of change [36]. Such an aggressive weighting based on performance will only be
dangerous in the sense of an overfitting when observational uncertainty is large, and thus,
it is not robust in quantifying the uncertainty.

In addition to the performance, some researchers have considered other criteria, such
as model convergence [37], model independency [32,38–40], and a semi-performance mea-
sure [41]. A weighting scheme that accounts for both the independence and performance
simultaneously is called the PI-weighting. In this study, we employ PI-weighting to robustly
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quantify uncertainty in an MME. In calculating the PI-weights, considering only one or
two climate variables over a relatively small area can lead to an overfitting problem [36,40].
To avoid this problem, we thus consider five climate variables over East Asia, while our
focus is the annual maximum daily precipitation (AMP1) over the Korean peninsula.

In applying the PI-weighting, we have to determine two shape parameters that control
the strength of the weights. One way to select the shape parameters is a leave-one-out
perfect model test [36,40], but it requires a huge amount of computing time. To overcome
this computational problem, we suggest simple ways to determine these parameters based
on the entropy and p-values of the chi-square statistic.

The remainder of this paper is structured as follows. The data construction and
numerical models are described in Section 2. The statistical methods are briefly mentioned
in Section 3. Section 4 describes the PI-weighting with the computational details, including
simple ways for determining the shape parameters. The results of the model weights and
projected future changes are presented in Sections 5 and 6, respectively. Section 7 describes
the results of an uncertainty assessment and projection by latitude based on an analysis of
variance. In Section 8, relative improvement of the PI-weighted method over the simple
average is quantified using the skill score and prediction variance. Discussions are then
given in Section 9, followed by a summary of the paper in Section 10. Details including
technical specifics, tables, and figures are provided in the accompanying supplementary
material (hereafter referred to as the Supplementary Materials) file.

2. Data and Simulation Models

We consider five climate variables over East Asia to avoid overfitting in calculating
the PI-weights, while our focus is the annual maximum daily rainfall (AMP1) over the
Korean peninsula in this study. Table 1 lists five climate variables.

Consecutive wet days and dry days are defined as consecutive days with daily precipi-
tation of≥1 and <1 mm, respectively [42,43]. Table S1 in the accompanying Supplementary
Materials lists the 21 CMIP6 climate models used in this study. The considered scenarios
are shared socioeconomic pathways SSP2-4.5, SSP3-7.0, and SSP5-8.5 [28]. Hereafter, we
shorten the scenario names to SSP2, SSP3, and SSP5, although we use both versions inter-
changeably. Three overlapping periods are considered for future data, namely, period 1
(2021–2050), period 2 (2046–2075), and period 3 (2071–2100), abbreviated by P1, P2, and P3
in this study.

Table 1. The five climate variables considered in this study.

Variable Acronym Description

AMP1 Annual Maximum Daily Precipitation
AMP5 Annual Maximum Five-Day Precipitation
ATP Annual Total Precipitation

AMCWD Annual Maximum Consecutive Wet Days
AMCDD Annual Maximum Consecutive Dry Days

To re-grid the common grid points of 1◦ × 1◦, the iterative Barnes interpolation
scheme [44] was employed for the observations and simulation data from the 21 models
for each of five climate variables. The Barnes technique produces a rainfall field on a
regular grid from irregularly distributed rainfall observation stations.

East Asia (EA) is considered by many authors (e.g., [4,14,15,45,46]) to be one of the
regions most vulnerable to future increases in extreme weather and climate under global
warming. For example, projected changes in extreme precipitation indices over the Asian
monsoon domain are larger than over other monsoon domains, indicating the strong
sensitivity of Asian monsoons to global warming [47].

Figure 1 depicts maps of EA and the Korean peninsula (KP) showing the observations
sites and 1180 points over 1◦ × 1◦ grids. The observations for the 38-year reference period
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(1973–2010) were obtained from the Meteorological Administrations of China, Japan,
and Korea. In China, observations from 726 stations were used [48] to construct data for
1056 grids. In Japan, observations from 1325 sites were used [49] to construct data for
78 grids.

Figure 1. (a) Map of East Asia showing the observations sites and grid points. The Barnes interpolation method was
employed to re-grid and to construct a rainfall field over 1◦ × 1◦ grids of 1180 points over East Asia. (b) Map of the Korean
peninsula from 123◦ to 132◦ longitude and 33◦ to 43◦ latitude, including the sea and land, with 46 grid points of 1◦ × 1◦ for
this study.

There are 64 and 27 observation stations in South and North Korea, respectively [50].
Because the 27 stations (black circles in Figure 1) in North Korea are too sparse, re-gridding
using Barnes interpolation may not capture the locality of severe rainfall there. For a
better re-gridding in North Korea, we used the Asian Precipitation Highly Resolved
Observational Data Integration Towards Evaluation (APHRODITE) reanalysis data [51] as
auxiliary information. However, the AMP1 in APHRODITE has serious bias in its mean
and variance, as shown in Figure S1. We thus correct it using nearby observations using
the quantile mapping technique [52]. Examples of time series plots of the observations,
APHRODITE data, and the bias-corrected APHRODITE data near the observational
stations are shown in Figure S1. Then, the bias-corrected APHRODITE data and the
observations at stations were used together for better interpolation in re-gridding. On
the right side of Figure 1, the map of the KP shows the spatial distribution of 91 rainfall
observation stations, the 80 APHRODITE grid points in North Korea, and the final 46 grids
used in this study.

3. Methods
3.1. Generalized Extreme Value Distribution

The generalized extreme value distribution (GEVD) is widely used to analyze extreme
univariate values. The three types of extreme value distributions are sub-classes of GEVD.
The cumulative distribution function of the GEVD is as follows:

G(x) = exp

{
−
(

1 + ξ
x− µ

σ

)−1/ξ
}

, (1)

when 1 + ξ(x− µ)/σ > 0, where µ, σ, and ξ are the location, scale, and shape parameters,
respectively. The particular case for ξ = 0 in Equation (1) is the Gumbel distribution,
whereas the cases for ξ > 0 and ξ < 0 are known as the Fréchet and the negative Weibull
distributions, respectively [53].

It can be helpful to describe the changes in extremes in terms of the changes in extreme
quantiles. These are obtained by inverting the following (1): zp = µ− σ

ξ [1− {−log(1−
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p)}−ξ ], where G(zp) = 1− p. Here, zp is known as the return level associated with the
return period 1/p because level zp is expected to be exceeded, on average, once every 1/p
years [53]. For example, a 20-year return level is computed as the 95th percentile of the
fitted GEVD and a 50-year return level as the 98th percentile. Conversely to the above,
the return period T(z) = 1/p for the given value z is obtained by calculating p = 1− G(z).
For the given value z, T(z) is sometimes called the expected waiting time, and the value
p = 1− G(z) is referred to as the exceedance probability of z.

Assuming the data approximately follow a GEVD, the parameters can be estimated
by the maximum likelihood method [53,54] or the method of L-moment estimation. The L-
moment estimator is more efficient than the maximum likelihood estimator in small sam-
ples for typical shape parameter values [55]. The L-moment method is employed in this
study using the “lmom” package in R [56] because a relatively small number of samples are
analyzed for each comparison period. Moreover, the formulae used to obtain the L-moment
estimator are simple compared to those for obtaining the maximum likelihood estimator,
which needs an iterative optimization until convergence.

3.2. Bias Correction

Although simulations from climate or meteorological models provide significant
information, the simulated data are associated with potential biases in that their statistical
distribution differs from the distribution of the observations. This is partly because of
unpredictable internal variability that differs from the observations, and because global
climate models (GCMs) have a very low spatial resolution for being employed directly in
most impact models [57,58]. For example, in GCM precipitation fields, the bias may be due
to errors in convective parameterizations and unresolved subgrid-scale orography [59].
Bias-correction (BC) methods are commonly applied to transform the simulated data
into new data with no or fewer statistical biases with respect to an observed time series.
In this study, future simulation outputs are bias corrected to compute the intensity of
extreme rainfall.

To correct the model outputs more efficiently by taking account of the dependency
among variables or nearby grids, several multivariate BC methods have recently been
proposed. In this study, we chose the multivariate bias correction (MBC) method by
Cannon [59] among the many available BC methods [52]; it is a multivariate extension of
quantile delta mapping (QDM). QDM has an advantage of preserving the approximate
trends of the model data. In this study, the MBC is applied to the five climate variables
provided in Table 1 to take into account the dependency among these variables. The MBC
is applied one time to the future simulation data for all periods (2021–2100) based on
the historical information, not for each period separately. More details are provided in
the Supplementary Materials.

4. Weighting Method for Ensembles
4.1. Performance and Independence Weighting

Knutti et al. [39] argued that the growing number of models with different char-
acteristics and considerable interdependence finally justifies abandoning a strict model
democracy. They provided at least five reasons for why PI-weighting is required. Brun-
ner et al. [36] illustrated that PI-weighting leads to an increase in the investigated skill
score for temperature and precipitation while minimizing the probability of overfitting (or
overconfidence).

As the basic idea of PI-weighting, models that agree poorly with observations for a
selected set of diagnostics receive less weight, as do models that largely duplicate existing
models [39]. Weights are calculated for each model based on a combination of the distance
Di (informing the performance) and the model similarity Sij (informing the dependence):

wi =
exp(− Di

σD
)

1 + ∑M
j 6=i exp(− Sij

σS
)

, (2)
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with the total number of model runs M and the shape parameters σD and σS. The weights
are normalized such that their sum equals 1. The details in computing the performance
distance Di are given in the Supplementary Materials.

The numerator represents the modeling skill when using a Gaussian weighting, where
the weight decreases exponentially the farther away a model is from the observations.
The denominator is the “effective repetition of a model” [32] and is intended to account for
the model interdependency [39]. The details in computing the distance Sij are given in the
next subsection.

The shape parameters define the strength of the weighting and the relative importance
of the performance and independence [36]. Large values will lead to an almost equal
weighting, whereas small values will lead to aggressive (or one-sided) weighting, giving
a few models most of the weight. The shape parameters are often determined through a
perfect model test (or a model-as-truth experiment) using the continuous rank probability
score [36,40]. The perfect model test picks each model from a multi-model ensemble in turn
and treats it as the true representation of the climate system. This leave-one-out procedure
requires a huge amount of computing time. To address this computational problem, we
consider relatively simple ways to determine the shape parameters in the next subsections.

4.2. Computing Independence Weights

If a model has no close neighbors, then all Sij(i 6= j) are large, and the denominator of
the PI-weight is approximately one and has no effect. If two models i and j are identical,
then Sij = 0 and the denominator equals two, so each model gets half the weight.

To calculate the model similarity Sij, we follow a technique among several methods
proposed by Sanderson et al. [60]. A method employed in this study is based on the
empirical orthogonal function (EOF) or principal component analysis. The following
process is done for each grid: First, for each model, the historical data from 1850 to 2015
and the future simulation data from three scenarios are lined up as one time series data, as
in Figure S2 in the Supplementary Materials. The bias correction is not applied to all data
for this process. We can choose the historical data only, as was done by Brunner et al. [61],
but we deploy all simulation data for a maximum use of available information. For each
time series induced from each model, seven-year moving averages are obtained. Then,
for each climate variable, a correlation matrix R among all M models is constructed by
applying the Spearman correlation coefficients to those M numbers of the series of seven-
year moving averages. That is, R is the correlation matrix of M models, with size M×M.

A singular value decomposition (SVD) is performed on R1/2 and truncated to t modes
to obtain the dominant modes of multivariate ensemble variability such that

R1/2 = UλVT , (3)

where U is an orthogonal matrix of model loadings (size M by t) whose columns are the
eigenvectors of the model correlation matrix R, λ (size t by t) are the eigenvalues of R,
and V (size M by t) are the eigenvectors of R. The dimensions are sorted by decreasing
eigenvalue, such that the basis set can be truncated to a smaller number of modes t [60].
Note that t is often determined by selecting a number of the eigenvalues greater than 1.

The model loadings U now define a t-dimensional space (where t is the truncation
length of the SVD) in which intermodel and observation–model Euclidean distances may
be defined. The intermodel distances can then be measured in a Euclidean sense in the
loadings matrix, such that the distances Sij between two models i and j can be expressed
as [60]

Sij =

{
t

∑
l=1

[U(i, l)−U(j, l)]2
}1/2

. (4)

U(i, l) is interpreted as a correlation or a dependency of the model i to the l-th
principal component. Thus, a small Sij value means high dependency or similarity between
models i and j.
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The above procedures are done separately for each of five climate variables listed in
Table 1. Thus, we have five distances between models i and j, corresponding to five climate
variables. Then, the final distances are obtained by averaging those five distances for
models i and j. An example of the final distances Sij between two models i and j averaged
from the five distances is given in Table S2 in the Supplementary Materials. A small value
indicates high dependency or similarity between two models. In Table S2, the first four
models (UKESM2, CanESM5, EC-Earth3-Veg, and EC-Earth3) show the highest similarity,
whereas the last four models (MPI-ESM1-2-LR, GFDL-ESM4, INM-CM5-0, and MPI-ESM1-
2-HR) show the lowest similarity.

4.3. Selection of σS

To select an appropriate value of the shape parameter σS for the I-weights, we consider
an entropy-based approach. We denote Ii(σS) as a normalized I-weight for model i and for
the given σS, as defined in the following:

Ii(σS) =
si(σS)

∑M
l=1 si(σS)

, (5)

where si(σS) =
1

1+∑M
j 6=i exp(−

Sij
σS

)
.

The entropy of the I-weights as a measure of uncertainty [62] from these weights is
defined by the following:

E(σS) = −
M

∑
i=1

Ii(σS) log Ii(σS) (6)

as a function of σS. When all Ii(σS)s are almost equal, the entropy has a high value. We
thus expect the entropy to increase because σS has a large value. Note that the calculation
of Sij does not depend on σS, and thus, the Sij values obtained are fixed for the entropy
computation. The entropy is computed as σS changes from 0.1 to 1.0 in increments of 0.01.

Figure 2 presents the entropy function of σS computed from the data used for this
study, which indicates that it is at its minimum at σS = 0.4. It is interesting to note that the
entropy function increases as σS decreases from 0.4 to zero. This is explained by looking

into the similarity measure 1 + ∑M
j 6=i exp(− Sij

σS
). As σS moves toward zero, this measure

converges at one for all i. Thus, si moves toward one, and Ii is close to 1/M for all i.
Because we want to have a shape parameter σS that can differentiate the I-weights most
distinctly with minimum uncertainty, the value σS = 0.4 minimizing the entropy is chosen
in this study.

4.4. Selection of σD

To select an appropriate value of σD for the P-weights, we attempted to use the entropy
criteria again, but we were not fortunate enough to obtain the optimal result, as with σS.
Thus, a technique based on the p-value of the chi-square statistic [54] is considered in
this study.

We denote Pi(σD) as a normalized P-weight for model i and for the given σD, which is
defined as follows:

Pi(σD) =
exp(− Di

σD
)

∑M
l=1 exp(− Dl

σD
)

, (7)

where Di is the performance measure of the i-th model.
For testing the hypothesis frame, the null hypothesis and the alternative hypothesis

for i = 1, · · · , M are as follows:

H0 : all weights are equal ⇔ Pi =
1
M for all i

H1 : some weights are not equal ⇔ Pi 6= 1
M for some i.

(8)
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Figure 2. Plot of the entropy as σS changes from 0.1 to 1.0 and the selected σS = 0.4.

For the given Pi, the chi-square statistic used to test the above hypothesis is as follows:

χ2
0(σD) =

M

∑
i=1

( 1
M − Pi(σD))

2

1
M

. (9)

Because we do not want to accept equal weights, σD should be selected to reject the
null hypothesis. That is, the p-value [54] obtained from the chi-square statistic should be
less than a preassigned value α (significance level), e.g., α = 0.05. In addition, because we
also do not want aggressive weights, a σD can be selected as the maximum value of σD in
which we still reject H0 with α level. That is, our selection is

σ∗D = max {σD : p-value (σD) < α}, (10)

where p-value (σD) = Pr[χ2 > χ2
0(σD)| H0].

Here, χ2 indicates a random variable of (9) under the equal Pi weights. Although this
selection assures the use of the least aggressive weights, it is still statistically significantly
different from the equal weights.

The p-values are computed by a Monte-Carlo simulation in which random numbers
of weights are generated from the Dirichlet distribution [63]. When the parameters are
all equal to 1, the Dirichlet distribution is the same as the multivariate uniform distri-
bution with values between 0 and 1, which represents the null hypothesis. We used the
“MCMCpack” package [64] in R to generate the random weights that satisfy H0.

The detailed steps of computing the p-value for given σD and χ2
0(σD) are:

Step 1: Generate random weights P(k)
i from the Dirichlet distribution with all param-

eters equal to 1 (under H0), for i = 1, · · · , M;

Step 2: Compute χ2 = ∑M
i=1

( 1
M−P(k)

i )2

1/M , and denote it χ2
(k);

Step 3: Iterate the above two steps K (=1000, for example) times;

Step 4: Calculate p− value(σD) = ∑K
k=1

I [χ2
(k) > χ2

0(σD)]

K ,

where I[A] denotes the identity function, which takes 1 or 0, depending on if the condition
A is satisfied or not. Note that P(k)

i s generated in Step 1 do not depend on σD.

Figure 3 depicts the chi-square statistic values computed from AMP1 with some p-
values as σD changes from 0.10 to 0.30 in increments of 0.01. We calculated the σD for each
of the five climate variables, and then calculated the average from those five σDs. When
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α = 0.05, as is usually applied in testing a hypothesis in statistics, the averaged σ∗D from
five different σD is 0.21. When α = 0.1, σ∗D = 0.25. We use σ∗D = 0.21 in this study.

Figure 3. Plot of the chi-square statistic values for the annual maximum daily precipitation (AMP1)
as σD changes. The selected σD is 0.17 (0.19) for the p-value 0.05 (0.01).

5. Results: Model Weights
5.1. Model Similarity

Table S2 provides the similarity values Sij for certain models. Figure 4 shows the
intermodel distance matrix for the 21 CMIP6 models considered in this study. The distances
are obtained from the five climate variables listed in Table 1 for East Asia. Each box
represents a pairwise combination, where red indicates a greater distance. According to
Figure 4, models MPI-ESM1-2-HR, INM-CM5-0, GFDL-ESM4, MPI-ESM1-2-LR, and INM-
CM4-8 were found to be the most independent, whereas models UKESM, CanESM5,
EC-Earth3-Veg, and EC-Earth3 were found to be the most dependent.

5.2. PI-Weights

The normalized PI-weights are obtained using Equation (2) with σS = 0.4 and
σD = 0.21. Figure 5 demonstrates the distributions of the P-, I-, and PI-weights. The
variability of the I-weights is smaller than that of the P-weights.

The high P-weights of the CanESM5 and EC-Earth3-Veg models decrease in the
PI-weights owing to the low I-weights. The PI-weights of the BCC-CSM2-MR, FGOALS-
g3, and GFDL-ESM4 models increase owing to a relatively high independency. The
PI-weight is not located in the middle of the P- and I-weights, but is close to the P-weight,
except in a few cases. When the P-weight (I-weight) is almost the same as the equal
weight, as in the GFDL-ESM4 (KACE-1-0-G and IPSL-CM6A-LR) model, it seems that the
PI-weight is wholly influenced by the I-weight (P-weight). The performances for some
of the models, such as ACCESS-ESM1-5, MIROC6, INM-CM5-0, and INM-CM4-8, are so
low that their (even relatively high) I-weights do not affect the final weights. Based on this
view, the performance is more influential to the PI-weights than the independency. Some
of these observations may be changed if different σS and σD are used.
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Figure 4. A graphical representation of the intermodel distance matrix for the 21 Coupled Model Inter-Comparison Project
Phase 6 (CMIP6) models obtained from the five climate variables for East Asia. Each box represents a pairwise combination,
where red colors indicate a greater independence and blue colors indicate a greater similarity.

Figure 5. Spread of the weights for the 21 CMIP6 models obtained based on the performance only, the independence only,
and both the performance and independence. The weights are obtained from the five climate variables for East Asia.
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6. Results: Future Projection of Extreme Precipitation

Using the PI-weights obtained in the above section, the future extreme precipitations
are projected by the MME. Note that the future climate data are used after the bias correction
with the MBC method [59]. Figure 6 illustrates the time series plots of the nine-year moving
averages of AMP1 in Seoul, for example, from the observations, from the PI-weighted
ensemble of the historical data, and from the PI-weighted ensembles for the future data
from the three SSP scenarios, with a 90% confidence band. In Figure 6, the line for the
observations shows more variation than the lines of the historical data and the future
projections by the MME. This means that the MME has smaller variance and can catch the
signal more clearly than a single simulation model.

6.1. Return Levels

Figure 7 (S3) displays boxplots of the 20-year (50-year) return levels of the AMP1 in the
KP. The boxplot of the historical data after the BC is similar to that from the observations,
whereas the boxplot before the BC is much smaller than that from the observations. The
increasing trends from P1 to P3 are evident in every scenario. Summary statistics of the
corresponding values of these boxplots are provided in Table S3.

These values are lower in the 20-year return levels than the results by Lee et al. [27], who
used the BMA method with the CMIP5 models. The median values for P3 in Table S3 are
higher than the results by Shin et al. [41], who used the CMIP6 models and a hybrid weighting
method between the BMA and equal weighting. It seems that the hybrid weighting by
Shin et al. [41] and the PI-weighting in this study are similar. These last two weighting schemes
assigned relatively lower weights to the CMIP6 models with heavy future precipitation than
a weighting method based on the performance only would give to the same models.

Figure 6. Time series plots of the nine-year moving averages of the annual maximum daily precipitation in Seoul from
the observations (red line) and from the PI-weighted ensemble of the bias-corrected historical data (black line) of the 21
CMIP6 models for the past years (1953–2014) and the PI-weighted ensembles for the bias-corrected future data from the
three shared socioeconomic pathway (SSP) scenarios, with a 90% confidence band. The blue line is for SSP2-4.5, the green
line is for SSP3-7.0, and the red line is for SSP5-8.5.
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Figure 8 (S4) shows isopluvial maps of the 20-year (50-year) return levels of the AMP1
for the three future periods under the three scenarios. The difference by latitude is more
evident than that by longitude. Jeju island, the southern coast, and the central region
receive more downpours than the northern parts.

Figure 7. Schematic boxplots of 20-year return levels (unit: mm) of the annual maximum daily precipitation averaged over
46 grids in the Korean peninsula for the future periods, i.e., P1 (2021–2050), P2 (2046–2075), and P3 (2071–2100), under the
SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios. OBS and HIST(NBC) indicate the observations and the historical data without a
bias correction. The boxplot for P0 represents the bias-corrected historical data.

Figure 8. Isopluvial maps of the 20-year return levels (unit: mm) of the annual maximum daily
precipitation for 46 grids over the Korean peninsula for the future periods: P1 (2021–2050), P2
(2046–2075), and P3 (2071–2100) under the SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios.
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6.2. Changes in Return Levels

Figure S5 in the Supplementary Materials exhibits relative changes (unit: %) of the 20-
and 50-year return levels of extreme precipitation over the Korean peninsula relative to
the years 1973–2010. The increasing changes are more evident in the northern part than
in the southern area. Summary statistics of relative changes are presented in Table S4 in
the Supplementary Materials. The relative increase in the observations for the spatially
averaged 20-year (50-year) return level was approximately 18.4% (18.9%) in the SSP2-4.5,
25.9% (26.3%) in the SSP3-7.0, and 41.7% (44.0%) in the SSP5-8.5 scenario by the end of the
21st century.

These rates of change are lower than the results by Lee et al. [27], who used the BMA
method with the CMIP5 models. This is perhaps due to the differences in the reference
period and the research methods, as well as the difference between the CMIP5 and CMIP6.
For the 20-year return level, our result in the KP is approximately 1.8 to 2.0 times faster than
the changes in the globally averaged value (10% in the SSP2-4.5 and 20% in the SSP5-8.5)
reported by Kharin et al. [65].

6.3. Change in Return Periods

Figure 9 displays boxplots for the 20-year and 50-year return periods, as compared
to the reference years (1973–2010) for the three future periods under the three scenarios.
The corresponding statistics are presented in Table S5 in the Supplementary Materials. We
realize that a 1-in-20 year (1-in-50 year) AMP1 in the Korean peninsula will likely become
1-in-11 (1-in-26) year, 1-in-8 (1-in-20) year, and 1-in-7 (1-in-15) year events in the median
by the end of the 21st century based on the SSP2, SSP3, and SSP5 scenarios, respectively,
as compared to the observations from 1973 to 2010. These findings indicate that both
20-year and 50-year return periods are likely to decrease by approximately 32% under the
SSP2 and 60% under the SSP5 by the end of the 21st century.

Figure 9. Parallel coordinated boxplots, similar to those in Figure 7, but for 20- and 50-year return periods relative to the
observations from 1973 to 2010.
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These projections of extreme rainfall are similar to or less frequent than the results
obtained by previous studies [23,27] based on CMIP5 models, i.e., approximately 1-in-11 (1-
in-21) year and 1-in-7 (1-in-13) year events under SSP2 and SSP5, respectively. Shin et al. [41]
realized the occurrence as approximately 1-in-10 (1-in-30) and 1-in-8 (1-in-17) year events
under SSP2 and SSP5, respectively, which is similar to our projection.

6.4. Exceedance Probability and Waiting Time

Because of computational issues and the defects of the return period [66], the ex-
ceedance probability is often used as an alternative to the return period [67]. This is defined
as Pr [Y(θ̂) > z], where z is a specified precipitation value and Y(θ̂) is a random variable
following a GEVD with a parameter estimate θ̂. Here, Y(θ̂) depends on the models, periods,
and scenarios.

The spatially averaged estimates of the exceedance probability are presented in
Figure S6 and Table S6. There are relatively large differences in the exceedance proba-
bility of a downpour of 100 to 250 mm compared with that for over 250 mm, as shown in
Figure S6. The differences between the past and future scenarios are distinct during the
period P3.

From Table S6, the return period or expected waiting time (T(z)) until the reoccurrence
of a specific AMP1 value (z) is computed by T(z) = 1/p(z), where p(z) is the exceedance
probability of the AMP1 z. These values are listed in Table 2. For z = 200 mm of rainfall,
for example, the expected waiting times until a reoccurrence are 11.1 years in the past,
13.0 years in the future period P1, 8.0 years in P2, and 5.9 years in P3 based on the SSP5
scenario. For the case of a z = 300 mm downpour, the expected waiting times are 78 years
in the past, 76 years in P1, 50 years in P2, and 29 years in P3 based on the SSP5 scenario.

Table 2. The expected waiting time (unit: year) until reoccurrence or the return period of specific
annual maximum daily precipitation (AMP1) values from 100 to 500 mm in the Korean peninsula
obtained from the observations (OBS) and the CMIP6 model ensemble under the three SSP scenarios
for the three future periods (P1, P2, and P3).

SSP2-4.5 SSP3-7.0 SSP5-8.5

AMP1 OBS P1 P2 P3 P1 P2 P3 P1 P2 P3

100 mm 1.8 1.4 1.3 1.3 1.4 1.3 1.2 1.4 1.3 1.2
150 mm 4.4 4.4 3.9 3.7 4.0 3.2 2.5 3.6 3.0 2.5
200 mm 11.1 14.5 11.1 10.6 13.2 10.2 7.1 13.0 8.0 5.9
250 mm 30.7 41.7 31.7 27.1 42.9 28.7 16.9 34.4 24.9 15.0
300 mm 78 93 76 55 104 59 42 76 50 29
400 mm 485 400 297 202 469 254 201 227 166 107
500 mm 1970 1167 814 577 1148 649 563 538 493 307

6.5. Expected Number of Reoccurring Years

Another quantity that we can obtain is the expected number of reoccurrences during a
certain period. By multiplying 30 years by the exceedance probability p(z), we can estimate
the expected frequency of such years over a period of 30 years in which we have more
than z amount of AMP1 for a year. These values are given in Table S7. For z = 150 mm
(200 mm), as a specific example, during the last 30 years, we have experienced 6.8 (2.7)
years in which AMP1 was greater than 150 mm (200 mm). In addition, we are likely to
have an expected number of years of 8.2 (2.3) for the future period P1, 10.1 (3.8) for P2,
and 12.1 (5.1) for P3 under the SSP5 scenario.

From this comparison, particularly for AMP1 of 100 to 300 mm, the expected num-
ber of years of occurrence for the future periods under the SSP5 scenario increases by
approximately 1.25 times that over the last 30 years for P2 and 1.91 times that for P3 by the
end of 21st century. These results are based on the spatially averaged values. When the
exceedance probability is considered for each grid, different local results will be obtained.
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7. Results: Projection by Latitude and Quantifying Uncertainty

Three or four major sources of climate projection uncertainty might be considered
when trying to understand uncertainties in projected metrics: (1) climate model, (2) emis-
sion scenario, and (3) internal variation or randomness unexplained by other sources [68].
We apply the analysis of variance (ANOVA) technique [69] in this study. Other methods
considered in [67] can also be applied.

7.1. Variance Decomposition with Interaction

Hawkins and Sutton [68] applied a method of variance decomposition to quantify
uncertainty when assuming no interactions between the sources. In addition to their
assumption, we added the interaction term between the model and scenario. Other factors,
i.e., (4) future period and (5) location, such as the latitude applied in this study, are also
considered in the ANOVA model. Although the period and latitude may not be real
sources of uncertainty, they can be included as independent variables in the ANOVA model
because they may affect the response variable. Here, the response variable is a 20-year
return level, for example.

Figure 10 presents the proportions of variances contributed by each variable for each
period. In P1, the variance by the model is the largest, whereas that by the scenario is
the smallest. The proportion of internal variation (residual) decreases from P1 to P3. The
variance proportion by model decreases from P1 to P3, whereas the variation due to the
scenario increases significantly from P1 to P3.

Figure 10. Bar plots (unit: %) representing uncertainties in projecting future climate or the variations
owing to the models, scenarios, model and scenario interaction, and residuals for 20-year return
levels over the Korean peninsula for each period.

It is notable that the variation contributed by the interaction between the model
and scenario is relatively large during period 1, but becomes smaller during period 3.
The details of this variation are presented in Figure 11, where the return levels from the
models generally increase in mean and variance as the scenario changes from SSP2 to SSP5.
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However, the return levels of some models, such as CESM2-WACCM, ACCESS-ESM1-5,
NorESM2-MM, MIROC6, MRI-ESM2-0, GFDL-ESM4, and INM-CM5-0, decrease from SSP2
to SSP3, contrary to the expectation. Moreover, the return values of some models, such as
MPI-ESM1-2-HR, MPI-ESM1-2-LR, NorESM2-LM, and FGOALS-g3, decrease from SSP3
to SSP5. The latter two “unexpected” situations make the interaction variance large in
P1, as shown in Figure 12. Despite such “unexpected” situations still appearing in P3,
the variations owing to the scenario and model themselves are relatively too large, and thus,
the proportion of the interaction variance becomes relatively small in P3.

7.2. Return Levels by Latitude

Figure 13 depicts boxplots of the 20-year return levels (unit: mm) from the 21 CMIP6
models as the latitude changes from south to north. It is evident that the return levels
decrease initially from 33◦ to 36◦, but increase from 36◦ to 38◦. However, they decrease
from 38◦ to 42◦ more rapidly. In Figure 13, the solid lines around the boxes across the
latitude are the spatial medians of the 20-year return levels for each latitude and the four
periods (P0, P1, P2, and P3). Here, P0 indicates the reference period, and thus, the result is
obtained from the observations. The dashed lines depict the values for the three scenarios
(SSP2-4.5, SSP3-7.0, and SSP5-8.5), in which three dashed lines locate the inside range of the
solid lines. The spatial medians for the scenario (period) are obtained over all values across
the periods (scenarios) for the 21 models. It is notable and interesting that the variation
owing to the scenario is smaller than that from the period. Future projections fluctuate less
than the observations.

Figure 11. Interaction plots of the 20-year return levels from the 21 CMIP6 models for three SSP scenarios averaged over
three periods and 46 grids in the Korean peninsula.
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Figure 12. Interaction plots of the 20-year return levels from the 21 CMIP6 models for three SSP scenarios for each period
(P1, P2, and P3).

Figure 13. Boxplots of the 20-year return levels (unit: mm) from the 21 CMIP6 models as the latitude changes from 35◦ to
42◦. The solid lines around the boxes across the latitude are the spatial medians of 20-year return levels for each latitude
and for P0 (1973–2010, i.e., the observation period), P1 (2021–2050), P2 (2046–2075), and P3 (2071–2100). The dashed lines
depict those values for the three scenarios (SSP2-4.5, SSP3-7.0, and SSP5-8.5).
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The detailed values of the 20-year return levels of AMP1 and annual maximum five-
day precipitation (AMP5) by latitude are presented in Table 3. These localized values
provide different information from the previous results based on the spatial medians
and averages over the Korean peninsula (Table S3). Table 3 indicates that a much higher
intensity occurs in the southern part of the Korean peninsula than in the northern part.
When the areas below and above 38◦ are considered the south and north, respectively,
the south is likely to receive approximately 1.54 (1.72) times heavier rainfall in the 20-year
return levels of AMP1 on average than the north (the spatial median) based on a rough
calculation using the above tables. Although we did not obtain these values, the localized
values of the return periods, the relative changes in the return levels, the exceedance
probabilities, and the expected number of occurring years can be obtained for each latitude.
Those values in the south would show higher intensity during extreme precipitation
with shortened expected waiting times compared to the spatial medians throughout the
Korean peninsula.

Table 3. The 20-year return levels (unit: mm) of the annual maximum daily precipitation (AMP1)
and of the annual maximum five-day precipitation (AMP5) averaged over each latitude for the
observations (OBS) during 1973–2010 and for future periods—namely, P1 (2021–2050), P2 (2046–
2075), and P3 (2071–2100). For each future period, the values were averaged over the three scenarios.

20-Year Return Level (AMP1) 20-Year Return Level (AMP5)

Latitude OBS P1 P2 P3 OBS P1 P2 P3

33 288 303 319 345 443 440 471 519

34 275 288 303 329 416 416 446 487

35 253 264 280 305 384 386 412 445

36 235 246 261 282 360 368 389 414

37 243 252 270 296 396 409 429 461

38 249 262 281 302 402 419 438 466

39 227 245 267 287 377 398 417 442

40 186 209 227 247 299 319 337 357

41 147 166 181 201 236 249 266 285

42 136 149 164 181 207 213 235 250

43 143 151 167 184 223 227 254 271

8. Comparison of PI-Weighted Ensembles to the Simple Average

For comparison between the PI-weighting scheme and the simple average for the
multimodel ensemble, we consider two measures. The first one is the error index I2 based
on Baker and Taylor [70] for the reference (historical) period. The second is the weighted
variance of return level prediction [71,72] for the future periods. In computing these
measures, non-bias-corrected data were used.

8.1. Error Index for the Historical Period

The error index can measure combined errors, that is, over multiple variables, com-
pared to the observed climate [40]. However, we only evaluate our target variable AMP1
over the reference period 1973–2010. In a first step, the normalized error is calculated
for the T-year return level as the difference between the PI-weighted multimodel and the
observations:

e2
w =

N

∑
n=1

(Sn − on)2

σ2
n

, (11)
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where Sn is the weighted multimodel T-year return level per grid point n. Sn is calculated
from the historical data that are not bias corrected. on is the T-year return level obtained
from the observations, and σn is the standard deviation of on. The corresponding e2

eq is
calculated for the nonweighted multimodel T-year return level. Note that, for each n, on and
σn are unchanged between e2

w and e2
eq because those are computed from the observations

on grid point n. Then, the error index is obtained by:

I2 =
e2

w
e2

eq
. (12)

This index can be useful to evaluate if the weighted mean is improved compared to the
simple average [40]. The smaller the I2, the larger the improvement in the weighted average
compared to the simple average for the target variable (AMP1) for the reference period.

The computed values of I2 in this study are 0.622 for PI-weights and 0.627 for P-
weights for the 20-year return level. Thus, there are 37.8% and 37.3% improvements in
the PI-weighted and the P-weighted averages, respectively, compared to the nonweighted
average. The decrease of the error index by adding I-weights from P-weights is 0.005,
which is a 0.80% decrease relative to that of the P-weights. The results for the 50-year return
level are similar to these.

8.2. Prediction Variance for the Future

The second measure to compare is from the weighted variance formula [71,72]:

Var(r(T)) =
K

∑
k=1

[rk(T)− r̄(T)]2 wk +
K

∑
k=1

Var(rk(T)) wk, (13)

where r(T) is the T-year return level, rk(T) is the T-year return level from the k-th model,
and r̄(T) = 1

K ∑K
k=1 rk(T) wk. The first term of (13) is the among-model variance, and the

second one is within-model variance. Var(rk(T)) is estimated using a bootstrap technique
in this study. Based on this variance, we quantify the skill of the PI-weighted method with
the Brier skill score [54]:

BSS = 100× {1 − VarPI
VarEq

}, (14)

where VarPI is the variance of the T-year return level calculated by (13) from the PI-weights,
and VarEq is the variance calculated by (13) from the equal weights for each grid point.
BSS is a relative quantity and shows a percentage improvement of the PI-weighted method
over the simple average.

Figure 14 shows the differences of variances of 20-year return levels calculated from
the PI-weights and the equal weights plotted for 46 grid points for each future period and
for each scenario. VarPI for the Y-axes is the variance calculated by Equation (13) from the
PI-weights. VarEq for the X-axes is the corresponding variance calculated from the equal
weights. In the top panel, more points are located below the diagonal lines, which means
that the variances calculated from the PI-weights are smaller more often than those from
the simple average. The middle (bottom) panel shows the differences of between-model
(within-model) variances. VarBM,PI and VarWM,PI for the Y-axis are between-model and
within-model variances from the PI-weights, respectively, and VarBM,Eq and VarWM,Eq
for the X-axis are the corresponding variances calculated from the equal weights. The
within-model variances from both weights are similar, as seen in the bottom panel. Thus,
we know that the differences in total variances in the top panel are mainly because of the
differences of between-model variances.

Table 4 reads the averaged values of BSS over 46 grid points, the averaged differences
of variances (unit: mm2) of the 20-year return level, and relative improvements (RIs)
for three periods and for three scenarios. The BSS values range from −2.2% to 22.5%.
The averages of BSS over all periods are 6.29% for SSP2, 15.2% for SSP3, and 13.1% for
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SSP5 (11.5% overall). These averages of BSS also increase as the period moves from P1
to P3. The BSS due to between-model variance is bigger than that due to within-model
variance. Watching the sixth to the eighth columns of this table, we know that the positive
differences of two variances (VarEq −VarPI) are mainly because of the differences of two
between-model variances (VarBM,PI − VarBM,Eq). These patterns are prominent for the
SSP5-8.5 scenario with increasing values from P1 to P3. The last column shows the RI of
the PI-weighted method over the simple average in the variances. The RI values range
from −3.3% to 26.0%. The averages of RI over all periods are 7.45% for SSP2, 19.1% for
SSP3, and 14.0% for SSP5 (13.5% overall). These averages of RI also increase as the period
moves from P1 to P3.

Figure 14. Scatter plot showing the differences of variances of the 20-year return levels calculated from the PI-weights and
the equal weights, plotted for 46 grid points in the Korean peninsula for each future period and for each scenario. VarPI for
the Y-axes (top panel) is the variance calculated by (13) from the PI-weights, and VarBM,PI (middle panel) and VarWM,PI

(bottom) are the between-model and within-model variances, respectively. VarEq, VarBM,Eq, and VarWM,Eq for the X-axis
are the corresponding variances calculated from the equal weights. The value on each point in the top panel is a sum of
those in the middle and in the bottom panels.



Atmosphere 2021, 12, 97 21 of 26

Table 4. The averaged values of the Brier skill scores (BSSs), averaged differences of variances
(unit: mm2) of the 20-year return level over 46 grid points in the Korean peninsula, and relative
improvements (RIs) of the PI-weighted method over the simple average (last column) for the three
periods and for the three scenarios. RI =

VEq−VPI
VPI

× 100. DV = VarEq −VarPI , DVBM = VarBM,Eq −
VarBM,PI , and DVWM = VarWM,Eq −VarWM,PI . Other acronyms are the same as in Figure 14.

ssp p BSS(%) BSSBM BSSW M DV DVBM DVW M RI(%)

P1 −2.2 −12.3 2.0 −50 −77 27 −3.3

SSP2-4.5 P2 7.7 19.7 3.2 129 82 47 8.5

P3 13.4 39.0 2.7 309 267 42 17.1

P1 17.9 42.9 5.4 300 238 62 24.0

SSP3-7.0 P2 11.0 22.5 4.7 228 153 75.0 13.7

P3 16.7 36.2 1.4 426 378 48 19.5

P1 6.4 24.7 −4.5 113 138 −25 8.0

SSP5-8.5 P2 10.4 33.9 −6.9 178 291 −113 8.0

P3 22.5 42.2 −1.1 826 834 −8 26.0

9. Discussion

It is generally accepted that increasing greenhouse gases induce atmospheric tempera-
ture warming, which results in increasing equivalent potential temperatures and specific
humidity, according to the Clausius–Clapeyron relationship [73]. The increase in atmo-
spheric water vapor is the main factor in generating convective instability. In view of this
insight, Kim et al. [26] obtained an indication that increasing the extreme precipitation
over South Korea in the past and future scenarios is related more to a change in convective
instability rather than to synoptic conditions. Another plausible explanation for the in-
crease in the maximum precipitation over the Korean peninsula is the increase in both the
frequency and strength of typhoons in the region. Typhoons have a greater influence on
the southern area than the northern part. The occurrence of extreme rainfall in the southern
part is related to more sources or variables than in the northern area [25,26].

We observed a scale discrepancy between the model grids and the observation stations,
which may compromise the credibility of our results. Regional projections require a fine
resolution of the simulation models, whereas some of the CMIP6 models have a coarse
resolution. It is known that the model spread is one of the major sources of uncertainty in
regional predictions (Hawkins and Sutton, 2009). However, large numbers of simulation
models can reduce the uncertainty and provide a robust projection [74,75]. A total of
twenty-one CMIP6 models with different scales used in this study can cover the study
region with a finer spatial structure to increase the reliability of the projection.

The daily precipitation data consist of measurements from 00:00 to 24:00 throughout
the day. In daily observations, the rainfall does not accumulate between 22:00 and 02:00.
In the data used in this study, such precipitation is divided and recorded in two separate
days. The actual serious daily risk due to heavy rainfall does not exactly depend on
the precipitation over the time duration from 00:00 to 24:00 exclusively. It is therefore
recommended to consider the AMP1 data based on the maximum precipitation during
the 24 h movement. In this sense, the results presented in this study underestimate the
actual intensity and frequency of AMP1. More realistic daily data, such those as obtained
after moving for 24 h and the annual maximum of two (and several) days of precipitation,
should be used in a future study for assessment of risk owing to extreme rainfall.

Brunner et al. [36,61] considered multiple observational (or reanalysis) datasets to
include an estimate of the observational uncertainty. They proposed a novel approach to
account for the observational spread and uncertainty in a multi-model weighting study,
which can lead to robust results and a more precise uncertainty quantification. In addition,
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considering multiple observational datasets may address the problem in which the BC and
performance-based weighting scheme utilize an excessive number of observations. We
believe that using the observations twice in the BC and weight calculation is unadvisable.
Xu et al. [35] considered a Bayesian weighting method that removes observations during
the initial phase of the downscaling and adds them in the estimation of the posterior
distribution. However, if the series of observations is sufficiently long to divide into
two parts, we may use one part for the BC and the other part for the weight calculation.
Although we did not apply these methods, this would be a good approach in a future study.

In determining the shape parameter σD for the performance weights, we used the
standardized return levels. However, as a different approach, the BMA method described
in [27,41,72] can be employed. The BMA weighting does not need to standardize the
return levels or determine the shape parameter σD. It requires a bootstrap to estimate the
variances of the return levels, which is straightforward in current computing facilities. Thus,
calculating the P-weights based on the BMA, with an effort to minimize the probability of
overconfidence, is recommendable.

10. Summary

We estimated the future changes in precipitation extremes within the Korean peninsula
using observations, 21 multiple CMIP6 models, generalized extreme value distribution,
the multivariate bias correction technique, and the model weighting method (PI-weighting),
which account for both the performance and independence of the models. To avoid
overfitting in the PI-weighting, we considered five climate variables for East Asia.

In applying the PI-weighting method, we suggest two ways of selecting two shape
parameters, based on the p-value of the chi-square statistic and entropy. The suggested
methods are simple and intuitively appealing, although they may need more justification
for use in other studies.

From the analysis described this study, we realized that a 1-in-20 year (1-in-50 year)
annual maximum daily precipitation within the Korean peninsula will likely become a
1-in-11 (1-in-26) year, a 1-in-8 (1-in-20) year, and a 1-in-7 (1-in-15) year event in terms of the
median by the end of the 21st century under the SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios,
respectively, as compared to the observations from 1973 through 2010. These results are
similar to or less frequent than those obtained by previous studies [23,27,41], but still, they
predict more frequent and intensified extreme precipitation events by the end of the 21st
century as compared to 1973 through 2010.

The expected frequency of the reoccurring years, particularly for AMP1 from 100 to
300 mm under the SSP5 scenario, is projected to increase by approximately 1.0 times that
of the past 30 years for period 1 (2021–2050), approximately 1.25 times that for period 2
(2046–2075), and approximately 1.91 times that for period 3 (2071–2100).

From the analysis based on latitude, we found that extreme rainfall is more prominent
in the southern and central parts of the peninsula. The downpour in the southern part is
approximately 1.54 times heavier than that of the northern part and approximately 1.72
times that of the spatial median of the Korean peninsula. For example, for 150 mm of
AMP1, the expected waiting times until reoccurrence in the southern part (spatial median
of the peninsula) are 2.6 (4.4) years during the reference period, 2.1 (3.6) years during P1,
1.7 (3.0) years during P2, and 1.5 (2.5) years during P3 based on the SSP5-8.5 scenario.

Heavy rainfall can have a significant effect on human life, communities, infrastructure,
agriculture and livestock, and natural ecosystems. Thus, in addressing the impact of climate
change due to more frequent extreme precipitation events, governments and communities
should prepare the proper infrastructure and systems more carefully and securely to
prevent critical damage, such as loss of life from landslides and flooding.

Supplementary Materials: The following are available at https://www.mdpi.com/2073-4433/12/1
/97/s1. Table S1: The list of 21 CMIP6 (Coupled Model Intercomparison Project Phase 6) models
analyzed in this study. Table S2: The similarity distance metric Sij between model i and model j.
Table S3: Statistics of 20-year and 50-year return levels of the annual maximum daily precipitation
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(unit: mm) averaged over 46 grids in the Korean peninsula for the observations (OBS) and the future
periods under the three SSP scenarios. Table S4: Relative change (unit: %) in 20-year and 50-year
return levels of the annual maximum daily precipitation averaged over the Korean peninsula relative
to 1973–2010. Table S5: Statistics of 20-year and 50-year return periods (unit: year) of the annual
maximum daily precipitation averaged over 46 grids in the Korean peninsula. Table S6: Spatially
averaged the exceedance probability over the Korean peninsula for the annual maximum daily
precipitation (AMP1) from 100 mm to 500 mm, obtained from the observations (OBS) and the CMIP6
models. Table S7: The expected frequency of reoccurring years during 30 years for specific the annual
maximum daily precipitation (AMP1) values from 100 mm to 500 mm in the Korean peninsula,
obtained from the observations (OBS) and the CMIP6 models. Figure S1: Examples of time series
plots of the observations (black line), APHRODITE data (red line), and the bias-corrected data (blue
line) in the Korean peninsula. Figure S2: Arrangement of data and 7-year moving averages composed
of the historical data from 1850 to 2010 and the future data for computing the Spearman correlation
coefficient between models. Figure S3: Schematic box-plots of 50-year return levels of the annual
maximum daily precipitation (unit: mm) averaged over 46 grids in the Korean peninsula for the
future periods under the three SSP scenarios. Figure S4: Isopluvial maps of 50-year return levels of
the annual maximum daily precipitation for 46 grids over the Korean peninsula. Figure S5: Isopluvial
maps of for the relative changes (unit: %) of 20-year and 50 return levels relative to 1973–2010 for
the annual maximum daily precipitation for 46 grids over the Korean peninsula. Figure S6: The
exceedance probability plots for the annual maximum daily precipitation (AMP1) from 50 mm to
300 mm in the Korean peninsula, obtained from the observations (OBS) and the CMIP6 models.
Figure S7: Interaction plots between 21 CMIP6 models and the latitude in which the latitude changes
from 33◦ to 43◦, for 20-year return levels (unit: mm) computed over the Korean peninsula.
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