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Abstract: A computationally efficient source inversion algorithm was developed and applied with
the Lagrangian atmospheric dispersion model DIPCOT. In the process of source location estimation
by minimizing a correlation-based cost function, the algorithm uses only the values of the time-
integrated concentrations at the monitoring stations instead of all of the individual measurements in
the full concentration-time series, resulting in a significant reduction in the number of integrations of
the backward transport equations. Following the source location estimation the release start time,
duration and emission rate are assessed. The developed algorithm was verified for the conditions of
the ETEX-I (European Tracer Experiment—1st release). Using time-integrated measurements from
all available stations, the distance between the estimated and true source location was 108 km. The
estimated start time of the release was only about 1 h different from the true value, within the possible
accuracy of estimate of this parameter. The estimated release duration was 21 h (the true value was
12 h). The estimated release rate was 4.28 g/s (the true value was 7.95 g/s). The estimated released
mass almost perfectly fitted the true released mass (323.6 vs. 343.4 kg). It thus could be concluded
that the developed algorithm is suitable for further integration in real-time decision support systems.

Keywords: source inversion; source term estimation; atmospheric transport; ETEX; Lagrangian
model; DIPCOT

1. Introduction

The identification and characterization of sources of radioactive substances that have
been detected, without or with limited prior information about their origin, has attracted
the attention of researchers for a long time due to regular incidents of this type [1–3]. In
such situations, the first questions that arise are about the origin of the release and the
quantity of the released substance. The application of atmospheric dispersion models
(ADMs) for the analysis of the potential sources of the detected contaminants is one of the
important tools (often called ‘inverse modelling’ or ‘source inversion’) that help in solving
the source identification problem. Even in the case of the Chernobyl accident in 1986,
during the first three days, before the accident was confirmed by the USSR, the Chernobyl
origin of the radionuclides detected in Sweden was at first identified by means of modelling
and trajectory analysis [4]. The advanced and mathematically rigorous approach of solving
inverse atmospheric dispersion problems was developed by Marchuk [5] based on adjoint
equations of atmospheric transport, while Pudykiewicz et al. [6] applied this method for
the global atmospheric transport problem following an hypothetical nuclear test. Following
those pioneering works, the scientific community has made substantial progress towards
solving the problem of locating an unknown source releasing a hazardous atmospheric
pollutant through developing source inversion methods in particular for cases of regional-
scale dispersion [3,7–12]. These approaches are implemented by combining the available
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measurements, atmospheric transport models, and data assimilation algorithms. Presently,
the source inversion methods have reached a relatively high level of sophistication, and
during the recent incidents involving radioactive substances, such as detection of Ru-106
over the territory of Eurasia in the fall of 2017, they were successfully applied by researchers
from different countries [8–12].

Besides the applications of source inversion methods to real accidents—in which the
source parameters are never known exactly—their proper evaluation requires comparisons
of their results with data of controlled atmospheric transport field experiments on the
regional scale, in which source parameters are known. One of the most famous such
experiments is the European Tracer Experiment—ETEX [13,14]. A considerable amount of
work evaluated the source inversion methods against data of ETEX [11,15–18]. However,
most of them concentrated on estimating the emission inventories and time parameters of
the release, while only Tomas et al. [11] reported on the estimated source location obtained
after application of their model to the ETEX experiment. The estimated source location
reported in [11] was at a distance of about 156 km from the true location (distance evaluated
in this paper from the coordinates presented in Table 1 of [11]). Therefore, it is clear that
additional studies concentrating on evaluation of estimated source location are needed.

Besides the strong public interest for information about the unknown source of de-
tected radionuclides, radiation protection authorities are highly interested in the opera-
tional applicability of computational methods for this purpose. Some progress has been
achieved in an automated solution of the source inversion problem in the case of a known
source location—assessing in this case the quantities of the released substances [19,20]. In
case of an unknown source location, an operational version of a simplified source inversion
method was developed by Wotawa et al. [7] for the Comprehensive Nuclear-Test-Ban
Treaty Organization (CTBTO). However, the automation of source inversion methods and
their integration in real-time computerized decision support systems remains a challenging
task because of the ill-conditioned nature of the related mathematical problem, i.e., the
possibility of non-uniqueness of the solution or its sensitivity with respect to input parame-
ters. An additional complexity in applying source inversion methods in the framework
of real-time decision support systems arises from the fact that significant computational
resources are required to run backward transport simulations. In standard source inversion
approaches, the number of backward integrations of the atmospheric transport equation
is equal to the number of measurements that are used for solving the source inversion
problem. Currently, the application of inverse modelling methods requires a high user
expertise and, in practice, such methods are usually applied by the model developers.

In a previous work [20], Kovalets et al. integrated an algorithm of estimation of time-
dependent emission rates for the case of a known source location in the Lagrangian ADM
DIPCOT (DIsPersion over COmplex Terrain) [21,22], functioning within the EC-funded
nuclear emergency response system RODOS (Real-time On-line Decision Support system
for nuclear emergency management) [23]. The goal of the present work is to develop a
computationally efficient source inversion algorithm for the case of an unknown source lo-
cation applied with the DIPCOT ADM suitable for further integration in real-time decision
support systems, such as RODOS. The present study is also motivated by the described
above need for more studies of source inversion methods, with emphasis on evaluation of
estimated source location against data from field experiments on atmospheric transport.

This paper is organized as follows: in Section 2, the source inversion method is
described; in Section 3, the results of the evaluation of the proposed method against the 1st
release of the European Tracer Experiment—ETEX-I [13,14]—are presented; and the last
section presents the conclusions drawn from the presented research study.

2. Method Description
2.1. Assessment of Source Location

In this work, we use the correlation-based cost function for solving the problem of
the identification of a source location as in [10,24]. Assuming a constant release rate, this
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approach allows for separating the solution of the problem of identification of the source
coordinates, start time, and duration of the release from the problem of emission rate
estimation. Moreover, Tomas et al. [11] successfully applied a time-integrated correlation-
based cost function to the problem of estimation of source location. It could be shown
that the usage of such a cost function is equivalent to the assumption of a stationary
continuous source. Thus, the problem of source location estimation was further separated
from the problem of estimation of the release start time and duration. The assumption of
continuous source is also used in this work at the stage of source location identification.
The correlation-based cost function and the corresponding minimization problem used for
estimation of source location are defined as follows:

J = − (cm − cm)(co − co)√
(cm − cm)

2
√
(co − co)

2
→

xs ,ys ,zs
min (1)

where the arithmetic averaged variables are denoted by overbars; xs, ys, and zs are the
source coordinates to be estimated by the minimization procedure; co is the vector of the
observed concentrations; and cm is the vector of the respective simulated concentrations.
The observed concentrations may be time-integrated before being used in the minimization
procedure, as it is further discussed below.

To evaluate the concentration values cm for different source coordinates, we integrate
the equations of the Lagrangian puff/particle model DIPCOT in time [21]. Let us consider
for example the forward equation of change of the xp-coordinate of puff p:

dxp

dt
= U

(
xp, yp, zp, t

)
+ u (2)

du = ax dt + bx dWx(t) (3)

where U is the Reynolds-averaged x-component of the wind velocity vector, evaluated
at the position of puff

(
xp, yp, zp

)
, and u represents the turbulent velocity fluctuation

component. The latter is calculated by the stochastic Langevin Equation (3). In (3) the
coefficients ax and bx (“drift” and “diffusion” coefficient, respectively) are functions of
space, velocity, and time and depend on atmospheric stability conditions, while dWx(t) are
increments of a Wiener process with zero mean and variance dt, uncorrelated in time. The
relationships that are used in DIPCOT for calculating the ax coefficient are deduced from
the solution of the Fokker–Planck equation containing the Eulerian velocity probability
density function. The form of the latter depends on the atmospheric stability conditions. In
the vertical direction for unstable conditions, turbulence is assumed to be inhomogeneous
and skewed, while for stable conditions, it is assumed inhomogeneous Gaussian. In the
horizontal direction, turbulence is assumed to be homogeneous isotropic Gaussian for
all stability conditions. The coefficient bx is calculated by requiring consistency of the
Lagrangian velocity structure function estimated by Equation (3) with the one obtained
from the Kolmogorov’s similarity theory. The expressions for calculating the standard
deviations of the turbulent velocity fluctuations and the Lagrangian time scales that enter
the relationships for the coefficients ax and bx depend on the stability conditions, the mixing
layer height, and the height above ground. For specific details, the reader is referred to [21].
The model-puffs are created in accordance with the distribution of the sources volumetric
density f (x, y, z, t). In the case of a single source located at point (xs, ys, zs), acting with
release intensity qs during the time interval [ts, ts + ∆s] (ts is the start time of release, and
∆s is the release duration), f is defined by the following relationship:

f = δ(x− xs) δ(y− ys) δ(z− zs) χ[ts ,ts+∆s ](t) qs (4)
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where δ(.) are delta-functions, and χ[ts ,ts+∆s ](t) is the ‘indicator’ function:

χ[ts ,ts+∆s ](t) =
{

1, t ∈ [ts, ts + ∆s]
0, otherwise

(5)

Equations (2) and (3) are solved from the start simulation time t = 0 to the end of
simulation period t = T. In case of a source inversion problem, T represents the time of the
last measurement.

To avoid a solution of Equations (2)–(5) of the forward model for every possible source
position, we integrate the backward equations of puffs movement that for the x-coordinate
of puff p could be written as follows:

dx′p
dt′

= −U
(

x′p, y′p, z′p, t′
)
+ u (6)

where ‘backward’ time t′ is defined as t′ = T − t and ranges from t′ = 0 to t′ = T and
the velocity fluctuation u is defined by Equation (3) but with t substituted by t′. Similar
equations are written for y- and z-coordinates of puffs. The backward equations are
integrated separately for each measurement, and puffs are created in accordance to the
distribution of the corresponding measurements’ probe function p, defined as follows. If a
particular measurement was taken at spatial point (xo, yo, zo) and collected during time
interval [to − ∆o, to] (to is the end time of measurement interval, and ∆o is the measurement
duration) then the probe function p is given by the relationship:

p = δ(x− xo) δ(y− yo) δ(z− zo) χ[to−∆o ,to ](t) (7)

where the indicator function χ[to−∆o ,to ](t) is defined analogously to Equation (5).
The backward Equation (6) in which the first (advection) term on the r.h.s. changes

sign compared with the corresponding term of the forward transport Equation (2) while
the second (diffusion) term remains unchanged is constructed by analogy to the Eulerian
adjoint advection-diffusion transport equation [6]. Concentrations c∗ calculated from puff
coordinates

(
x′p, y′p, z′p

)
following the solution of the backward equations are thus analo-

gous of those calculated from the solution of the adjoint equations. Even though strictly
speaking Lagrangian and Eulerian models of atmospheric transport are not equivalent [25],
it is assumed that forward and adjoint concentrations, calculated from puff coordinates
after the integration of Equations (2) and (5)–(7) approximately satisfy the same Lagrange
duality relationship, as for the case of solutions of forward and adjoint equations of Eulerian
atmospheric transport model [6]:

T∫
0

∮
Ω

p·c dV dt =
T∫

0

∮
Ω

f ·c∗ dV dt (8)

Substituting relationships (4) and (7) in Equation (8), we obtain the following:

to∫
to−∆o

c(xo, yo, zo, t) dt = cm(k) = qs

ts+∆s∫
ts

c∗(xs, ys, zs, t) dt (9)

where index k is the position of the respective measurement in measurement vector cm.
Thus, provided that the backward Equations (6) and (7) was solved, the model value to be
compared with the corresponding measurement is easily evaluated for arbitrary source
location by using the adjoint concentration field. The r.h.s. expression of Equation (9) is
further denoted as source–receptor function (SRF). As it was noted above, at the stage of
source location identification, it may be appropriate to use the assumption of continuous
release to separate the problem of source location identification from the problem of
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release start time and duration estimation. With the assumption of continuous release, the
relationship (9) for SRF is changed to the following:

to∫
to−∆o

c(xo, yo, zo, t) dt = cm(k) = qs

T∫
0

c∗(xs, ys, zs, t) dt (10)

Relationship (10) does not contain the unknown start time and duration of the release
ts and ∆s, and it is further used in the process of source location identification. Since
the finite-duration release is substituted by the continuous release in the source location
estimation, it can further be assumed that it is reasonable to substitute the measurements
time series at a station by a single time-integrated measurement at that station. In that case,
vectors cm and co are vectors of positions for all detector stations and not time. Indeed,
even if the use of the continuous release assumption formally separates the start time of
the release from the minimization problem (1), the plume arrival times at the measurement
stations still affect the values of the cost function. Thus, overfitting is likely to happen,
i.e., release at the wrong location and time could potentially better fit the plume arrival
time at a station than the release at the true location and time. The use of time-integrated
measurements excludes the influence of the correctness of the plume arrival time on the
value of cost function (1). It should be noted that, in the case of stationary meteorology,
the use of time-integrated observations is fully justified mathematically: it could be shown
that, in stationary meteorological conditions, time-integrated concentrations following a
finite duration release are proportional to concentrations following a continuous release
with a proportionality constant independent of sensor’s location [26].

Assuming that the measurement intervals for a given station do not overlap and their
respective number is No, the simulated value corresponding to time-integrated measure-
ments is evaluated by a substitution of probe function p (7) with the sum of probe functions
defined for all measurement intervals:

p = δ(x− xo) δ(y− yo) δ(z− zo)
No

∑
i=1

χ[to,i−∆o,i ,to,i ]
(t) (11)

Then, the source–receptor function (10) is redefined as follows:

No

∑
i=1

to,i∫
to,i−∆o,i

c(xo, yo, zo, t) dt = cm(k) = qs

T∫
0

c∗(xs, ys, zs, t) dt (12)

where index k is now the number of observation station. The adjoint concentration c∗ was
obtained from the solution of the backward Equation (6) with puffs created according to
the probe function (11). Thus, the use of time-integrated measurements leads to a reduction
in the computational time by a factor of 1/N−1

o (No could be different for different stations;
therefore, the overbar denotes averaging of reduction factors over different stations). This
reduction factor is approximately equal to the average number of measurements at a single
station. As it is shown below, the use of time-integrated measurements does not reduce the
accuracy of the algorithm in calculating the source location.

For implementing the solution of the backward Equation (6) in the ADM DIPCOT, it is
sufficient to change the signs of horizontal velocity components in the input meteorological
data before processing them with the meteorological pre-processor (MPP) [22]. As the MPP
uses a divergence minimizing procedure, the vertical velocity components is automatically
inverted. The time order of the calculated meteorological fields by the MPP is inverted in
accordance with the definition of backward time t′ entering Equation (6). The solution of the
backward transport Equations (6) and (11) corresponding to different measurement sensors
can be performed by a single ADM run with multiple sources located at the positions of
different sensors and releasing different species. The calculated adjoint concentration of
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a particular species represents the solution of the backward transport equation for the
corresponding sensor.

2.2. Assessment of Release Start/End Times and Inventory

After estimation of the release location, the start-time ts and duration ∆s of the release
are assessed by minimizing the same cost function (1), using concentration measurements co
with a maximum possible time resolution instead of time-integrated measurements. Model
concentrations cm are calculated in the course of the minimizing procedure with the already
estimated source location but with different start times and durations of release. To do so,
a forward run is performed with a continuous source at the estimated location and with a
reference release rate qr (for example, qr = 1). The release period is split into Nt = T/τ
subintervals represented by different groups of puffs (‘species’), where τ is the release
duration corresponding to a single group of puffs. Concentrations created by different
groups of puffs at a given point represent the contribution of the corresponding release
subinterval to the total concentration. The range of the possible values for ts is (0, ts,max),
where ts,max < T is considered the time of the earliest detection of the contaminant at a
measurement station. The range of possible values for ∆s is (0, T − ts), where the upper
limit corresponds to a continuous release, lasting until the end of the simulation period. In
the minimization algorithm, the ranges of the possible values for ts and ∆s are discretized
with the time step τ. In practical applications, it may be appropriate to set this time step
equal to the minimum time resolution of measurements, as it is below (Section 3.1). By
selecting appropriate groups of puffs it is then possible to calculate concentrations created
by releases with different start times and durations.

The pseudo-code of the minimization algorithm for finding ts and ∆s is the following:

J = 0
Nt = T/τ
do i = 1, Nt

tcur
s = (i− 1)τ

do j = i + 1, Nt
∆cur

s = (j− i)τ
Jcur = eval_J(tcur

s , ∆cur
s )

if (Jcur < J) then
ts = tcur

s
∆s = ∆cur

s
J = Jcur

end
enddo

enddo

(13)

where all possible start times of release ts are processed with the time step τ and, for each ts,
all possible release durations of release ∆s are processed with the same time step. Function
eval_J evaluates the cost function (1) for an arbitrary pair of parameters ts and ∆s. Thus,
the solution is found by direct minimization of the cost function.

It should be noted that, at the stage of assessment of ts and ∆s, the value of the
correlation-based cost function is still independent of the particular value of release rate qs.
The latter is estimated after ts and ∆s have been defined by multiplication of the reference
release rate by the ratio of the average observed over average simulated concentrations
with the already evaluated ts and ∆s:

qs =
co

cm
qr (14)
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3. Method Evaluation against ETEX-I

Evaluation of the proposed method was performed for the conditions of the 1st release
of the European Tracer Experiment—ETEX-I [13,14]. In the next paragraphs, we describe
the model setup for the conditions of the experiment and the source inversion scenarios
and present the results of the calculations.

3.1. DIPCOT Setup for the Conditions of ETEX-I

ETEX-I was performed on the territory of several European countries (Figure 1) during
23–25 October 1995. The source of the tracer (a non-reacting and non-depositing gas) was
located in France: 2.0083 W, 48.0583 N, 8 m above ground. The release started on October
23 at 16:00 UTC and lasted approximately 12 h, while the emission rate was 7.95 g/s. The
measurements of 3 h average concentrations following the release were performed by
168 stations, shown in Figure 1.
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the source location.

In a previous work [27], DIPCOT was successfully evaluated for the conditions of
the ETEX experiment. In this study, the DIPCOT dispersion simulations were performed
using ERA5 reanalysis meteorological data downloaded from the Climate Data Store
(https://cds.climate.copernicus.eu/#!/home, last accessed on 22 January 2021). The data
have been retrieved from the following datasets: “ERA5 hourly data on pressure levels
from 1979 to present” and “ERA5 hourly data on single levels from 1979 to present”. The
spatial resolution of both datasets is 0.25◦ × 0.25◦. The original meteorological data have
been processed by the MPP to make the conversion towards the computational grid of the
ADM and to calculate missing variables that are needed by the ADM. The MPP performs a
divergence minimizing procedure to ensure mass conservation, during which the three

https://cds.climate.copernicus.eu/#!/home
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wind velocity components are adjusted by taking into account the underlying topography.
The Lagrangian-puff mode of operation of DIPCOT has been employed. A non-depositing
passive tracer has been assumed. The time interval between puff releases was set to
10 s. The model was set to calculate concentrations at 10 min intervals, and from these
results, time-integrated and time averaged concentrations were calculated. The solutions
of the backward equations were performed with the same settings of DIPCOT as in the
forward runs. For the backward runs, the meteorological fields have been processed by
the MPP changing the signs of the horizontal velocity components and by reversing their
time sequence as described in the previous section. In the backward DIPCOT runs, puffs
were released from the locations of the measurement stations as described in Section 3.2.
The computational domain of DIPCOT is Cartesian. The geographical coordinates of its
lower-left corner for the ETEX-I were set at (3.05◦ W, 38.52◦ N) and that of its upper-right
corner were set at (30.45◦ E, 60.63◦ N), resulting in a dimension of 2600 km in the west–east
direction and 2400 km in the south–north direction in a Lambert Conformal Projection. This
computational domain covered an extended area around the ETEX-I domain. The adjoint
concentrations were saved on a computational grid with a horizontal spatial resolution
of 10 km at 1.5 m above ground. Thus, in inversion runs, it was considered known that
the release happened near the ground surface. Before using the adjoint concentrations
in the source inversion algorithm, the validity of the Lagrange duality relationship (8)
was checked by comparing concentrations calculated at locations of stations by adjoint
concentrations and Equation (9) with the concentrations calculated in a forward run,
assuming release from the true source location. The correlation coefficient between the
concentrations calculated in the two different ways was 0.89. Thus, it was concluded that
adjoint concentrations could be then used in the source inversion algorithm.

In the solution of the forward transport equation for estimation of the release start
time and duration according to algorithm (13), the time interval τ between groups of puffs
representing different times of release was set to τ = 3 h, equal to the time resolution of
concentration measurements in ETEX. Concentrations in the forward runs were calculated
and saved at the exact locations of measurement stations.

3.2. Results of Simulations

A basic aim of this study was to evaluate the feasibility to use a single time-integrated
concentration measurement at each station instead of all of the measurements available
in the concentration time series at the respective station. For this purpose, we performed
two sets of source inversion (SI) calculations. In the first set (SI-1) we used all of the 3 h
measurements from a reduced set of the stations that are available for ETEX-I. Thus, we
selected 46 stations (appearing as black rhombuses in Figure 1) out of the full set of ETEX-I
stations (Figure 1) and performed backward dispersion simulations to calculate adjoint
concentrations with probe functions defined by Equation (7). Two inverse computations
were performed in this set to determine the source location: in the first run (SI-1a), the
original 3 h-averaged observed concentrations were used for source inversion (in total,
419 measurement values). In the second run (SI-1b), the sum of the observed concentrations
at a given station multiplied by the averaging period of a single measurement dt = 3 h was
used in source inversion:

co = dt
No

∑
i=1

co,i (15)

For the stations where concentrations were continuously monitored, i.e., when there
were no time gaps in the measurements, the above value corresponds to the time-integrated
concentration. The total number of time-integrated measurements used in SI-1b was thus
equal to the number of the selected stations (46)—almost by one order of magnitude less
than the number of measurements in SI-1a. In backward runs for the scenario SI-1b, the
puffs were released according to the distribution of the probe function (11) corresponding
to the sum (15).
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The estimated source locations in both cases SI-1a,b are shown in Table 1. As it is
seen from the table, the difference between estimated source locations in the two runs is
small: distances between estimated and true source locations in runs SI-1a,b are 99.3 and
97.0 km, respectively. Moreover, the distance between the two estimated source locations is
23 km, which is by a factor of more than 4 less than the abovementioned distances between
estimated and true source locations. It should be also noted that, as presented in Table 1,
the maximum correlation coefficients achieved in runs SI-1 were quite different: 0.41 in case
of SI-1a and 0.76 in case of SI-1b. Thus, in the case of using time-integrated measurements,
higher values of correlation coefficients are obtained, which is expected considering that
slight discrepancies in plume arrival times lead to deterioration of correlation coefficient in
the case of using time-dependent measurements.

Table 1. True and estimated source locations in SI-1 in cases of using all observations from the
selected stations (SI-1a) and using time-integrated observations from the selected stations (SI-1b).

Case Lon, Deg. Lat, Deg. Dist. to True
Source, km

Maximum Corr.
Coef.

True −2.008 48.058 0 -
SI-1a (all obs.) −0.678 48.007 99.3 0.41

SI-1b (time-int. obs.) −0.763 47.807 97.0 0.76

Figure 2 shows spatial distributions of the correlation coefficient, normalized by its
maximum value (Table 1), calculated in runs SI-1a,b. It should be noted that, despite
the similar shapes of the obtained distributions, in the case of using time-integrated
measurements (SI-1b), the area of possible source locations (defined for instance as the area
covered by the 0.5 isoline of normalized correlation) is greater compared with the case of
using time-dependent measurements (SI-1a). Nevertheless, because of the closeness of the
estimated source locations in runs SI-1a and b noted above, it could be concluded that it is
reasonable to use time-integrated measurements for the estimation of a source location in
operational applications of a source identification method.
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A reduced set of observations for runs SI-1 was used for two main reasons: to reduce
the required computational resources and, because in an emergency situation, the number
of measurements is usually limited, so testing with a realistic number of measurements
is necessary. The stations for the runs SI-1 were chosen based on two criteria: (1) the area
covered by the selected stations was comparable with the whole experimental area and
(2) time breaks in measurements at the respective stations were absent. However, because
the accuracy of the obtained estimation of source location was almost the same in runs
SI-1a,b as discussed above, it was concluded that calculation with the raw 3 h averaged
concentrations for the whole ETEX-I dataset is not necessary.

Therefore, in the second run (SI-2), only time-integrated measurements from all ETEX-
I stations that had given valid measurements (168 values) were used for estimation of all
source parameters—location, release start time and duration, and release rate according
to the method described in Section 2. Table 2 presents a summary of the obtained results
from this run. The estimated source location is at distance of about 108 km from the true
source, which is slightly worse compared with the set of runs SI-1. Although the number
of measurements used in the SI-2 run was about 3.7 times greater than in the SI-2b run, the
distance between the estimated and the true source location changed only by about 11%.
Therefore, the source inversion method is not sensitive to the number of measurements
used, at least when this number exceeds several dozens of values. At the same time, the
results of source inversion in the SI-2 run are of comparable and even better accuracy than
the results of source inversion reported for the same experiment by Tomas et al. [11]. It
is also interesting that the distance between the estimated and the true source location is
comparable with the resolution of the measurement network, estimated as the square root
of the area covered by the measurements divided by the number of measurement stations
and equal to ≈104 km.

Table 2. True and estimated source location, release start time and duration, release intensity, and
released mass in SI-2.

Parameter True Estimated

Lon, deg −2.008 −0.712
Lat, deg. 48.058 47.625

Dist. to true src., km 0 108 km
Release start date-time 23 October, 16:10 23 October, 15:00

Release duration, h 12 21
Release rate, g/s 7.95 4.28

Released mass, kg 343.44 323.6

Figure 3 shows the spatial distribution of the normalized correlation coefficient ob-
tained in the process of source location estimation based on the run SI-2. Qualitatively this
figure is similar to the distribution in runs SI-1.

To proceed with the uncertainty analysis in run SI-2 the confidence limits of the
estimated source location were calculated by application of the bootstrap method [28].
To do that, the MATLAB “bootci” function was used with the measurement vectors as
input together with the pre-calculated adjoint concentrations and combined with the
subroutine implementing the minimization process of the cost function (1). The number
of iterations (i.e., runs of the minimization process with randomly excluded records from
the measurements vector) used for obtaining the 95% confidence intervals of the estimated
source coordinates was set to 10,000. The estimated confidence limits for source coordinates
were −5.61 ≤ lon ≤ −0.24 deg. and 47.61 ≤ lat ≤ 51.87, as shown in Figure 3 by the square
with the indicated coordinates of corners. The domain within the confidence limits is quite
large; however, its area is by a factor of about 30 less than the area of the computational
domain. Thus, the inverse method allows for reducing the search area of the unknown
source by more than one order of magnitude.
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The estimated start time of the release in run SI-2 (23 October, 15:00) is very good,
keeping in mind that the difference with the true start time is only about 1 h, i.e., less than
the averaging time of measurements—3 h, which is the best possible accuracy of estimate
of the start time. The release duration obtained in run SI-2 (21 h) overestimates the duration
of the true release by a factor of almost 2 (12 h). This increase in the release duration is
compensated by a decrease in the estimated release rate (4.28 g/s as compared to 7.95 g/s)
so that the estimated released mass fits almost perfectly the true released mass (323.6 vs.
343.4 kg).

4. Conclusions

In this work we developed a computationally efficient source inversion algorithm for
the case of an unknown source location and applied it with the Lagrangian atmospheric
dispersion model DIPCOT. The algorithm is based on a previously developed source
inversion approach that uses a correlation-based cost function, but with the additional
assumption of continuous release at the stage of source location estimation. The latter
assumption allows for separating the processes of source location estimation from the
assessment of release start time, duration, and released substance quantity. The backward
equations of atmospheric transport are solved to calculate adjoint concentrations, which
are subsequently used for the rapid calculation of the concentration values to be compared
with measurements, for different locations of the unknown source. The computational
efficiency of the algorithm of the source location estimation is further improved by using
only the values of the time-integrated concentrations at the respective stations instead of the
full concentrations time series. This approach, which was proposed for the first time in this
work, allows for reducing the number of integrations of the backward transport equations
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by a factor approximately equal to the average number of measurements at a single station.
Following source location estimation, the release start time and duration are evaluated by
minimizing the same correlation-based cost function but using the assumptions of finite
duration release and full concentration time series measured by stations. The emission rate
is then readily obtained by normalizing the unit (reference) release rate with the ratio of
the average observed over simulated concentrations.

The developed algorithm was evaluated for the conditions of the famous ETEX-I
experiment on regional-scale atmospheric transport. It was shown for the first time that
using the values of the time-integrated concentrations at the respective stations instead
of the full concentrations time series did not increase the error in the estimated source
location. Using time-integrated measurements from all of the ETEX stations, the distance
between the estimated source location and true location was 108 km, which is comparable
with the results of other published algorithms. The estimated start time of the release was
only about 1 h different from the true start time—a difference that is less than the averaging
time of measurements (3 h), which is the best possible accuracy of estimate of the start time.
The release duration evaluated by the calculations (21 h) was overestimated by a factor
of almost two compared with the true value (12 h). This increase in release duration was
compensated by a decrease in the estimated release rate (4.28 g/s compared with 7.95 g/s)
so that the estimated released mass almost perfectly fitted the true released mass (323.6 vs.
343.4 kg).

It can thus be concluded that the developed algorithm is suitable for solving source
inversion problems of atmospheric transport of the temporal and spatial scales similar
to the conditions of ETEX experiment—release duration up to 24 h, spatial scale of up to
about 1000 km. To aid decision makers in dealing with such problems, the method could
be integrated in real-time decision support systems for hazardous substances atmospheric
releases. The application of the method to problems of larger spatial and temporal scales
needs further testing, especially with respect to the possibility of using time-integrated
measurements.
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