
atmosphere

Article

A GPU-Accelerated Radiation Transfer Model Using the Lattice
Boltzmann Method

Yansen Wang 1,*, Xiping Zeng 1 and Jonathan Decker 2

����������
�������

Citation: Wang, Y.; Zeng, X.; Decker,

J. A GPU-Accelerated Radiation

Transfer Model Using the Lattice

Boltzmann Method. Atmosphere 2021,

12, 1316. https://doi.org/10.3390/

atmos12101316

Academic Editor: Evgueni Kassianov

Received: 4 August 2021

Accepted: 28 September 2021

Published: 9 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 DEVCOM Army Research Laboratory, Adelphi, MD 20783, USA; xiping.zeng.civ@army.mil
2 US Navy Research Laboratory, Washington, DC 20375, USA; jonathan.decker@nrl.navy.mil
* Correspondence: yansen.wang.civ@army.mil

Abstract: A prototype of a three-dimensional (3-D) radiation model is developed using the lattice
Boltzmann method (LBM) and implemented on a graphical processing unit (GPU) to accelerate the
model’s computational speed. This radiative transfer-lattice Boltzmann model (RT-LBM) results
from a discretization of the radiative transfer equation in time, space, and solid angle. The collision
and streaming computation algorithm, widely used in LBM for fluid flow modeling, is applied to
speed up the RT-LBM computation on the GPU platform. The isotropic scattering is assumed in this
study. The accuracy is evaluated using Monte Carlo method (MCM) simulations, showing RT-LBM is
quite accurate when typical atmospheric coefficients of scattering and absorption are used. RT-LBM
runs about 10 times faster than the MCM in a same CPU. When implemented on a NVidia Tesla
V100 GPU in simulation with a large number of computation grid points, for example, RT-LBM
runs ~120 times faster than running on a single CPU. The test results indicate RT-LBM is an accurate
and fast model and is viable for simulating radiative transfer in the atmosphere with ranges for the
isotropic atmosphere radiative parameters of albedo scattering (0.1~0.9) and optical depth (0.1~12).

Keywords: radiative transfer modeling; lattice Boltzmann method; GPU computing

1. Introduction

Radiative energy transfer plays an important role in many areas of science and technol-
ogy. Accurate modeling of incoming solar radiation and outgoing infrared radiation from
the Earth’s surface and their interactions with atmospheric constituents has been among
the most important tasks for the atmospheric sciences and remote sensing of environments.
Compared with cloud-free and large-scale atmospherics, in which radiative transfer is
usually treated one-dimensionally by assuming horizontal homogeneity, radiation transfer
near the ground is a complex three-dimensional (3-D) phenomenon due to interactions
with the Earth’s surface features, such as terrains, buildings, soil, and vegetation. The
mathematical description of electromagnetic radiation propagation is the radiative trans-
fer equation (RTE) with associated emission, absorption, and scattering parameters and
complex boundary conditions. Analytical solutions for real atmospheric conditions are
not available. Due to the complexity and difficulties in solving the RTE, many numerical
methods, such as the Monte Carlo method (MCM) [1], finite volume method (FVM) [2],
and discrete ordinates method (DOM) [3], to name a few, have been developed. Proper
choice of numerical method is dependent on the problem parameters and boundary condi-
tions. The MCM is considered as a versatile and accurate method that can handle complex
situations and is free from numerical errors such as ray effects, numerical smearing, and
false scattering [1,3,4]. Therefore, the MCM is often used as a benchmark tool for radiative
transfer modeling. The drawback with the MCM is it requires a very large number of
photons to be released to avoid statistical noise; therefore, it is computationally expensive.
FVM and DOM have the advantages of ease and efficiency to set up the radiative trans-
fer problem but have the problems of ray effects and slow convergence in small optical
thickness situations. All the above numerical methods for solving the RTE demand a
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great deal of computation power for a large computational domain. Moreover, variations
of scattering and absorption coefficients depend on atmosphere constituents in different
wavelengths, which require multiple computations for different wavelengths, thus making
the computation load even more formidable.

In recent years, a novel and powerful method, the lattice Boltzmann method (LBM),
has been developed for solving the RTE. One of the motives for using the LBM in solving
the RTE is to improve the computation speed of radiative transfer modeling. The LBM
was first discovered and developed in the fluid mechanics community [5–11] and has
become one of the most effective methods for fluid flow and heat transfer simulations.
The LBM is based on the kinetic theory of statistical mechanics and solves the Boltzmann
equation that governs the probability distribution of fluid particles. The LBM solves
the Boltzmann equation for a particle at each grid point by performing collision and
propagation calculations of the particle’s probability distribution function (PDF) over
a discrete and symmetric lattice mesh with certain fixed directions. The macroscopic
variables, such as fluid density and velocity, are computed from the statistical moments
of the particle PDF. The major advantages of the LBM in fluid modeling are its intrinsic
parallelism and the ease with which it treats complex boundary conditions. Flow modeling
using the LBM is as accurate as FV or finite elements (FE) methods, and has a computation
speed several hundred times faster than FV and FE methods.

It is natural to explore the LBM as a computational method to accelerate the com-
putation speed in solving the RTE because radiative transfer is one of most computa-
tionally intensive tasks in atmospheric modeling. The LBM can be considered a direct
discretization of the Boltzmann equation [7]. The earliest work of solving the RTE using
the LBM by Geist et al. [12] was to investigate lighting in computer graphics with angular
discretization with 19 directions and using a graphics processing unit (GPU) for computa-
tion [13]. Because of the similarity between the RTE and Boltzmann equation [14], earlier
research and development of the LBM for the RTE started with direct discretization of the
RTE with respect of space, time, and angular direction, which is a valid approach [7,14].
Asinari et al. and Mishra et al. [15,16] developed a two-dimensional (2-D) LBM for radia-
tive transfer modeling in a particular medium. Ma et al. [17] derived an LBM used for a
one-dimensional (1-D) radiation problem that compared well with an analytical solution.
Bindra and Patil [18] and McCulloch and Bindra [19] also developed a 2-D LBM for the
RTE for a simulation of the conjugated radiative and convective heat transfer problem. A
general review on modeling neutron and photon transport using LBM is provided in [20].
The LBM was also used in a non-equilibrium radiation transfer problem [21]. Zhang
et al. [22] and Yi et al. [23] derived a 2-D LBM using the Chapman–Enskog expansion
for a steady-state radiative transfer problem that can deal with both thin and high opti-
cal depths. The LBM was used in a model for astronomical radiation transfer by Weih
et al. [24]. For a better treatment of the radiation source term, a multi-relaxation time LBM
was developed by Liu et al. [25]. McHardy et al. [26,27] developed a 3-D LBM model using
a direct discretization of the RTE and the model produced accurate results for the ballistic
radiation condition in which the medium scattering albedo is less than 0.7. An anisotropic
case of Mie scattering was also computed and compared well with the LBM method [26].
Mink et al. [28,29] developed a 3-D LBM method for high optical thickness situations based
on the Chapman–Enskog expansion and a steady-state RTE was approximated by the
Helmholtz equation and solved with the LBM.

The LBM with a GPU has shown to be very effective in numerical simulation of
turbulent flow in urban environments with at least a 200 to 500 times speed-up (CPU/GPU
time ratio) depending on the GPU type [30,31]. Since radiative transfer is a very important
component of energy transfer in the atmospheric boundary layer and the computation is
very challenging, it is advantageous to exploit the LBM method with a GPU when solving
the RTE. It is also beneficial to have the same computational methodology and grids set up
for coupling our LBM flow model and the LBM radiative transfer model.
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The objective of this study is to evaluate the accuracy and computation capability in a
newly developed radiative transfer model using the lattice Boltzmann method, called RT-
LBM. Specifically, we focus on RT-LBM’s accuracy in simulating direct solar radiation with
different incoming boundary conditions. The computation speeds using a GPU and a CPU
are compared for different sizes of computational grid setups. The organization of this work
is as follows: The second section describes the derivation of RT-LBM, radiation parameters,
boundary conditions, and its computation method. The Monte Carlo (MC) radiative
transfer model used for the comparison study is also described in this section. The third
section presents the results of RT-LBM simulations of radiative transfer around buildings
and compares the model results using the well-established MCM. The computation speeds
of RT-LBM on a GPU are described and compared with CPU implementation. The final
section gives a summary and discussion of applications of RT-LBM.

2. Methods
2.1. The Lattice Boltzmann Model for Radiative Transfer

Spectral radiance propagation in a scattering and absorbing medium is described by
the following RTE:

1
c

∂L
∂t

+ n·∇L = −(µa + µs)L + µaLb +
µs

4π

∫
4π

ΦL′d Ω′ + S (1)

where L(x, n, t) is the radiance at spatial point x and time t that travels along unit vector n
into the solid angle Ω with the speed of light c. µa and µs are the absorption and scattering
coefficients of the medium, respectively; Lb is the blackbody radiance of the medium; and
Φ is the scattering phase function of the medium. S is other radiation source such as
radiation from ground, road, and buildings in the atmospheric boundary layer. This term
is epically important in the atmospheric boundary layer. It is also a very complex term
which deserved a very careful and thorough study. Since this paper is focused on the solar
radiation transfer, we neglected the source term hereafter in this paper. The integral term
represents the radiation scattered from the other directions onto the volume surface. The
spectral dependence is omitted since a participating medium with a specific wavelength
band is considered in this paper.

According to a kinetic theory of radiative transport [14], the RTE can be written as the
Boltzmann equation form using a probability distribution function (PDF), f of a virtual
radiative particle or a photon [26,29]. The relation between the PDF at a direction i ( fi(x, t))
of a virtual particle or photon and the radiance is expressed as

fi(x, t) = wiL(x, ni, t) (2)

where wi are the weights corresponding to the lattice directions (Figure 1). Neglecting
the medium blackbody radiation source term for a much smaller magnitude in a clear
atmospheric boundary layer, the RTE of Equation (1) can be written in following form:

∂ fi
∂t

+ ni·∇ fi = −c
[

fi +
µs

4π

∫
4π

Φ f ′i d Ω′(µs + µa)

]
(3)

where c is the speed of light and ci = cni in the finite directions. The Boltzmann form of
the RTE can be discretized in space in specific lattice directions, i (Figure 1), and time, t, as
follows [7,26]:

fi(x + ci∆t, t + ∆t)− fi(x, t) = −ci∆tµs

(
fi − f eq

i

)
− ci∆tµa fi, i = 1, . . . , 26 (4)
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propagation to neighbor lattice nodes.

The time step ∆t is related to the lattice length ∆x and c, c = ∆x
∆t . With the above

definitions, the macroscopic radiation quantities, I (radiative intensity) and J (radiation
flux vector), are computed from the statistical moments of the particle PDF, f,

I(x, t) = ∑
i

fi (x, t) (5)

J(x, t) = ∑
i

ni fi (x, t) (6)

which are resulted from following integral form equations providing the (2) as the connection.

I(x, t) =
∫

4π
L(x, n, t)dΩ (7)

J(x, t) =
∫

4π
nL(x, n, t)dΩ (8)

It is important to point out that the equilibrium function f eq
i in the collision term

has a different mechanism in radiative transfer than in fluid flow. The f eq
i in radiative

transfer represents the interaction of photons with the surrounding medium rather than
the equilibrium PDF of fluid particle collision in the LBM for fluid modeling. The f eq

i is
defined as follows:

f eq
i = wi ∑

j
Φij fi, j = 1, . . . , 26 (9)

where Φij is the discrete scattering matrix describing the probability that a photon is
scattered from the i to j direction, and wi are the weighting factors corresponding to the
direction i. This function can be used for describing the anisotropic scattering by prescribing
the elements of Φij. For the isotropic scattering considered in this work, Φij = 1.

The computation domain is first divided into structured cubic grids. For each grid
point (0 point in Figure 1), there are 26 lattice directions and neighbor points. The compu-
tational algorithm for RT-LBM takes typical collision and streaming operations for each
time step. The collision operation is computed in the terms on the right hand of Equation
(4), where the interactions, the scattering and absorption, of the photon with medium
particles in every lattice direction are accounted for. The equilibrium PDF is computed
as in Equation (9). In the streaming operation, the probability fi(x + ci∆t, t + ∆t) in a grid
point is propagated in every direction to neighbor grid points (1 to 26) for the next time
step. The macroscopic radiative variables are computed from Equations (5) and (6).
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To keep the model non-dimensional for the comparisons and applications, the medium’s
scattering albedo, a, and optical depth, b, (non-dimensional parameters) are used instead of
the coefficients of absorption and scattering. The characteristic length scale for the photon is
lc = (µa + µs)

−1, representing the length of a photon’s free path between two consecutive
scattering events. The relationship between these parameters is expressed as

a =
µs

µa + µs
(10)

b = (µa + µs)lphy (11)

where lphy = 1 is a modeled normalized physical domain length.

2.2. The Monte Carlo Model of Solar Radiation

A MC model is used to evaluate RT-LBM. It tracks a plentiful luminosity packet
(referred to hereafter as MC “photons”) first and then counts them statistically for distribu-
tion of radiative intensity as a function of location, direction, and frequency. Each package
carries energy L ∆t/N, where N is the number of MC photons. As a result, each MC photon
represents L ∆t/(N hν) real photons, where hν denotes the energy of a real photon.

The MC model emits plentiful MC photons to mimic a radiation source. Each pho-
ton travels a distance s and then is scattered, absorbed, or re-emitted. The distance s is
determined by ∫ s

0
(µa + µs)ds = −lnξ (12)

where ξ is a random number between 0 and 1. After traveling the distance s, the photon is
scattered if a new random number, ξ, is below a; otherwise, the photon is absorbed.

The direction of scattering photon is described by the zenith angle θ and the azimuth
angle φ. Since scattering is assumed to be isotropic in the model, θ and φ are chosen as [32]

φ = 2πξ (13)

θ = 2πcos−1(2ξ − 1) (14)

The MC model uses (10) and (11) to simulate solar radiation that penetrates the model
top downward. It emits 5 × 109 MC photons to mimic the incoming solar radiation and
then tracks them in the atmosphere individually. Its statistical results are eventually used
to obtain the distribution of radiative intensity.

2.3. The Computation Domains Setup and Boundary Conditions

The design of the 3-D modeling domains is shown in Figure 2. All three cubic domains
have the same number of computational grid points (101 × 101 × 101) in the x, y, and z
directions. In the GPU computation speed test (Section 3.3), two setups of computational
grid points were made much more dense, 501 × 501 × 201, to evaluate the effect of the
number of grid points on computation speed.
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All the incoming solar beam radiation is from the top boundary. The first is the
incoming boundary which includes the entire top plane of the computational domain
(Figure 2a), the second is the center window incoming boundary condition of the top
boundary (Figure 2b), and the third (Figure 2c) is the window incoming boundary with
oblique incoming direct solar radiation. A unit radiative intensity at the top surface is
prescribed for direct solar radiation,{

f6 = 1, f13,14,17,18,19,22,24,25 = 0, for perpendicular beam
f13 = 1, f6,14,17,18,19,22,24,25 = 0, for 45◦ solar zenith angle beam

(15)

3. Results

RT-LBM is evaluated with the MC models, since high-density 3-D radiation field data
for these kinds of simulation are not available for comparison. Although the MC model
generally requires much more computation power, it has been proven to be a versatile
and accurate method for modeling radiative transfer processes [1,26,29]. In the following
validation cases, the same computation domain setups, boundary conditions, and radiative
parameters were used in the RT-LBM and MC models. In these simulations, we set every
variable as non-dimensional, including the unit length of the simulation domain in the x, y,
and z directions. Normalized, non-dimensional results provide convenience for application
of the simulation results. The model domain is a unit cube, with 101 × 101 × 101 grid
points in these simulations except in Section 3.3. The top face of the cubic volume is
prescribed with a unit of incoming radiation intensity. The rest of the boundary faces are
black walls, i.e., there is no incoming radiation and outgoing radiation freely passes out of
the lateral and bottom boundaries.

3.1. Direct Solar Beam Radiation Perpendicular to the Entire Top Boundary

Figure 3 shows the simulation results of the plane (Y = 0.5) with RT-LBM (left panel)
and the MC model (right panel). In these simulations, the entire top boundary was a
prescribed radiation beam with a unit of intensity and the other boundaries were black
walls. The simulation parameters were a = 0.9 and b = 12, which is optically very thick
as in a clouded atmosphere or atmospheric boundary layer in a forest fire situation [31].
The two simulation methods produced similar radiation fields in most areas except the
MCM produced slightly greater radiative intensity near the top boundary. Near the side
boundaries, the radiative intensity values were smaller due to less scattering of the beam
radiation near the black boundaries. This case is also simulated in Mink et al. [29] with
their MC model. Figure 4 is a plot of the radiative intensities along the line at the center
of the computation domain using these three models. The simulation results from the
three methods compare well. First, the results from the two MC models agree well, which
validates the correctness of our own MC model. There are small differences near the top
boundary between RT-LBM and the MC models. The reason for over-estimation near the
incoming boundary area is caused by a small effect of false anisotropic radiative transport in
LBM where only the direct beam radiation is specified in the incoming boundary. However,
after penetration of two times of the free path lengths, the diffuse radiation becomes
dominant and the results are much closer to the MC. Since the optical depth is very high,
the radiation intensity from the top boundary to the bottom boundary gradually has a two
orders of magnitude reduction. The MC model produced a radiative intensity field that
had very little fluctuation in the contour plots (Figure 2), indicating that the 109 photons
release in this simulation is adequate for removing the statistical noise.
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3.2. Direct Solar Radiation from a Top Boundary Window

In this case, a perpendicular incoming beam entered a window (0.2× 0.2) in the middle
of the top boundary (Figure 2b). The parameters (a = 0.9, b = 2) of the particular medium are
comparable to episodes of heavily polluted atmosphere in some urban areas [33–35]. The
LBM simulation was also evaluated with our MC model and other MC model [29] results.

Figure 5 compares our RT-LBM and the MC simulations. The results between the two
models matched reasonably well except at the area at the top of the window. Again, the
MC model produced slightly larger radiative intensity values near the radiation entrance
window. The other area, away from perpendicular to the incoming window, also had much
smaller values due to the scattering of the direct beam area for this relatively medium
optical depth and large scattering albedo. Some difference between RT-LBM and the MC
model was observed in these low-intensity areas. The RT-LBM-simulated slightly smaller
values near the incoming radiation boundary are also reported in Mink et al. [29]. Figure 6
compares the line samples in the z direction (Y = 0.5; X = 0.5, 0.75, 0.85) for RT-LBM, our
MC model, and the other MC model [29] simulations. The simulations compare well in
the centerline, excepting slight differences near the window area. The radiation intensity
compares reasonably well but there are slightly more differences off the centerline.
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Y = 0.5, 0.75, 0.88) for RT-LBM, our MC model, and the MC model (MCM) from Mink et al. (2020).
The radiative parameters are a = 0.9, b = 2.

To analyze the effect of window size on radiative intensity, we conducted multiple
runs with different window sizes (0.05 × 0.05, 0.2 × 0.2, and 0.9 × 0.9) but with identical
radiation intensities prescribed at the incoming window. Figure 7 displays the X-Z cross
section at Y = 0.5. The medium parameters, a = 0.5 and b = 0.1, resemble a typical clean
atmosphere [36]. In spite of more fluctuations, in the MC simulation results many more
photon particles (1012) were released (Figure 7, bottom panel) due to the low optical depth
in clean air, and the RT-LBM and MC simulations compare reasonably well. The variation
of the centerline radiative intensity values was less than 5% with the larger window size
having a slight greater radiative intensity. In these cases of the lower scattering albedo
(Figures 7 and 8), the differences between RT-LBM and the MC model are much smaller near
the incoming boundary compared with the case of large scattering albedo (Figure 4). This
analysis indicates that very clean atmospheric conditions can be parameterized without
much error using a single computation given an identical boundary or very similar bound-
ary conditions.
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Figure 8. Oblique incoming solar direct beam radiation simulation case. Comparison of the radiative
intensity at X-Z cross section at Y = 0.5. for RT-LBM and the MC model. The radiative parameters are
a = 0.5, b = 0.1.

Another situation, of solar direct beam radiation oblique to the level ground surface,
is simulated. The atmospheric optical parameters of a clean air (a = 0.5, b = 0.1) situation
were used. The motivation for this simulation was to look into whether direct solar radia-
tion decreases when the solar ray is not perpendicular to the top boundary surface. The
incoming solar zenith angle was set to 45◦ from the west and the incoming direct solar
radiative intensity was set to one. The RT-LBM and MC simulations compare reasonably
well (Figure 8). The decaying of the solar radiative intensity along the centerline of the per-
pendicular to window (Figure 7) and oblique to the window at 45◦ shows small differences
between the perpendicular and oblique cases. This comparison analysis indicates that a
perpendicular-to-window simulation can be used to approximate the radiative intensity
for different solar elevation angles, which has a very significant implication for reducing
the radiation computation in a situation where the atmospheric optical parameters are
constant and vertically homogenous.
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3.3. GPU Implementation of RT-LBM and Computational Speed

In solving the complex RTE, RT-LBM uses the typical collision and streaming steps
that the LBM used to solve fluid simulations [30,31]. By writing the Equation (4) in the
following form,

mi(x, t) = fi(x, t)− ci∆tµs

(
fi − f eq

i

)
− ci∆tµa fi, i = 1, . . . , 26 (16)

fi(x + ci∆t, t + ∆t) = mi(x, t) . i = 1, . . . , 26 (17)

The complex scattering and absorption processes in the RTE are computed within each
node (Figure 1) by a photon-medium collision process (Equation (16)), while a streaming
process of photons is handled by simple linear propagation between the neighbor grid
nodes (Equation (17)). This makes the LBM very effective within the massive parallelization
of the GPU architecture. Modern GPUs have thousands of compute cores and thus are
capable of running thousands of threads simultaneously. In the LBM algorithm, the data
locality is satisfied and time-stepping is explicit. Each computation grid cell in the domain
is assigned to a GPU thread. The entire computation procedure described in Section 2.1
can be summarized in following pseudo-code:

1. Set up the radiation parameters and computation grids;
2. For each iteration time step t do;
3. For each lattice node x do;
4. If node x is a boundary point then;
5. Apply the boundary conditions;
6. End if;
7. Compute the equilibrium pdf f eq

i (Equation (9));
8. Compute collision term mi(x, t) (Equation (16));
9. Update (propagate) the pdf fi(x + ci∆t, t + ∆t) for next time step (Equation (17));
10. Compute the radiation intensity (Equation (5));
11. End do;
12. Check the convergence (Equation (18));
13. End do.

The model code is written in NVidia CUDA (Common Unified Device Architecture).
In our implementation, the 3-D computation grids are mapped to 1-D memory. In GPUs,
threads execute in lockstep in group sets called warps. The threads within each warp
need to load memory together in order to use the hardware most effectively. This is called
memory coalescing. In our implementation, we manage this by ensuring threads within a
warp are accessing consecutive global memory as often as possible. For instance, when
calculating the PDF vectors in Equation (15), we must load all 26 lattice PDFs per grid cell.
We organize the PDFs such that all the values for each specific direction are consecutive in
memory. In this way, as the threads of a warp access the same direction across consecutive
grid cells, these memory accesses can be coalesced.

A common bottleneck in GPU-dependent applications is transferring data between
main memory and GPU memory. In our implementation, we are performing the entire
simulation on the GPU and the only time data need to be transferred back to the CPU
during the simulation is when we calculate the error norm to check the convergence. In our
initial implementation, this step was conducted by first transferring the radiation intensity
data for every grid cell to main memory each time step and then calculating the error norm
on the CPU. To improve performance, we only check the error norm every 10 time steps.
This leads to a 3.5× speedup over checking the error norm every time step for the 1013

domain case.
This scheme is sufficient, but we took it a step further, implementing the error norm

calculation itself on the GPU. To achieve this, we implement a parallel reduction to produce
a small number of partial sums of the radiation intensity data. It is this array of partial sums
that is transferred to main memory instead of the entire volume of radiation intensity data.
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On the CPU, we calculate the final sums and complete the error norm calculation. This new
implementation only results in a 1.32× speedup (1013 domain) over the previous scheme
of checking only every 10 time steps. However, we no longer need to check the error norm
at a reduced frequency to achieve similar performance; checking every 10 time steps is only
0.057× faster (1013 domain) than checking once a frame using GPU-accelerated calculation.
In the tables below, we opted to use the GPU calculation at 10 frames per second but it is
comparable to the results of checking every frame.

Tables 1 and 2 list the computational efficiency of our RT-LBM. A computational
domain with a direct top beam (Figures 2 and 3) was used for the demonstration. In order
to see the domain size effect on computation speed, the computation was carried out for
different numbers of the computational nodes (101 × 101 × 101 and 501 × 501 × 201). The
RTE is a steady-state equation, and many iterations are required to achieve a steady-state
solution. These computations are considered to converge to a steady-state solution when
the error norm is less than 10−6. The normalized error or error norm ε at iteration time step
t is defined as:

ε =
∑n
(

It
n − It−1

n
)2

∑N(It
n)

2 (18)

where I is the radiation intensity at grid nodes, n is the grid node index, and N is the total
number of grid points in the entire computation domain.

Table 1. Computation time for a domain with 101 × 101 × 101 grid nodes.

CPU Xeon 3.1 GHz
(Seconds)

Tesla GPU V100
(Seconds)

GPU Speed Up
Factor (CPU/GPU)

RT-MC 370 406.53

RT-LBM 35.71 0.91 39.24

Table 2. Computation time for a domain with 501 × 501 × 201 grid nodes.

CPU Xeon 3.1 GHz
(Seconds)

Tesla GPU V100
(Seconds)

GPU Speed Up
Factor (CPU/GPU)

RT-LBM 3632.14 30.26 120.03

The single-thread CPU computation using a FORTRAN version of the code, which
is slightly faster than the code in C, is used for the computation speed comparison. The
speed of the RT-LBM model and MC model in a same CPU are compared for the first case
only to demonstrate that the MC model is much slower than the RT-LBM. RT-LBM in the
CPU is about 10.36 times faster than the MC model from the first domain setup using the
CPU. A NVidia Tesla V100 (5120 cores, 32 GB memory) was run to observe the speed-up
factors for the GPU over the CPU. The CPU used for the RT-LBM model computation is
an Intel CPU (Intel Xeon CPU at 2.3 GHz). For the domain size of 101 × 101 × 101, the
Tesla V100 GPU showed a 39.24 times speed-up compared with single CPU processing
(Table 1). It is worthwhile noting the speed-up factor of RT-LBM (GPU) over the MC model
(CPU) was 406.53 (370/0.91) times if RT-LBM was run on a Tesla V100 GPU. For the much
larger domain size, 501 × 501 × 201 grid nodes (Table 2), the RT-LBM in the Tesla V100
GPU had a 120.03 times speed-up compared with the Intel Xeon CPU at 2.3 GHz. These
results indicated the GPU is even more effective in speeding up RT-LBM computations
when the computational domain is much larger, which is consistent with what we found
with the LBM fluid flow modeling [30]. We are in the process of extending our RT-LBM
implementation to multiple GPUs which will be necessary in order to handle even larger
computational domains.

The computational speed-up of RT-LBM using the single GPU over CPU is not as
great as in the case of turbulent flow modeling [30], which showed a 200 to 500 speed-
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up using older NVidia GPU cards. The reason is turbulent flow modeling uses a time-
marching transient model, while RT-LBM is a steady-state model, which requires many
more iterations to achieve a steady-state solution. Nevertheless, the GPU speed-up of
120 times in RT-LBM is significant for implementing radiative transfer modeling which is
computationally expensive.

The model code is also tested for the grid dependency by computing the radiation
field in a same domain using three different grid densities. Figure 9 shows the radiation
intensities in three different grid densities (1013, 2013, and 3013 computation grids). The
convergence criteria were set to be 10−5 for the error norm. The LBM model produced
very similar radiation fields that are hard to see the differences visually. This fact indicates
that 10−5 error norm for convergence criteria is probably good enough for this model
domain situation. The convergence behaviors of the different densities of computation
grids were also recorded at each iteration step and plotted in Figure 10. The three different
grid densities showed a similar trend in convergence behavior with respect to iteration
time. The iteration time to reach a same small error norm of 10−6 for denser grids requires
many more steps of iterations. In these simulations, the Courant number are all equal to
one. Numerical stable algorithm was assured and also observed.
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The unit conversion in LBM fluid modeling is complex [37]. However, in this steady-
state radiative transfer modeling, the time step is only for the iteration computation and
there is no problem to map the non-dimensional variables to variables’ units. Since the
LBM-RT in this paper is a steady-state problem, only conversions are needed between
physical length and non-dimensional length, and the scattering and absorption coefficients
and non-dimensional parameters a and b (a scattering albedo, b optical depth) can be
transformed using Equations (10) and (11). The radiation intensity can be converted to a
physical unit by multiplying the value of incoming boundary intensity with a physical unit.
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4. Discussion and Conclusions

This paper reported a newly developed radiative transfer model using the lattice
Boltzmann method, RT-LBM, for applications in atmospheric environments. The test results
indicated the new RT-LBM has reasonably accurate results compared with traditional MC
models. The model takes advantage of the LBM algorithms of collision and streaming
to accelerate the computation speed. The implementation of RT-LBM using the GPU has
realized a computation speed-up of 120 times faster than a CPU implementation for a
very large domain. RT-LBM also had a 10 times speed-up over the MC model for a same
radiative case on the same CPU, which makes a total of a 406 times speed-up for RT-LBM
on a GPU over the MC model on a CPU.

The atmospheric environment is a complex composite of many different gases, aerosols,
and hydrometers, and the composition is very dynamic. The optical parameters are often
very different for different wavelengths of radiation. In atmospheric radiative transfer
modeling, many runs for different spectral lengths with different optical parameters must
be made to complete the entire radiative energy transfer domain. Since radiative modeling
is computationally intensive, the newly developed RT-LBM provides advantages. However,
many research areas, such as complex boundary specification, anisotropic scattering by
large aerosols, and optical parameters specification, need to be carried out to realize the
potential of this new method for specific applications. Some applications, such as for solar
energy, are feasible with RT-LBM using broadband optical parameters to reduce the com-
plexity. In this case, solar radiation can be divided into two spectral bands, shortwave and
longwave. Two different sets of bulk optical parameters can be used for solar shortwave
radiation and longwave radiation from the ground surface.
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