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Abstract: As a link for energy transfer between the land and atmosphere in the terrestrial ecosystem,
karst vegetation plays an important role. Karst vegetation is not only affected by environmental
factors but also by intense human activities. The nonlinear characteristics of vegetation growth
are induced by the interaction mechanism of these factors. Previous studies of this relationship
were not comprehensive, and it is necessary to further explore it using a suitable method. In this
study, we selected climate, human activities, topography, and soil texture as the response factors; a
nonlinear relationship model between the karst normalized difference vegetation index (NDVI) and
these factors was established by applying a back propagation neural network (BPNN), a radial basis
function neural network (RBFNN), the random forest (RF) algorithm, and support vector regression
(SVR); and then, the karst NDVI was predicted. The coefficient of determination (R2), mean square
error (MSE), root mean square error (RMSE), and mean absolute percentage error (MAPE) of the
obtained results were calculated, and the mean R2 values of the BPNN, RBFNN, RF, and SVR models
were determined to be 0.77, 0.86, 0.89, and 0.91, respectively. Compared with the BPNN, RBFNN,
and RF models, the SVR model had the lowest errors, with mean MSE, RMSE, and MAPE values of
0.001, 0.02, and 2.77, respectively. The results show that the BPNN, RBFNN, RF, and SVR models are
within acceptable ranges for karst NDVI prediction, but the overall performance of the SVR model is
the best, and it is more suitable for karst vegetation prediction.

Keywords: karst NDVI; natural and anthropogenic factors; BPNN; RBFNN; RF; SVR; prediction
comparison

1. Introduction

The karst landscape in southwestern China developed on soluble carbonate bedrock,
and it is one of the largest contiguous karst regions in the world [1–3]. The vegetation
cover is relatively low because of the slow formation rate and shallow depth of the soil in
the karst region [4]. However, karst vegetation is the most fundamental component of the
terrestrial ecosystem, and it provides a great carbon sink function and a series of ecological
services [5–7]. Therefore, it is necessary to monitor and predict the dynamic changes in
karst vegetation.

Karst vegetation is not only affected by environmental factors (climate, soil, topog-
raphy) but also by human activities. In particular, karst vegetation is highly sensitive to
human activities and climate change [8]. The effects of human activities on karst vege-
tation have positive and negative impacts. With the rapid development of the economy,
most farmers have reduced their dependence on cropland and reduced the impact of
unreasonable human activities on the ecological environment; in addition, the government
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implements ecological environment treatment projects such as grain for green, these activi-
ties have promoted vegetation restoration. However, increased demand for construction
land because of the intensified expansion of urbanization, resulting in a significant degrada-
tion trend of vegetation cover [9]. Tong et al. [10] revealed that the vegetation degradation
is presumably induced by human activities in the central and eastern parts of Yunnan
Province, while the conservation and restoration efforts in other regions of southwestern
China may improve vegetation conditions. Climatically, the rising temperature has a posi-
tive effect on vegetation growth, but the continuously rising temperature may accelerate
surface water evaporation, thus, affecting vegetation growth [11]. In Guizhou, the karst
vegetation is strongly influenced by the increasing temperature, which has led to more
drought stress than non-karst areas [12]. Precipitation is usually absorbed and used by
vegetation after being converted into soil moisture [6]. Wang et al. [13] reported that there
is a positive correlation between vegetation conditions and precipitation in most dry areas,
while there is a negative correlation between vegetation conditions and heavy rainfall in
most humid areas. Sunshine is a major driving factor in ecosystems, and it plays a role that
is equally important as those of temperature and precipitation in vegetation growth [14].
Soil texture and topography are also important contributing factors to vegetation growth.
Different soil textures (i.e., sand, silt, and clay) are characterized by different grain sizes,
void ratios, and permeabilities, which can affect the resistance and resilience of vegeta-
tion to drought stress [15]. The relationship between vegetation and elevation does not
monotonically increase [16]. At low elevations (0–500 m), human activities mainly include
significant increases in the amount of build-up land, which results in sparse vegetation
coverage [17]. Then, vegetation initially increases and then continuously decreases with
increasing elevation [18].

To quantitatively analyze vegetation change, the normalized difference vegetation
index (NDVI), one of the most important indicators for monitoring temporal changes in
vegetation was used [19–21]. Many studies have discussed the response of the NDVI to
various impact factors and have analyzed its changes at the regional and global scales.
Linear analysis, correlation analysis, and residual analysis are the most commonly used
methods. For instance, a multiple regression model has been used to construct an NDVI
prediction model based on historical dynamic changes in the vegetation NDVI [22]. Under
different climate change scenarios, a multiple linear regression has been utilized to predict
future vegetation cover changes [23]. Least-squares linear regression has been employed to
detect the variations in the NDVI and climate; however, a linear trend cannot accurately
represent the actual temporal patterns of vegetation growth [24]. Correlation analysis and
residual analysis perform well in revealing linear relationships, but they are not suitable
for exploring nonlinear relationships [25]. It is imperative to reveal that the response of
vegetation to climate change is a nonlinear process and has compound effects, and it is
necessary to explore the pattern of the temporal variations in vegetation growth based on
comprehensive analysis with multiple factors [26]. Several studies have reported that an
appropriate nonlinear method could be conducive to explaining the nonlinear relationship
between the NDVI and climate [27].

Machine learning has the advantages of effectively handling multidimensional and
multi-variety data in a dynamic or uncertain environment [28], and it has been commonly
utilized to explain complex nonlinear relationships in many fields, such as medicine [29,30],
biology [31,32], and geology [33,34]. To reflect the nonlinear characteristics of vegetation
coverage change, several scholars have used this method to construct vegetation prediction
models through repeated training and verifying its feasibility for the validation period.
For instance, it has been inferred that the relationship between vegetation greening and
natural and human factors is nonlinear, so a nonlinear relationship model was constructed
to predict the future changes in greening based on a boosted regression tree [25]. Based
on the observation data, support vector regression, random forest, linear, and polynomial
regression are employed to predict the vegetation indices, including the NDVI and the
enhanced vegetation index (EVI) [35]. Although some scholars have constructed nonlinear



Atmosphere 2021, 12, 1341 3 of 16

vegetation prediction models, these studies of karst NDVI prediction are not comprehensive
and it is necessary to further explore this topic using a suitable method.

The main objective of this study is to explore the best method for karst NDVI predic-
tion by comparing the four machine learning methods prediction results. The methods
including back propagation neural network (BPNN), radial basis function neural network
(RBFNN), random forest (RF), and support vector regression (SVR) were used to construct
the nonlinear relationship model between NDVI and impact factors, and then predicted
NDVI based on the established model. We selected climate, nighttime light, topogra-
phy, and soil texture as the input factors, and the karst NDVI was the predicted factor.
Considering the effect of climate with time-lagged on vegetation, the Pearson correlation
analysis was utilized to select climate factors with time-lagged as impact factors, which
were inputted into the model.

2. Materials and Methods
2.1. Study Area

The study area is a typical karst landscape in Guizhou, Yunnan, Chongqing, and
Guangxi provinces, southwestern China. It is mainly dominated by the karst plateau,
karst basin, karst trough valley, and karst peak-cluster depression, respectively (Figure 1).
The terrain is very complex, with average elevations of 400–1200 m. The mean annual
precipitation is 1100 mm and the mean annual temperature is 20 ◦C, which is typical
for a subtropical monsoon climate [25]. After launching the Grain for Green Project,
general vegetation greening was observed in southwest China [11]. With the acceleration
of urbanization, the speed of urbanization was greater than that of vegetation restoration.
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Figure 1. The distribution of the karst area and land use types in the study region.

2.2. Data
2.2.1. Modis NDVI Dataset

The selected normalized difference vegetation index (NDVI) dataset from 2000 to 2019
was obtained from the National Aeronautics and Space Administration (NASA) MOD13A3
product (https://ladsweb.modaps.eosdis.nasa.gov/search/ (accessed on 14 April 2021)),
and it was utilized to describe the dynamic variations in the vegetation. The product, with

https://ladsweb.modaps.eosdis.nasa.gov/search/
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a spatial resolution of 1 km and a monthly temporal resolution, had been corrected for
radiation, geometry, and atmosphere. To avoid interferences such as that of winter snow
on the NDVI images, we only studied the vegetation growing season (April to September).
The preprocessing, including projection conversion and resampling, was conducted using
the MODIS Reprojection Tool (MRT). Then, the monthly NDVI images of the study area
were extracted in ArcGIS10.

2.2.2. Climate Data

The data for the climate factors during 2000–2019, including the maximum temper-
ature, minimum temperature, mean temperature, mean relative humidity, mean land
surface temperature, total precipitation, and total sunshine duration, were provided by
the Institute of Geographic Sciences and Natural Resources of the Chinese Academy of
Sciences, and there were 294 meteorological stations in total. After excluding the sites with
missing data, the rest of the individual missing data were replaced using the mean values
for the same period during an adjacent year [25]. We obtained the monthly climate data
using the statistical calculation method.

2.2.3. Human Activities Data

We used nighttime light to detect human activities. The nighttime light 2000–2019
time-series data were derived from the research results of Ma et al. [36]. This dataset
overcomes the shortcomings that the original two types of nighttime light data (DMSP-OLS
and VIIRS-SDR) cannot be used simultaneously. We processed and calculated the nighttime
light values using ArcGIS 10.2.

2.2.4. Environmental Data

The digital elevation model (DEM) data, with a spatial resolution of 90 m, were down-
loaded from the Geospatial Data Cloud (http://www.gscloud.cn/ (accessed on 16 April
2021)), which was used to extract the elevation and slope data. The administrative boundary
data were obtained from the National Basic Geographic Information System. We obtained
the spatial distribution of the lithology from the Institute of Geographic Sciences and Natu-
ral Resources of the Chinese Academy of Sciences. The Harmonized World Soil Database
contains worldwide soil composition information at a spatial resolution of 30 arcsec. Two
soil parameters included the percentages of the clay soil and sandy soil components were
extracted from the database using ArcGIS10.2 (http://www.fao.org/soils-portal/soil-
survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/ (accessed on
16 April 2021)).

2.3. Methods
2.3.1. Pearson Correlation Analysis

We used Pearson correlation analysis to analyze the time-lagged responses of the karst
NDVI to the climatic factors. The correlation coefficients ranged from −1 to 1. The NDVI
and climatic factor datasets from 2000 to 2019 were selected. We explored the correlation
between the NDVI (current month) and the climatic factors (current month or previous
month). When the correlation coefficient between the NDVI and climatic factors (previous
month) was greater than the correlation coefficient between the NDVI and climatic factors
(current month), we concluded that the climatic factors have a time-lagged effect on the
NDVI, and these factors were selected as the input factors of the models.

2.3.2. Back Propagation Neural Network

A back propagation neural network (BPNN) used was a multi-layer feedforward
neural network trained using an error back propagation algorithm, and it consisted of
an input layer, hidden layer, and an output layer. The information was input into the
input layer and was then treated in each successive layer and transmitted to the output
layer. The error was calculated from the output layer and propagated to the input layer

http://www.gscloud.cn/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
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using a back propagation algorithm in order to adjust the weights and thresholds. A single
hidden layer network structure was set up in the BPNN model. The optimal numbers of
neurons in the hidden layer were determined through repeated training of the network.
The numbers of neurons in the input layer and the output layer were determined by the
numbers of input factors and output factor, respectively. There was a neural network
toolbox in MATLAB2019b, which including BPNN we used. It involves three functions,
parameter setting function ‘newff’, the training function ‘train’, and the prediction function
‘sim’ [37]. The input and output of the kth neuron were as follows [38]:

Ik = ∑n
i=1 ui,kOi (1)

Ok = f (Ik + ϑk) (2)

where ui,k was the connection weight between the ith neuron and the kth neuron; f (Ik + ϑk)
was the activation function; ϑk was the threshold; and Ik and Ok were the input and output
of the kth neuron, respectively.

2.3.3. Radial Basis Function Neural Network

The radial basis function neural network (RBFNN) used was a feedforward neural
network with a single hidden layer, and it was composed of an input layer, a hidden layer,
and an output layer. Different from the BPNN, it used the radial basis function as the
activation function in the hidden layer [39]. Functions such as newrbe and newrb were
commonly used to build RBFNN models. Newrbe is characterized by fast neural network
creation, and a zero-error radial basis network can be designed in order to improve the
prediction accuracy [40]. In this paper, we utilized the newrbe function to build the RBFNN
model to predict NDVI, and the spreading factor was adjusted to improve the model’s
performance. The output of neurons from the output layer was as follows:

ϕ(x) = ∑n
i=1 wi exp

(
−βi‖x− ci‖2

)
(3)

where n was the number of hidden layer neurons; ci and wi were the center and weight
corresponding to the ith hidden layer neurons; and exp

(
−βi‖x− ci‖2

)
represented the

radial basis functions.

2.3.4. Random Forest

The random forest (RF) algorithm was based on a decision tree. The principle of the
RF was that each tree was composed of a random subset. In the splitting process, all of
the features were not considered by the model, but the best feature was selected for the
classification, which enriched the diversity of the decision trees in the model [41]. The
algorithm was mainly divided into four steps. (1) The repeated sampling method was used
to select a subset from all of the datasets as a training set. (2) The subset was used to build
a decision tree. (3) The k decision trees were used to build the RF model by repeating the
above steps k times. (4) The NDVI was predicted using the established RF model [41]. In
this study, the RF model was developed using the treebagger function in regression model
in MATLAB 2019b [42].

2.3.5. Support Vector Regression

Support vector regression (SVR) was developed by Vapnik in 1995, which was one
of the most popular machine learning algorithms in capturing nonlinearity [43]. A kernel
function was used to map the vectors into a higher dimensional feature space in the SVR
model, and the model can be employed linear regression of the target variable in this
space by introducing an alternative loss function and kernel function [44,45]. There were
five commonly used kernel functions: the linear kernel function, the polynomial kernel
function, the Gaussian kernel function, the Laplace kernel function, and the Sigmoid kernel
function. The Gaussian kernel function is suitable for analyzing nonlinear relationships



Atmosphere 2021, 12, 1341 6 of 16

between influencing factors and the predicted factor [45], so we selected the Gaussian
kernel function as the kernel function of the SVR model. For detailed information on
the SVR model as seen Refs. [43,46]. The libsvm-3.24 toolbox was developed by Chang
et al. [47] in 2011, and we constructed the SVR model using this toolbox. The process of
predicting karst NDVI by machine learning methods was shown in Figure 2.
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2.4. Assessment Criteria

To explore the prediction accuracy of the BPNN, RBFNN, RF, and SVR models, the
statistical parameters including the coefficient of determination (R2), mean square error
(MSE), root mean square error (RMSE), and mean absolute percentage error (MAPE) were
used to calculate in different karst NDVI prediction results (Karst plateau, Karst basin,
Karst trough valley, Karst peak-cluster depression). The higher the R2 value and the lower
the MSE, RMSE, and MAPE values were, the better the model’s prediction performance
was. The formulas for the assessment criteria were as follows:

MSE =
1
n ∑n

i=1

(
Yp −Yo

)2 (4)

RMSE =

√
1
n ∑n

i=1

(
Yp −Yo

)2 (5)

MAPE =
100%

n ∑n
i=1

∣∣∣∣Yp −Yo

Yo

∣∣∣∣ (6)

R2 =

(
n ∑n

i=1 YpYo − ∑n
i=1 Yp ∑n

i=1 Yo
)2[

n ∑n
i=1 Y2

p −
(
∑n

i=1 Yp
)2
][

n ∑n
i=1 Y2

o − (∑n
i=1 Yo)

2
] (7)

where n was the sample number of validation period; and Yp and Yo were the predicted
and observed NDVI, respectively.

2.5. Data Pre-Processing

The data were divided into training sets (from 2000 to 2011) and validation sets (from
2012 to 2019) using a ratio segmentation 6:4. Based on the MATLAB 2019b software, a
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nonlinear relationship model between the NDVI and the response factors was built and
the karst NDVI was predicted. To keep the different units and magnitude of the factors
from affecting the model’s performance, the input data were normalized to within a range
of [0, 1] before being fed into the model [48].

Xn =
Xi−Xmin

Xmax−Xmin
(8)

where Xn was the normalized data; Xi was the observed data; and Xmin and Xmax were the
minimum and maximum of the data, respectively.

3. Results
3.1. BPNN Model

We obtained the BPNN network structures of the NDVI prediction models (the number
of neurons in the input layer—the number of neurons in the hidden layer—the number of
neurons in the output layer) in the karst plateau, karst basin, karst trough valley, and karst
peak-cluster depression areas, which were 18-1-1, 29-4-1, 22-1-1, and 23-3-1, respectively.
The R2 values of the results ranged from 0.6327 to 0.8713, with an average of 0.7744 (Table 1).
The ranges of the MSE, RMSE, and MAPE values were 0.0007–0.0022, 0.0241–0.0452, and
2.4604–5.6112, respectively, with averages of 0.0017, 0.0384, and 4.4570, respectively, which
indicate that the BPNN model is acceptable for karst NDVI prediction. In the NDVI model
prediction of karst trough valley, the model’s generalization performance was better than
those of the other karst NDVI prediction models (Figure 3).

Table 1. The prediction accuracy of the BPNN model.

Karst Regions R2 MSE RMSE MAPE

Karst plateau 0.7547 0.0021 0.0442 5.1697
Karst basin 0.8389 0.0022 0.0452 5.6112

Karst trough valley 0.8713 0.0007 0.0241 2.4604
Karst peak-cluster

depression 0.6327 0.0017 0.0400 4.5865
Atmosphere 2021, 12, x FOR PEER REVIEW 8 of 16 
 

 

 

Figure 3. Comparison of the observed and BPNN predicted NDVI in the (a) karst trough valley, (b) 

karst peak-cluster depression, (c) karst plateau, and (d) karst basin. 

Table 1. The prediction accuracy of the BPNN model. 

Karst Regions R2 MSE RMSE MAPE 

Karst plateau 0.7547 0.0021 0.0442 5.1697 

Karst basin 0.8389 0.0022 0.0452 5.6112 

Karst trough valley 0.8713 0.0007 0.0241 2.4604 

Karst peak-cluster depression 0.6327 0.0017 0.0400 4.5865 

3.2. RBFNN Model 

The R2 values were 0.7201–0.9516, with an average of 0.8563 (Table 2). The ranges of 

the MSE, RMSE, and MAPE values were 0.0006–0.0027, 0.0238–0.0520, and 2.6835–6.1581, 

respectively, with averages of 0.0014, 0.0356, and 4.1107, respectively. In the karst trough 

valley NDVI prediction, the model’s accuracy had a better performance than the other 

karst NDVI predictions (Figure 4). By comparing the R2, MSE, RMSE, and MAPE values 

to those of the BPNN, we concluded that the prediction accuracy of the RBFNN was 

higher than that of the BPNN. 

Table 2. The prediction accuracy of the RBFNN model. 

Karst Regions R2 MSE RMSE MAPE 

Karst plateau 0.9087 0.0008 0.0282 3.2034 

Karst basin 0.8447 0.0027 0.0520 6.1581 

Karst trough valley 0.9516 0.0006 0.0238 2.6835 

Karst peak-cluster depression 0.7201 0.0015 0.0383 4.3979 

Figure 3. Comparison of the observed and BPNN predicted NDVI in the (a) karst trough valley,
(b) karst peak-cluster depression, (c) karst plateau, and (d) karst basin.



Atmosphere 2021, 12, 1341 8 of 16

3.2. RBFNN Model

The R2 values were 0.7201–0.9516, with an average of 0.8563 (Table 2). The ranges of
the MSE, RMSE, and MAPE values were 0.0006–0.0027, 0.0238–0.0520, and 2.6835–6.1581,
respectively, with averages of 0.0014, 0.0356, and 4.1107, respectively. In the karst trough
valley NDVI prediction, the model’s accuracy had a better performance than the other
karst NDVI predictions (Figure 4). By comparing the R2, MSE, RMSE, and MAPE values to
those of the BPNN, we concluded that the prediction accuracy of the RBFNN was higher
than that of the BPNN.

Table 2. The prediction accuracy of the RBFNN model.

Karst Regions R2 MSE RMSE MAPE

Karst plateau 0.9087 0.0008 0.0282 3.2034
Karst basin 0.8447 0.0027 0.0520 6.1581

Karst trough valley 0.9516 0.0006 0.0238 2.6835
Karst peak-cluster

depression 0.7201 0.0015 0.0383 4.3979
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3.3. RF Model

The optimal numbers of leaf nodes and trees (5 and 1000, respectively) were de-
termined to achieve the best prediction accuracy of the RF model. The R2 values were
0.8136–0.9422, with an average of 0.8919 (Table 3). The MSE, RMSE, and MAPE values
were 0.0012–0.0030, 0.0346–0.0546, and 4.3629–6.8243, respectively, with averages of 0.0023,
0.0468, and 5.8686, respectively. In the karst basin and karst trough valley NDVI predic-
tions, the R2 values were up to 0.9422 and 0.9329, respectively, indicating that the model
performed better in these regions than in the other karst NDVI predictions (Figure 5). The
errors of the validation period were lower, and the prediction accuracy of the RF was good.
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Table 3. The prediction accuracy of the RF model.

Karst Regions R2 MSE RMSE MAPE

Karst plateau 0.8790 0.0030 0.0546 6.8243
Karst basin 0.9422 0.0012 0.0346 4.3629

Karst trough valley 0.9329 0.0028 0.0525 6.6639
Karst peak-cluster

depression 0.8136 0.0021 0.0453 5.6231
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trough valley, and (c) karst basin, (d) karst peak-cluster depression.

3.4. SVR Model

The R2 values were 0.8427–0.9564, with an average of 0.9128 (Table 4). The model
prediction accuracy was greater than 0.9 in the study area, except for the karst peak-cluster
depression NDVI prediction. The MSE, RMSE, and MAPE values were 0.0002–0.0011,
0.0154–0.0336, and 1.6700–4.2682, respectively, with averages of 0.0006, 0.0239, and 2.7732,
respectively. The model performed the best overall in the karst trough valley NDVI
prediction compared to in the other regions. This shows that the SVR model had a higher
accuracy in the karst NDVI prediction (Figure 6).

Table 4. The prediction accuracy of the SVR model.

Karst Regions R2 MSE RMSE MAPE

Karst plateau 0.9150 0.0005 0.0218 2.4420
Karst basin 0.9370 0.0011 0.0336 4.2682

Karst trough valley 0.9564 0.0002 0.0154 1.6700
Karst peak-cluster

depression 0.8427 0.0006 0.0248 2.7124
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3.5. Comparison of Prediction Results

The comparison of the karst NDVI prediction results of the different models is shown
in Figures 7 and 8. In the karst trough valley NDVI prediction, the R2 values were SVR
> RBFNN > RF > BPNN, and the MSE and RMSE values were SVR < RBFNN < BPNN <
RF, while the MAPE values were SVR < BPNN < RBFNN < RF. In the karst peak-cluster
depression NDVI prediction, the R2 values were SVR > RF > RBFNN > BPNN, and the
errors were SVR < RBFNN < BPNN < RF. In the karst plateau NDVI prediction, the R2

values were SVR > RBFNN > RF > BPNN, and the errors were SVR < RBFNN < BPNN <
RF. In the karst basin NDVI prediction, the R2 values were RF > SVR > RBFNN > BPNN,
and the errors were SVR < RF < BPNN < RBFNN. The prediction accuracy of the SVR was
higher than those of the other models, while its MSE, RMSE, and MAPE values were lower
than those of the other models. Thus, we conclude that the SVR model is more suitable for
karst NDVI prediction.
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4. Discussion

Several scholars have studied the response of the vegetation NDVI to impact factors
and have analyzed its changes in southwestern China. However, they did not distinguish
between karst vegetation and non-karst vegetation, resulting in inadequately reflecting
the nonlinear relationship between the karst vegetation and the impact factors in this



Atmosphere 2021, 12, 1341 12 of 16

special geologic environment. Vegetation growth is not affected by a single factor but is
the result of the combined effect of multiple factors. Compared to non-karst vegetation,
karst vegetation is more affected by topography, climate, and human activity factors [9].
Karst vegetation is significantly affected by both climate and non-climate factors, and
the response of vegetation to climate exhibits nonlinear characteristics and compound
effects [26]. Previous studies have concluded that the relationship between the land surface
temperature and the NDVI has opposite spatial distribution patterns in typical karst regions
at the macroscopic and microscopic levels [49]. Vegetation activities can be regulated by
moisture changes, but increased moisture may inhibit vegetation activities due to increased
cloud cover and relative humidity [26]. Wang et al. [13] found that temperature and
precipitation have larger impacts on the NDVI than the annual sunshine duration. The
present climatic conditions may not be the primary driving factor of vegetation growth,
and the earlier climatic conditions may be the most important factors affecting vegetation
growth. By determining the time-lag effect, we can better predict and evaluate vegetation
dynamics under the background of global climate change [50]. Thus, the time-lag effects
of the climate factors on vegetation play a non-negligible role in vegetation prediction.
The topography can explain the spatial distribution characteristics of the vegetation cover
to a certain extent. Different soil textures have a significant effect on karst vegetation.
Increasing the percentage of the sandy soil component will progressively improve the
direct response of the vegetation to drought, while increasing the percentage of the clay soil
component will have the opposite effect [15]. Therefore, using a suitable nonlinear method
to predict karst vegetation based on multiple factors could enhance the explanation of the
nonlinear process of vegetation growth.

Linear methods are currently the most commonly used methods of analyzing karst
vegetation changes, but the variable interactions are hard to be considered, resulting in
difficulty revealing the nonlinear relationships between predict and response factors [25].
The response of vegetation to the influencing factors is complex and nonlinear. Machine
learning methods are very effective in dealing with nonlinear relationships between the
system’s inputs and outputs. They can speculate and improve algorithms independently
and enhance the accuracy and efficiency by obtaining experience [28]. With machine
learnings, we can better reveal the nonlinear relationship of vegetation greening with
natural and human activities factors and for better prediction. The karst NDVI prediction
results of the BPNN, RBFNN, RF, and SVR models are presented in Tables 1–4. The mean
R2 values were 0.7744, 0.8563, 0.8919, and 0.9128, respectively. Based on the assessment
of errors, the models were within the acceptable ranges. Wu et al. [16] have employed
four modeling approaches: linear regression, generalized additive models, support vector
machine, and RF to fit vegetation cover change, the results obtained that the RF model
produced the highest accuracy and lowest error. Four supervised machine algorithms:
SVR, RF, linear and polynomial regression were used to predict NDVI and EVI, the results
showed that the RF model for NDVI and EVI prediction have high levels of accuracy [35].
Different from the above research, our research found the SVR model has the lowest errors
and the highest accuracy compared with the BPNN, RBFNN, and RF models, which was
indicating that the SVR model was the best for karst vegetation prediction.

From the perspective of the principle of these models, the gradient descent method
is widely used to adjust the weights of the BPNN neurons, but its limitations are a slow
convergence speed and being easy to fall to a local optimum [39], which result in a relatively
poor prediction accuracy. The ability of the RBFNN model to produce global approxi-
mations could solve the local optimum problem of the BPNN model, so its vegetation
prediction approximation accuracy is obviously higher than that of the BP [39]. The data
input into the RF model was divided into intervals to yield the mean results for each inter-
val, which makes the RF model very flexible [51]. The advantages of the SVR model are
the uniqueness and global optimality of the generated solution [52] and it determines the
maximum-margin hyperplane [53], which improves the prediction accuracy and reduces
the prediction error. However, the interpretation of most machine learning algorithms is
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often considered hard, similar to a black box [54]. Without an explicit regression equation
for the final model, the resulting input-output relationships from the black box model
cannot be provided good interpretability [25]. However, machine learning algorithms still
have powerful functions in dealing with complex nonlinear relationships. In this study, the
RBFNN and RF models had relatively higher accuracies, but they were significantly biased
compared to the performance of the SVR model.

In this study, we only predicted the NDVI in the growing season in typical karst
regions and discussed the optimal machine learning method for karst NDVI prediction. It
is relatively rough to extract data, such as topography and soil texture data, from on the
regional scale because of the strong landscape heterogeneity in karst areas. In addition,
MODIS NDVI time-series data have a relatively low spatial resolution. The karst region is
characterized by a high bedrock exposure and low vegetation coverage. The prediction
results may be influenced by the spectral response of the ground. In the future, we will
explore the dynamic changes in the karst vegetation on multiple time scales and grid-in-
grid distribution scales. Applying machine learning methods to accurately predict karst
vegetation at multiple temporal and spatial scales in order to provide a scientific basis for
karst vegetation restoration and environmental governance is very important.

5. Conclusions

In this study, we selected relevant climate, human activity, soil texture, and topography
factors. The BPNN, RBFNN, RF, and SVR methods were employed to construct a nonlinear
relationship model between the karst NDVI and these factors and then to predict the
karst NDVI. Pearson correlation analysis was used to analyze and select the climate
factors, which had a time-lagged effect on the NDVI, influencing the NDVI as inputs
of the model. By assessing the model performance, we determined the best model for
vegetation prediction.

By assessing the models using the mean R2 values as the criteria, it was found that the
observed values agree well with the predicted values for the BPNN, RBFNN, RF, and SVR
models (R2: 0.77, 0.86, 0.89, and 0.91, respectively). Based on the mean MSE, RMSE, and
MAPE values (MSE: 0.002, 0.001, 0.002, and 0.001; RMSE: 0.04, 0.04, 0.05, and 0.02; MAPE:
4.46, 4.11, 5.87, and 2.77, respectively), the models are within the acceptable range.

By comparing the models’ results (R2, MSE, RMSE, and MAPE), it was determined
that the models are acceptable for karst NDVI prediction. Although the prediction accuracy
of the RF model for the karst basin NDVI was higher than that of the SVR model, the overall
errors of the SVR model were lower than those of the RF model. The results show that the
SVR model significantly outperformed the BPNN, RBFNN, and RF models in terms of the
standard statistical indexes, and thus, it is more suitable for karst NDVI prediction. The
accuracy of the SVR model is affected by the different parameters; and a well-trained SVR
model is a useful tool for predicting karst vegetation. Our results can provide references
for vegetation prediction in karst areas and more accurate predictions for the assessment of
ecological evolution.
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