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Abstract: The particulate matter PM10 concentrations have been impacting hospital admissions due
to respiratory diseases. The air pollution studies seek to understand how this pollutant affects the
health system. Since prediction involves several variables, any disparity causes a disturbance in the
overall system, increasing the difficulty of the models’ development. Due to the complex nonlinear
behavior of the problem and their influencing factors, Artificial Neural Networks are attractive
approaches for solving estimations problems. This paper explores two neural network architectures
denoted unorganized machines: the echo state networks and the extreme learning machines. Beyond
the standard forms, models variations are also proposed: the regularization parameter (RP) to
increase the generalization capability, and the Volterra filter to explore nonlinear patterns of the
hidden layers. To evaluate the proposed models’ performance for the hospital admissions estimation
by respiratory diseases, three cities of São Paulo state, Brazil: Cubatão, Campinas and São Paulo, are
investigated. Numerical results show the standard models’ superior performance for most scenarios.
Nevertheless, considering divergent intensity in hospital admissions, the RP models present the best
results in terms of data dispersion. Finally, an overall analysis highlights the models’ efficiency to
assist the hospital admissions management during high air pollution episodes.

Keywords: PM10; health risks; extreme learning machine; echo state network; neural networks

1. Introduction

World Health Organization (WHO) estimates that 91% of the world’s population
lives in places where air pollution levels exceed the advised limits. This exposure has as
a consequence 4.2 million deaths per year due to stroke, heart disease, lung cancer and
chronic respiratory illness [1].

In the last decades, the air pollution consequences in the environment and health have
been the subject of deep researches [2–4], including the relation between air pollution and
human health [5–8] and, specifically, the study of particulate matter (PM) impacts on the
respiratory diseases [9–11]. The public health system is currently the main concern for the
global governance majority, receiving huge money investments and boosting researches in
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operational areas. Therefore, several works have been applied to develop mathematical
models to improve predicting the diseases caused by PM air concentration.

Generalized Linear Models (GLM) [10–14] and Generalized Additive Models
(GAM) [15,16] are statistical regression models usually used to assess air pollution con-
sequences on human health. However, a minimum of data is required to assure that
regression models will be able to capture the relationship between the inputs (predictors)
and the output (response variable) [17]. For developing countries, as lack of data is a
reality, solving the problem using regression models is challenging [18]. For this reason,
other models and methods have been applied; since the problem can be seen as a nonlinear
mapping task, the Artificial Neural Networks (ANN) approach is the most attractive ap-
proach for solving estimation problems. The ANN have been used to solve air pollution
mapping tasks [19–22], and they have become increasingly popular over the past decade
for predicting the air pollutant’s impact on human health [10,17,18,23–25]. Araujo et al. [17]
and Kassomenos et al. [24] have shown that the ANN had better performance than linear
approaches like the GLM when dealing with nonlinear mapping problems. In this context,
Tadano et al. [26] proposed to use two models, known as Unorganized Machines (UM): the
echo state networks (ESN) and the extreme learning machines (ELM), to predict hospital
admissions. Based on this work, this paper presents a full extension of these models, adding
several neural networks variations applied to an enlarged and updated set of instances.

ELM and ESN are ANN architectures used to deal with static nonlinear mapping
problems, and are reliable when applied to multiclass classification and, mainly, time series
forecasting [27–31]. Thus, the main contribution of this research is an epistemological
study that predicts the impact of PM10 (particulate matter with an aerodynamic diameter
less than 10 µm) daily mean concentrations on hospital admissions due to respiratory
diseases using versions of the UM: the addition of regularization parameter applied to
increase the generalization capability of the models [32] and the use of the Volterra filter to
capture nonlinear patterns of the neural information [33]. To evaluate the performance of
the proposed methods, three cities from São Paulo State, Brazil (Campinas, Cubatão and
São Paulo city) were considered.

Based on the overall analysis produced, we expect to understand how air pollution
affects the health system, especially during global sanitary crises scenarios, avoiding
hospital collapse.

This work is organized as follows: Section 2 presents the ELM and ESN standard
models, the regularization parameter and nonlinear output layer strategies; Section 3
describes the addressed databases; Section 4 shows the computational results and critical
analysis regarding the models’ performances; Section 5 presents the main conclusions and
future works.

2. Unorganized Machines

Unorganized machines are a designation used as a general term to classify the modern
neural network paradigms that unify two kinds of ANN: the echo state networks (ESNs)
and the extreme learning machines (ELMs) [27].

In this work, these two architectures are employed to predict the hospital admissions
due to respiratory diseases caused by air pollution. Moreover, other models based on the
variations and extensions of these models are used [33,34].

2.1. Extreme Learning Machines

The extreme learning machine (ELM) is a feedforward neural network composed of a
single hidden layer, similar to the structure of multilayer perceptron (MLP) [28]. Figure 1
illustrates the architecture.
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Figure 1. Extreme Learning Machine.

According to Figure 1, the vector un represents all input information: PM10 concen-
tration; relative humidity; ambient temperature; the different weekdays; and holidays.
This vector un is associated with the matrix Wh through weights of the hidden layer that
can be randomly determined. The unique output layer (readout) Wout is composed of
parameters of a linear combiner that are calculated using the Moore-Penrose generalized
inverse operator which shall be defined below. Finally, similar to a single-hidden layer
multilayer perceptron (MLP), the ELM is also a single hidden layer feedforward neural
network, being yn the output information that indicates the number of hospital admissions.

The activation of the artificial neurons within the hidden layer are given by Equation (1):

xh
n = f h

n (W
hun + b), (1)

being un = [un, un−1, . . . , un−K−1]
T the vector that contains the K input signals, Wh ∈

RN×K the linear input coefficients, b the vector that represents the biases of the hidden
units and f h(.) = ( f h

1 (.)), f h
2 (.), . . . , f h

N(.) the activation functions of the hidden neurons.
Then, Equation (2) presents the network outputs calculation:

yn = Woutxh
n, (2)

where Wout is the output matrix.
The output layer (readout) adjustment is the main advantage of ELM models. This

strategy is applied only once, considering the error signal [35,36]. Moreover, in dissonance
with the traditional feedforward neural networks, when the intermediate activation func-
tions are continuously differentiable, these models can choose the weights of the hidden
layer randomly [36–38]. Huang et al. demonstrate that ELMs are universal approxima-
tors [39].

These structures are composed of a simple training process, mainly requiring the
calculation of the parameters of a linear combiner using the Moore-Penrose generalized
inverse operator, as in Equation (3) [36,37,40,41]:

Wout = (XT
h Xh)

−1XT
h d, (3)
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where Xh ∈ RTs×N is the matrix composed of the intermediate layer outputs and Ts is the
training sample numbers, (XT

h Xh)
−1XT

h is the pseudoinverse of Xh and d ∈ RTs×1 is the
vector composed of desired outputs.

2.2. Echo State Networks

Echo state networks (ESN) are recurrent neural models known by an effortless training
process: the dynamical reservoir (intermediate layer) is fixed, i.e., there is no iterative
adjustment. In this sense, the synaptic weights of the reservoir do not use the error function
derivatives. Thus, only the output layer is effectively adapted [42]. The adaptation process
applies a linear regression scheme similar to the ELM training process, considering that
a linear combiner is often applied to the output layer. The neural network structure of
ESN can be seen as a general case of ELM because the reservoir presents recurrent loops.
Figure 2 illustrates the structure.

Figure 2. Echo state networks.

Figure 2 shows that the network structure is slightly similar to the ELM model pre-
sented in Figure 1, except by the additional input layer (Win), defined as a linear matrix,
and feedback loops in the intermediate layer (hidden layer).

Equation (4) expresses the activation of the internal neurons. This activation represents
the network states which are influenced by the previous state and the present input:

xn+1 = f (Winun+1Wxn), (4)

where f (.) = ( f1(.), f2(.), . . . , fN(.)) gives the activation functions of all neurons within
the reservoir, Win ∈ RN×K is the input weight matrix and W ∈ RN×N is the recurrent
weight matrix.

The linear combinations of the reservoir signals produce the ESN outputs by (5):

yn+1 = Woutxn+1, (5)

where Wout ∈ RO×N is the output weight matrix, and O the number of outputs. The pa-
rameters of the Wout are determined by Moore-Penrose generalized inverse described in
Section 2.1.
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Fundamentally, the network model, besides a stable behavior, should present an
internal memory that preserves the input signals history formed in the dynamical reser-
voir [29,35,43]. Both features are contemplated by echo state property (ESP) [29,35,43].

Jaeger et al. suggest in [29] to simplify the weight matrix W, denoting wij as 0, 0.4
and −0.4 values with probabilities 0.95, 0.025 and 0.025, respectively. On the other hand,
Ozturk et al. (2006) suggest a new design for the dynamical reservoir [44] that considers
eigenvalues uniformly spreading in the weight matrix. Both approaches are applied in
this work.

Having described the unorganized machines in the standard forms, the following
subsections describe the variations and extensions which design structures of new models
also applied to the proposed problem.

2.3. Regularization Parameter

Primarily proposed by Huang et al. (2011), the regularization strategy aims to improve
the model’s generalization capability, inducing the solutions obtained by a parameter
applied to the Mean Square Error (MSE) cost function. The parameter C is chosen from a
validation set of samples, assuming C = 2λ, with λ discretized in the interval [−25, 26] [32].
The strategy is performed during the interactive process, where all parameters are tested,
and only one is selected according to the best MSE validation, via Expression (6):

Wout =

(
I
C
+ XT

h Xh

)−1
XT

h d, (6)

being C the regularization parameter and I the identity matrix.
Trying to improve generalization capability given by the parameter C, Kulaif et al.

(2013) developed a local search, denoted golden search, to determine better values for the
parameter C. The strategy is grounded in two main concepts: significant modifications are
obtained in the final solutions if any small parameter variations occur; the function given
by each small interval associated with the parameter C and the validation error shall be
supposedly quasi-convex [45]. This strategy is also applied in this work.

2.4. Nonlinear Output Layer

Boccato et al. (2011) proposed a variation of nonlinear output layer in ESNs, the Volterra
filtering structure [46]. The main concern is to prove the linear dependence between the
dynamical echo states, preserving the training process simplicity for the networks. The out-
put signals can be computed through linear combinations of polynomial terms, as in
Equation (7) [27]:

yi,n = h0 +
M

∑
p=1

h1
pxp,n +

M

∑
p=1

M

∑
q=1

h2
p,qxp,nxq,n +

M

∑
p=1

M

∑
q=1

M

∑
r=1

h3
p,q,rxp,nxr,n + . . . , (7)

where xi,n is the output of the i− th neuron of the reservoir (or the i− th echo state) at n− th
time instant, hm the linear combiner coefficient with m = 1, . . . , M, and M the polynomial
expansion order.

Similar to Equation (3), the training process simplicity is preserved due to the linear
dependence of the outputs regarding the filter parameters. In terms of least squares,
Equation (7) guarantee the closed-form solution, allowing the Moore-Penrose inverse
operation [47].

However, according to Boccato et al. (2011), the application of a Volterra filter might
have as consequence the uncontrollable growth of free parameters and inputs numbers.
To prevent these problems, a compression technique known as Principal Component
Analysis (PCA) must be applied. Interestingly, the use of PCA is also suitable to avoid the
redundancy between echo states [29,48]. In recent years, Chen et al. extended this idea to
the ELMs, considering the same premises of the former work [48,49].
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All parameters associated with the proposed models: the number of neurons, Volterra
Filter orders, the weight values, and the number of simulations, shall be described in
Section 4.

3. Case Studies

To evaluate the approach, three cities of São Paulo state, Brazil, with different char-
acteristics, were considered: São Paulo, Campinas and Cubatão. The data set of daily
PM10 concentration [µg/m3], relative humidity [%], and ambient temperature [◦C], were
obtained on the Environmental Sanitation Technology Company website [50].

The Brazilian National Health System provides data about the daily hospital admis-
sions due to respiratory diseases (RD). The data set considered in this study, available
in [51], comprises the International Classification of Diseases 10 (ICD-10)-J00 to J99. In this
work, the database was organized as a daily format and separated by the ICD-10 diagnosis.

According to the Brazilian Institute of Geography and Statistics (IBGE) [52], São Paulo
City, the largest city in Brazil, has almost 12 million people (data of 2010) in 1500 km2,
which is 7398.26 inhabitants per km2. The average climate is tropical, about 28 ◦C in
summer and 12 ◦C in winter [50]. This study considers the period from January 2014
until December 2016. The total number of hospital admissions for respiratory diseases
during the studied period, for São Paulo city, was 159,683 occurrences. With regards to the
PM10 concentration, only four out of twelve air quality monitoring stations had PM10 data.
In addition, only one station presented less than 100 days of lack of data. To deal with this
problem, data from another similar station were used to replace them.

Campinas City is the third most populous city of São Paulo State, with a population
of approximately 1,1 million people (data of 2010) spread in 795.7 km2, a demographic
density of 1359.6 inh/km2 [52]. The climate is tropical with dry winter and rainy summer
with an average of 37 ◦C during summertime. For this city, the data set considered data
from January 2017 to December 2019, comprising 15,464 hospital admissions for respiratory
diseases. In this case, two of three air quality monitoring stations presented PM10 data,
however, one had no data for 2019. So, the only station with less missing data (145 days
lack) was used.

Cubatão has an estimated 118,720 inhabitants with 142.8 km2 and 831 inh/km2 [52].
In the past, it was one of the most global polluted cities because of its large industrial park
and for being surrounded by mountains, which makes the air dispersion hard. In the 1980s,
the United Nations considered Cubatão the most polluted city in the world. After that,
a government, industries and community effort controlled 98% of the air pollutants level in
the city [53]. The current experiments considered the data from January 2017 to December
2019, a total of 802 hospital occurrences. For this city, all three air quality monitoring
stations had PM10 available data. However, only the station with more available data was
used, with 158 missing days.

A tendency to decrease hospital admissions on the weekends and holidays is a usual
situation. For this reason, the day of the week and holidays were considered as two
categorical variables [54]. Thus, in addition to the PM10 daily mean concentrations, ambient
temperature (T) and relative humidity (RH), the day of the week identifications (1 for
Sunday to 7 for Saturday), and a binary flag (h) to recognize if the day is a holiday,
were used.

Another important feature is the lag effect of air pollution on human health [10,17,26,55].
A common practice is to consider the effect up to seven days after exposure to air pollution,
where lag 0 is the effect on the same day of the exposure, and lag 7 is the effect after seven
days of the exposure [54].

Table 1 presents the descriptive statistics for the target (respiratory diseases-RD) and
the inputs: PM10 concentration, temperature and relative humidity, for each city. All these
variables are differed by average, standard deviation and minimum and maximum values.
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Table 1. Descriptive statistics for the variables.

City Variable Average S. Deviation Min. Max.

São Paulo

RD 144.0 54.7 9.0 409.0
PM10 [µg/m3] 28.6 14.0 5.0 97.0
Temperature [◦C] 20.7 3.6 9.9 28.9
Humidity [%] 48.6 16.1 15.0 93.0

Campinas

RD 16.0 6.0 3.0 37.0
PM10 [µg/m3] 21.5 11.3 3.0 84.0
Temperature [◦C] 28.5 3.9 16.6 37.0
Humidity [%] 42.4 14.4 14.0 90.0

Cubatão

RD 1.0 1.0 0.0 8.0
PM10 [µg/m3] 37.6 17.9 11.0 148.0
Temperature [◦C] 27.1 4.3 16.0 40.3
Humidity [%] 63.5 16.8 19.0 97.0

Note that the cities have different patterns for the target. São Paulo hospitalizations
have a wide dispersion, with 9 to 409 daily hospital admissions. Campinas ranges from 3
to 37, while Cubatão, the smallest studied city, has a maximum of eight hospitalizations.
It is necessary to highlight that the databases comprise only data from the public health
system, not considering data from health insurance and private units.

The maximum daily PM10 concentration for Cubatão (148 µg/m3) draws attention,
because it is almost thrice the WHO 24-hours average limit of 50 µg/m3 (Table 1) [56].
Despite that, the hospital admissions are very low (daily maximum of occurrences) since
a significant part of the workers of Cubatão live in São Paulo, which is around 63 km far.
The hospital admissions might also depend on the air pollutants dispersion pattern and the
local population. São Paulo and Campinas maximum daily PM10 concentrations are lower
than Cubatão, but they are also above the WHO limit of 50 µg/m3 (São Paulo-maximum
daily of 97 µg/m3; Campinas-maximum daily of 84 µg/m3) [56].

Since the data set described is large with high variability, it may contain multicollinear-
ity or near-linear dependence among the variables. Multicollinearity occurs when two
or more inputs (independent variables) are highly correlated affecting the estimate pre-
cision. [57]. To evaluate the data set, the Variance Inflation Factor (VIF) shall be used to
diagnose the multicollinearity. VIF is calculated by an inflation of the regression coef-
ficient for a independent variable, assessing its correlation to the dependent variables,
and modeling the future relation between them. Then, the VIF for each jth factor can be
calculated as:

VIFj =
1

1− R2
j

, (8)

where R2
j is the multiple determination coefficient obtained from regressing each indepen-

dent variable on the others. If VIF exceeds 5, it is an indicator of multicollinearity [57].
In this work, R Studio (R version 4.1.0 (2021-05-18)—“Camp Pontanezen” Copy-

right (C) 2021 The R Foundation for Statistical Computing Platform: x8664 − w64 −
mingw32/x64(64− bit)) was used to calculate VIF. The results are presented in Table 2,
showing no multicollinearity between the inputs of each case study.

Table 2. VIF test results for multicollinearity.

VIF Cubatão Campinas São Paulo

PM10 1.1581 1.5779 1.6365
Relative Humidity 1.9392 2.2771 1.8703

Temperature 1.8825 1.5877 1.2105
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In the next section, the proposed models are applied to the presented data, producing
a fulfilled analysis of the numerical results obtained.

4. Results and Critical Analysis

The following items describe all models developed to obtain the numerical results in
order to evaluate the approach’s effectiveness:

• Standard single models: Three versions are developed considering the Standard
Models presented in Sections 2.1 and 2.2. The Extreme Learning Machine (ELM),
the Echo State Network from Jaeger et al. [29] (ESN J.) and the Echo State Network
from Ozturk et al. [44] (ESN O.);

• Regularization Parameter: All standard models are extended, producing three other
models through regularization parameter concepts presented in Section 2.3. The ELM
with Regularization Parameter (ELM–RP), the ESN J. with Regularization Parameter
(ESN J.–RP) and the ESN O. with Regularization Parameter (ESN O.–RP);

• Nonlinear Output Layers: Similarly, three more models are proposed considering the
concepts in Section 2.4. The Nonlinear Output Layers strategy is applied to the three
single forms creating the ELM with Volterra Filtering Structure (ELM Volt), the ESN J.
with Volterra Filtering Structure (ESN J. Volt), and the ESN O. with Volterra Filtering
Structure (ESN O. Volt).

The experimental procedure follows the steps summarized in Figure 3:

Figure 3. Neural networks appliance steps.

The process begins by collecting the data in the mentioned repositories. Before the
insertion of the samples in the neural networks, a normalization procedure is performed
due to the limits of the activation function saturation [58]. After the training samples are
inserted in the model in order to adjust their free parameters, observing the decrease of
the output error. During this process, cross-validation is performed to increase the system
generalization capability.

When the training ends, the test samples are inserted in the ANN after the input
normalization. The neural response is stored, the normalization is reversed and, finally,
the model output is available, which allows the calculation of the models’ error. In this
work, all models codes were developed in the MATLAB language.

In the training step, the parameters were defined as follows:

• The number of artificial neurons in the hidden layer (or dynamic reservoir) of each
model was determined considering a grid search ranging from 3 to 450 neurons;

• The weights were randomly generated in the interval [−1;+1];
• The hyperbolic tangent was addressed as the activation function of the hidden layers;
• The samples were normalized in the interval [−1;+1] before the neural processing;
• The models with RP strategy considered the holdout cross-validation;
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• The reservoir designed by Ozturk et al. considered a spectral radius of 0.95 [44];
• The first and the third orders (Equation (7)) of the Volterra filter and the first three

principal components of the PCA were considered [48]. These values were defined
after empirical tests;

• Before the calculation of the errors, the original domain data was re-scaled.

This work addressed three error metrics to evaluate the solutions quality: Root Mean
Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error
(MAPE), given by (9)–(11), respectively:

RMSE =

√√√√ 1
N

N

∑
n=1

(dn − yn)2, (9)

MAE =
1
N

N

∑
n=1
|dn − yn|, (10)

MAPE =
1
N

N

∑
n=1

∣∣∣∣dn − yn

dn

∣∣∣∣× 100, (11)

where dn is the actual value, yn is the neural model response and N is the total number
of samples.

Tables 3–5 present the computational performances achieved by the nine proposed
models for each lag, considering each city. The results present the number of neurons (NN)
used in the best performance and the error metrics: RMSE, MAE and MAPE. However,
as it can be seen in Table 3 for Cubatão, the error metrics MAPE was not considered due to
the expressive number of “zeros” for the actual value (dn). In the tables, the best results
obtained for each error metric and the best model are highlighted in purple. Furthermore,
the models highlighted in italic bold with stars are the models which obtained statistically
similar results to the best one. This statistical test is described below.

A specific result analysis shows that ELM(RP) had the best results for the all calcu-
lated metrics for Cubatão in lag 2. Besides, ELM obtained the best results for Campinas,
considering the error metrics RMSE and MAPE in lag 3, but for MAE, ELM(RP) achieved
the best results in lag 0. For São Paulo, ELM obtained the smallest error values for different
lags: RMSE in lag 2 and MAE in lag 1. Finally, ELM(RP) presented the smallest error metric
MAPE in lag3.

Note that the best results obtained by the models sometimes were not replicated for
all error metrics. This behavior was evident for São Paulo and Campinas, since the best lag
and the best model were not always the same. Similar behavior can be observed in [17,59].

The pairwise Wilcoxon test was applied to evaluate if the results are statistically
different considering the RMSE with 30 independent simulations [60]. In Tables 3 and 4,
the models highlighted in bold with star tag achieved a p-value higher than 0.05, which
means that there is no statistical difference between their results and the best one. For this
reason, these models can be considered similar, in terms of performance, to the models
that obtained the best results. For Campinas, the standard ELM and all ESNs presented
equivalent performances, despite the numerical values being contrasts. For Cubatão, ELM
and ELM(RP) results were also similar. At long last, for São Paulo the test did not show
any statistical similarity among the models.

Figures 4–6 show the boxplot graphic regarding the RMSE values for each city and
the lag associated with the best result.
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Table 3. Results for Cubatão (Number of neurons-NN, RMSE and MAE for each model and lag).

LAG 0 LAG 1

Model NN RMSE MAE NN RMSE MAE

ELM 250 1.5630 1.1857 300 1.4760 1.1357
ELM(RP) 350 1.5330 1.1643 320 1.4808 1.1357
ELM Volt 350 2.4202 2.0429 450 2.0942 1.7714

ESN J. 320 1.6058 1.2643 450 1.5789 1.1929
ESN J.(RP) 450 1.5879 1.2357 450 1.6345 1.2571
ESN J.Volt 70 2.3815 1.9571 35 1.8323 1.4571

ESN O. 30 1.6257 1.2143 35 1.4904 1.1429
ESN O.(RP) 200 1.6797 1.3357 450 1.7587 1.3929
ESN O.Volt 10 2.7877 2.2286 380 2.7255 2.2429

LAG 2 LAG 3

Model NN RMSE MAE NN RMSE MAE

ELM* 420 1.4417 1.1000 350 1.4663 1.1500
ELM(RP) 320 1.4343 1.0714 380 1.4467 1.1286
ELM Volt 420 2.0107 1.6929 100 1.9928 1.6571

ESN J. 300 1.4344 1.1000 380 1.4417 1.1214
ESN J.(RP) 450 1.5142 1.1786 420 1.4541 1.1000
ESN J.Volt 30 2.1827 1.7071 35 2.3664 1.9143

ESN O. 350 1.4760 1.1214 35 1.4880 1.1286
ESN O.(RP) 420 1.6058 1.2357 170 1.5330 1.2071
ESN O.Volt 300 2.4900 2.0429 350 2.6227 2.2143

LAG 4 LAG 5

Model NN RMSE MAE NN RMSE MAE

ELM 250 1.5071 1.1714 420 1.5353 1.1571
ELM(RP) 250 1.5024 1.1786 400 1.5306 1.1643
ELM Volt 280 2.3890 1.9929 380 2.5114 2.1500

ESN J. 420 1.5142 1.1929 350 1.5561 1.1714
ESN J.(RP) 450 1.5189 1.1643 350 1.5561 1.2214
ESN J.Volt 70 2.2960 1.8714 35 2.5746 2.1500

ESN O. 380 1.6013 1.2786 70 1.5766 1.1571
ESN O.(RP) 380 1.5561 1.2071 250 1.6191 1.2500
ESN O.Volt 50 2.3770 2.0500 30 2.4275 1.9643

LAG 6 LAG 7

Model NN RMSE MAE NN RMSE MAE

ELM 250 1.4516 1.1500 350 1.5811 1.2286
ELM(RP) 320 1.5515 1.1929 200 1.5376 1.2000
ELM Volt 450 2.4640 2.1429 450 2.4928 2.1643

ESN J. 170 1.6903 1.3429 450 1.5306 1.2214
ESN J.(RP) 420 1.5584 1.2429 420 1.5834 1.2571
ESN J.Volt 40 2.3634 2.0429 70 2.2409 1.8786

ESN O. 40 1.5142 1.1714 35 1.5811 1.2429
ESN O.(RP) 250 1.6410 1.3357 200 1.5969 1.3071
ESN O.Volt 300 2.8322 2.2143 50 2.6390 2.1071
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Table 4. Results for Campinas (Number of neurons-NN, RMSE, MAE and MAPE for each model
and lag).

LAG 0 LAG 1

Model NN RMSE MAE MAPE
% NN RMSE MAE MAPE

%

ELM 25 6.9017 5.6479 40.2496 3 5.5462 4.4507 36.9895
ELM(RP) 3 5.1094 3.9648 32.7044 25 7.0751 5.7324 40.8537
ELM Volt 25 7.0206 5.2676 37.2186 10 5.3910 4.1338 34.4946
ESN J. 35 6.9394 5.6620 40.0763 50 6.6619 5.4085 41.5375

ESN J.(RP) 3 6.4306 5.0563 50.5484 3 6.4731 5.0845 51.6402
ESN J.Volt 380 6.3540 4.8803 46.8265 3 5.2393 3.9577 33.7701
ESN O. 15 5.8713 4.6127 39.4574 30 6.4878 5.2465 40.5271
ESN O.(RP) 3 6.2473 4.9014 49.1485 7 6.6327 5.2324 52.7208
ESN O.Volt 3 5.6438 4.3873 33.9491 3 5.8743 4.6127 34.6702

LAG 2 LAG 3

Model NN RMSE MAE MAPE
% NN RMSE MAE MAPE

%

ELM 15 6.4464 5.1972 38.4853 3 5.0644 4.0282 31.9037
ELM(RP) 3 5.4721 4.3662 33.0808 25 6.6072 5.1761 39.8549
ELM Volt 25 5.9517 4.4507 38.5412 170 6.2020 4.6268 41.3376
ESN J.* 30 6.4114 5.0915 41.0724 70 6.1260 4.7113 38.2705
ESN J.(RP)* 3 6.2258 4.7887 48.3773 10 6.2196 4.9296 49.2648
ESN J.Volt* 3 5.7684 4.4859 35.2526 30 5.7101 4.2817 38.4659
ESN O.* 25 6.2557 4.9085 39.6942 100 6.2905 4.8310 37.4986
ESN O.(RP)* 10 6.0630 4.6761 46.9116 5 6.3207 4.9577 49.5265
ESN O.Volt* 7 5.7648 4.3592 40.2773 450 6.1633 4.8732 42.5624

LAG 4 LAG 5

Model NN RMSE MAE MAPE
% NN RMSE MAE MAPE

%

ELM 3 5.7403 4.4648 32.2381 3 5.2928 4.0845 33.6603
ELM(RP) 20 6.6003 5.0986 37.0427 3 5.3200 4.1056 34.3353
ELM Volt 25 5.7885 4.4085 34.7377 30 5.9511 4.7394 37.2746
ESN J. 70 6.2054 4.7746 36.7789 35 6.1070 4.7042 36.9522

ESN J.(RP) 30 6.3184 4.9859 48.8737 3 6.1254 4.7183 46.9130
ESN J.Volt 35 5.2682 4.1056 33.8667 3 5.8934 4.6479 35.1359
ESN O. 120 6.2776 4.8310 36.6999 200 6.3745 4.9859 38.5786
ESN O.(RP) 7 5.9935 4.6831 46.2167 10 6.2377 4.8239 47.9457
ESN O.Volt 3 5.9570 4.3028 36.7693 3 5.4521 4.3732 34.0759

LAG 6 LAG 7

Model NN RMSE MAE MAPE
% NN RMSE MAE MAPE

%

ELM 3 5.3068 4.1972 36.8548 35 7.2452 5.6761 42.0235
ELM(RP) 3 5.2474 4.0704 36.8444 35 7.2384 5.6761 42.0908
ELM Volt 25 5.3253 4.2465 35.6237 70 5.1273 4.0930 38.2203
ESN J. 30 6.2360 4.9930 39.2345 50 6.6961 5.1620 41.5200

ESN J.(RP) 5 5.9741 4.6901 44.9676 3 5.8928 4.6549 45.2283
ESN J.Volt 3 5.7873 4.4930 35.0669 3 6.0082 4.8169 34.6062
ESN O. 35 6.3987 5.0563 39.7110 50 6.4579 4.8732 39.7276
ESN O.(RP) 5 5.9487 4.5000 44.5221 5 5.9871 4.6620 45.6153
ESN O.Volt 3 5.6519 4.4014 35.8808 3 5.6687 4.2746 37.4182
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Table 5. Results for São Paulo (Number of neurons-NN, RMSE, MAE and MAPE for each model
and lag).

LAG 0 LAG 1

Model NN RMSE MAE MAPE
% NN RMSE MAE MAPE

%

ELM 25 61.1156 51.141 43.4189 3 39.7697 30.7821 36.1940
ELM(RP) 15 55.2425 46.4231 41.1963 20 59.1541 48.3205 40.3268
ELM Volt 10 60.8374 48.2179 48.3650 20 72.4500 58.7179 57.4171
ESN J. 420 62.4953 51.3910 42.4775 100 62.1230 50.4167 42.4388

ESN J.(RP) 450 67.7300 55.0449 70.2352 450 67.6519 55.0769 69.8433
ESN J.Volt 400 66.9744 54.0705 64.0419 3 51.2727 40.5833 43.2995
ESN O. 50 58.7160 48.3141 39.7660 50 58.1013 45.9679 40.5099
ESN O.(RP) 380 69.2728 56.6154 71.5779 350 68.8875 55.8526 71.2675
ESN O.Volt 3 57.8689 46.5064 45.7923 3 59.6593 45.7628 50.0376

LAG 2 LAG 3

Model NN RMSE MAE MAPE
% NN RMSE MAE MAPE

%

ELM 3 39.3745 31.2628 36.9582 25 59.9251 48.2308 45.2785
ELM(RP) 20 60.6640 48.2115 41.4840 3 43.9040 35.1026 35.9396
ELM Volt 25 83.6339 69.4423 68.6818 20 71.2603 55.4679 57.0193
ESN J. 70 60.7151 49.1154 42.8314 100 64.7131 52.4423 48.2804

ESN J.(RP) 450 65.7486 53.6795 68.8934 400 65.3756 53.0064 69.0983
ESN J.Volt 3 59.2428 43.6090 46.8035 3 58.6061 44.1795 43.8522
ESN O. 35 58.6986 47.4103 40.7649 15 50.4066 39.3910 41.1334
ESN O.(RP) 420 68.1032 55.3974 70.3439 400 67.3167 54.4936 70.1148
ESN O.Volt 3 55.5113 43.2628 45.1094 5 58.2715 45.4872 46.8127

LAG 4 LAG 5

Model NN RMSE MAE MAPE
% NN RMSE MAE MAPE

%

ELM 15 53.6898 41.4167 43.9006 3 46.4592 37.1474 39.0748
ELM(RP) 3 45.6739 35.9231 42.4408 3 43.6788 33.3077 38.8188
ELM Volt 7 64.8803 49.4487 56.4511 7 49.8634 39.3974 47.2036
ESN J. 450 64.3933 51.3782 47.0148 100 63.9561 51.8141 47.3902

ESN J.(RP) 450 65.9862 52.4808 69.1144 380 66.2419 52.6603 68.9928
ESN J.Volt 380 72.9358 59.3526 64.7092 7 68.9339 55.0513 56.2654
ESN O. 15 55.3579 45.3654 44.0190 25 58.9842 45.2051 44.8766
ESN O.(RP) 380 69.3555 55.5513 72.2436 380 68.0724 54.3590 70.6102
ESN O.Volt 3 50.5135 40.5833 40.8100 3 53.3191 41.0000 48.6203

LAG 6 LAG 7

Model NN RMSE MAE MAPE
% NN RMSE MAE MAPE

%

ELM 20 54.3250 43.9744 43.4307 25 55.3315 43.9744 39.5735
ELM(RP) 3 47.3653 36.9551 39.9839 3 44.0574 35.1923 37.5251
ELM Volt 20 64.5582 46.3654 49.4889 10 75.8567 63.5641 63.1259
ESN J. 150 59.9074 49.0641 45.4045 70 58.9236 47.3141 40.8857

ESN J.(RP) 380 66.0817 52.5705 68.6722 380 65.4964 52.9615 68.4640
ESN J.Volt 3 60.9871 45.6859 47.4705 3 62.1758 47.5641 45.0664
ESN O. 20 54.1340 43.2756 43.7886 35 51.7540 42.4103 39.8727
ESN O.(RP) 420 68.5719 54.7949 70.9594 320 67.4013 54.7564 70.0246
ESN O.Volt 3 57.0886 43.9487 46.1440 3 53.9567 43.3974 44.4320
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Figure 4. Boxplot graphic regarding the RMSE values for Cubatão-Lag 2.

Considering Cubatão, observe that the smallest dispersion was obtained by ELM (RP)
model, which also presented the smallest average value, corroborating the observation from
Table 3. The inclusion of the Volterra filter increases the dispersion and the average values
for all standard models, representing a significant degree of deterioration in performance.

Figure 5. Boxplot graphic regarding the RMSE values for Campinas-Lag 3.

In Campinas’ case, only the ELM performances will be considered in this specific
analysis since all ESN obtained similar results according to the Wilcoxon test. However,
Figure 5 illustrates all models to avoid any curiosity. The RP inclusion decreases the
dispersion, while the Volterra filter showed an opposite behavior. Despite that, the best
performance in terms of best results regarding 30 simulations was favorable to the use of
Volterra filter instead of the RP (note the bottom value in the boxplot). Since the generation
of the neurons’ weights were random, the algorithms must run at least 30 times, and this
fact directly implied a long tail for the boxplots, as can be seen in the Volterra models.
Moreover, the best result obtained by ELM does not mean the best performance in terms
of dispersion.
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Figure 6. Boxplot graphic regarding the RMSE values for São Paulo-Lag 2.

For São Paulo, the general behavior of the standard models was similar to Campinas.
The standard ELM achieved better general errors, even when considered the median value.
The inclusion of the RP reduced the dispersion, but it decreased the probability of obtaining
better results for the error metrics. On the other hand, the Volterra filter showed a worse
performance in terms of dispersion. However, despite the ELM best results for error metric,
the model presented a bad dispersion, including an outlier.

Table 6 presents a ranking of best error metric results considering all neural models in
ascending order of development. Note that the draws regarding the winners mean that
there was no statistical difference between the models. The last column represents the final
ranking considering the three cities’ results.

Table 6. Ranking of the models’ performance.

Cubatão (lag 2) Campinas(lag 3) São Paulo (lag 2)

Model RMSE MAE RMSE MAE MAPE % RMSE MAE MAPE % Mean Rank

ELM 1 1 1 1 1 1 1 1 1 1st
ELM(RP) 1 1 9 9 8 5 5 3 5.1 8th
ELM Volt 7 7 8 8 9 9 9 7 8.0 9th
ESN J. 3 3 1 1 1 6 6 4 3.12 3rd
ESN J.(RP) 6 6 1 1 1 7 7 8 4.6 6th
ESN J.Volt 8 8 1 1 1 4 3 6 4.0 5th
ESN O. 4 4 1 1 1 3 4 2 2.5 2nd
ESN O.(RP) 5 5 1 1 1 8 8 9 4.8 7th
ESN O.Volt 9 9 1 1 1 2 2 5 3.8 4th

The standard ELM was the best estimator in all cases as regards the error metric
results, but for Cubatão, the results obtained by ELM(RP) were the same. The second
and third positions show ESN O. and ESN J. models, respectively. However, despite the
main contribution of RP is to increase the models’ generalization capability, its use reduced
the dispersion of the results, i.e., the models’ predictability increased, except for Cubatão.
Moreover, the ELM(RP) ranking position was deteriorated by the Campinas results, since
all ESNs presented the same statistical performance. Dismissing these aspects, the model
could be the second best.

Although the inclusion of the Volterra filter did not improve the performances, the idea
of its application was to capture nonlinear patterns among the signals from the hidden
layer. Despite the literature presents good performances for this method in correlated
tasks [33], its use is not recommended in this case. Similarly, the inclusion of the reservoir
designed by Jaeger or Ozturk et al. is not adequate to the problem.
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Regarding the number of neurons in the hidden layers (dynamic reservoir), one can
see miscellaneous neurons, with a high degree of variation. For Cubatão, the pattern
noted was the models used hundreds of neurons in most cases. Interestingly, ESN J. and
ESN O. often addressed up to 70 neurons. Moreover, it can be seen in Campinas’ case,
that the RP models used up to 35 neurons in all cases. Considering São Paulo, the ELM
versions tended to use less than 25 neurons, similar to ESN J. Volt, ESN O. and ESN O. Volt.
The others models addressed hundreds of neurons. This is a strong indication that a sweep
in the neuron amount is needed because a clear pattern regarding this parameter was not
found. Even considering the results of the models that presented a p-value large than 0.05,
the number of neurons was variable.

In summary, the unorganized machines are particular cases of classic neural models,
which the hidden weights are not adjusted. On one hand, the user may lose part of the
approximation capability due to this characteristic; on the other hand, there are gains in
terms of training effort and stability for the output values during the training, avoiding
discrepancies. An important aspect is that these methodologies can be outperformed,
depending on the problem. Regarding the use of RP or Volterra filter, the literature indicates
that these strategies may increase the mapping capability of the neural models. However,
this work showed that in specific cases these approaches did not present efficiency.

Figures 7–9 present the best evolution of the output response in comparison to the
actual values.

Figure 7. The number of hospital admissions by day of the test set for ELM lag 2-Cubatão (observed
versus estimated values).

Figure 7 shows that the prediction task seems to be more difficult when the output
has a small range and many “zero” observations. In this case, as the overestimation was
small, given that the observed values are zero, it did not interfere in hospital management.
Otherwise, in Figure 8, since there were no “zero” observations, the ELM estimations could
be considered a suitable performance, except in abrupt cases.

Finally, in Figure 9, ELM reached the smallest RMSE, but comparing with the observed
data, it was more difficult to predict the abrupt decrease of hospital admissions occurred
around day 70. On the other hand, the ELM(RP) could follow this tendency, but it over
and underestimated the number of hospital admissions in many cases. These behaviors
are directly related to the number of neurons used by each model since a reduction in this
number limited the model approximation capability.

Regarding the best error metric to be used, RMSE seems to be a good strategy, since
the error metric was reduced during the neural models training (adjustment) [17,18,61].
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Figure 8. The number of hospital admissions by day of the test set for ELM lag 3-Campinas (observed
versus estimated values).

Figure 9. The number of hospital admissions by day of the test set for ELM lag 2-São Paulo (observed
versus estimated values).

Table 7 presents a summary of some notable studies showing the association between
air pollutants concentration, morbidity (Hospital Admissions or Hospital Emergency) and
mortality. This brief description relates the authors, geographic area, considered inputs and
predicted variables, the applied methods, metrics, time base, and the best MAPE and RMSE
observed for each study. Although these studies present suitable estimations and relevant
contributions, they proposed different models, and applied to diverse worldwide places,
using specific inputs to predict health effects. For this reason, a comparative analysis of
these studies’ performances is unfair, as Katri and Tamil [62] previously observed. However,
some important aspects can be highlighted.

Two studies [62,63] did not use MAPE or RMSE as error metrics. Khatri and Tamil [62]
aimed to compare the performance for peak and non-peak class prediction. The authors
used percentage difference in this study and applied MLP, without any consideration about
other methods’ performance. Shakerkhatibi et al. [64] used other metrics (Delong Method)
to compare the predictions using MLP and Conditional Logistic Regression.
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Table 7. Summary of studies presenting air pollutant’s associations with morbidity and mortality using ANN.

Authors (Year) Geographic Area
of Study Inputs Predicted Variable Methods Used Metrics Time

Base
Best
MAPE

Best
RMSE

Kassomenos et al. (2011) [24] Athens T, RH, WD, SO2, black smoke
CO, NO2, NO, O3

HA for
Cardiorespiratory
diseases

MLP, GLM RMSE daily NA 0.8950

Moustris et al. (2012) [63] Athens

T, RH, WS, solar radiation
SO2, PM10, CO, O3, NO2
(age subgroups
0–4 years, 5–14 years,
0–14 years)

HA for Asthma MLP (TLRN)
MBE, RMSE,
R2, IA daily NA 3.2

Cengiz and Terzi (2012) [65] Afyon, Turkey SO2, PM10

HA and symptoms
(cough, exertional,
dyspnea, expectoration)
for COPD

MLP, RBF,
GLM, GAM RMSE e MAPE weekly 4.54 2.38

Shakerkhatibi et al. (2015) [64] Tabriz, Iran
T, RH, NO, NO2, NOX , SO2,
CO, PM10, O3
(age and gender subgroups)

HA for respiratory and
cardiovascular diseases MLP, CLR

AUC, sensitivity,
Specificity and
Accuracy (%)

daily NA NA

Khatri and Tamil (2017) [62] Dallas County,
Texas, USA

T, RH, WS, CO,
O3, SO2, NO2, PM2.5

HE for
respiratory diseases MLP % difference daily NA NA

Tadano et al. (2016) [26]
Campinas city,
São Paulo state,
Brazil

T, RH, PM10
HA for
respiratory diseases MLP, ESN, ELM MSE/MAPE daily 31.2 5.98

Polezer et al. (2018) [10] Curitiba, Paraná,
Brazil T, RH, PM2.5

HA for
respiratory diseases MLP, ESN, ELM MSE/MAPE daily 29.87 7.37

Araujo et al. (2020) [17]
Campinas and
São Paulo
cities, Brazil

T, RH, PM10
HA for
respiratory diseases

MLP, GLM, ELM,
ESN, RBF,
Ensemble

MSE, MAE, MAPE daily 24.87 3.04

Zhou, Li and Wang (2018) [66]
Hangzhou, Southern
part of the Yangtze
River Delta, China

T, PM10, PM2.5, NO2, SO2
Respiratory disease
cases MLP, GAM AIC, MSE daily NA 2.17

Kachba et al. (2020) [18] São Paulo city, Brazil CO, NOx , O3, SO2, PM HA and mortality for
respiratory diseases MLP, ELM, ESN MSE, MAE, MAPE monthly 34.53 160.26

WD-Wind Direction; WS-Wind Speed; SO2-Sulphur Dioxide; CO-Carbon Monoxide; NO2-Nitrogen Dioxide; NO-Nitrogen Monoxide; O3-Ozone; NOx-Nitrogen Oxides; HE-Hospital Emergency; GAM-
Generalized Additive Models; TLRN-Time Lagged Recurrent Networks; RBF-Radial Basis Function Network; CLR-Conditional Logistic Regression Modeling; MBE- Mean Bias Error; IA-Index of Agreement;
AUC-area under curve.
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Considering the variety of applied methods (Table 7), and emphasizing the use of
MLP, the performance comparison between ANN and regression models has proved the
ANN superior performance. Inspired by these all aspects, the paper’s authors believe that
this present work, which explores the ELM and ESN models with variations from the RP
and the Volterra filter to estimate hospital admissions due to respiratory diseases caused by
air pollutants concentration, is a relevant contribution. However, given the harmful effects
of PM on human health, and comparing the considered input variables used in the other
studies, this work has some limitations, such as the use of only one air pollutant (PM10)
and the lack of comparison with a statistical regression modeling.

5. Conclusions

This work predicted the hospital admissions due to respiratory diseases caused by the
particulate matter PM10 concentrations using the extreme learning machines (ELM) and
the echo state networks (ESN) in the standard forms and applying the variations from the
regularization parameter (RP) and the Volterra filter. The estimates considered daily PM10
concentration, relative humidity, ambient temperature as inputs and predicted the daily
hospital admissions for respiratory diseases.

Numerical results indicated the superior performance of the standard models, pointing
to ELM as the best predictor for most scenarios. However, regarding Campinas city and
the RMSE error metric, a statistical test demonstrated that ESN models were statistically
similar when compared to the best one. Besides, a graphic analysis showed that the models
with the inclusion of RP strategy presented a reduced dispersion, considering the abrupt
variations in hospital admissions, while the Volterra filter showed an opposite behavior,
indicating that its application was not suitable for this specific problem. Finally, completing
the critical analysis, a ranking of performances classified the models regarding the error
metrics for each city. This ranking rewarded the models with statistical similarity rather
than models with good dispersion, highlighting the standard models in the first positions.

The application of Unorganized Machines to three different cities was essential to
evaluate their good performance in predicting air pollution impacts on human health.
An additional graphic analysis of the output response in comparison to the actual values,
for the best models, evidenced the good performance of the neural networks to estimate the
hospital admissions. This contribution may help governmental bodies and policymakers
on the management of hospital planning, mainly during air pollution unfavorable climate
periods. Moreover, the good performance of the models confirms the link between all
input variables and the output values, verifying that the particulate matter, temperature
and relative humidity are fundamental to obtain a good estimation.

A limitation of this study is the lack of large data sets that could bring more uniform
performances between the studied cities. As a consequence of the lack of monitoring data,
other pollutants variations such as PM2.5 cannot be studied.

Considering the continental dimension of Brazil and the characteristics of the different
region’s climates, it would be paramount to study all regions (states), a hard task due to
the lack of monitoring all over the country. Further works shall consider hybrid modeling
or ensembles, the use of deseasonalization techniques, and the appliance of other artificial
neural networks. Since the ELM is admittedly susceptible to the neurons number changes
in the hidden layer and the ESN model is considered robust in this regard, a comparison
study should be conducted pointing to the training time required between these models.
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