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Abstract: This study investigates the diurnal, seasonal, monthly and temporal variation of land
surface temperature (LST) and surface urban heat island intensity (SUHII) over the Isfahan metropoli-
tan area, Iran, during 2003–2019 using MODIS data. It also examines the driving factors of SUHII
like cropland, built-up areas (BI), the urban–rural difference in enhanced vegetation index (∆EVI),
evapotranspiration (∆ET), and white sky albedo (∆WSA). The results reveal the presence of urban
cool islands during the daytime and urban heat islands at night. The maximum SUHII was observed
at 22:30 p.m., while the minimum was at 10:30 a.m. The summer months (June to September) show
higher SUHII compared to the winter months (February to May). The daytime SUHII demonstrates a
robust positive correlation with cropland and ∆WSA, and a negative correlation with ∆ET, ∆EVI,
and BI. The nighttime SUHII displays a negative correlation with ∆ET and ∆EVI.

Keywords: surface urban heat island; LST; semi-arid city; MODIS; trend; seasonal; monthly

1. Introduction

More than half the world’s population lives in urban environments [1], and it is
predicted that by 2050 the population of the world’s cities will reach about 75% [2,3].
Two out of every three people are expected to live in urban areas by that time [4], so the
21st century will be the century of cities [5]. However, the rising urban population has
brought many problems, such as stagnation and high concentrations of air pollutants [6,7],
changes in rainfall patterns [8], land erosion [9], urban flooding [10], streams [11], the
creation of new habitats [12], and urban heat island effects [13,14].

With increasing urbanization and changing natural landscapes to impervious sur-
faces, cities are more inclined towards the absorption of solar radiation [15], decrease
in evapotranspiration [16], increase in runoff [17], augment surface friction [18], and re-
lease of anthropogenic heat [19]. Urbanization causes an increase in temperatures around
urban areas and affects the urban thermal environment, thereby increasing the risk to
human health. During heatwave conditions, when there is a lot of sunshine and a lack of
wind to provide ventilation and disperse the warm air, urban environments can enhance
the thermal condition and cause severe heat-related morbidity and mortality. The most
well-known climate reform index of cities in environmental science is urban heat island
(UHI) [20]. It forms when the urban environment’s temperature is higher than surrounding
rural areas and has destructive effects on the ecosystem [21]. Urban heat islands were
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classified into three broad groups according to their characteristics in various layers of the
urban atmosphere [22]: surface urban heat island (SUHI) [23], canopy layer urban heat
island for micro scale analysis (CLUHI) [24], and boundary layer urban heat island for
mesoscale analysis (BLUHI) [25]. Surface urban heat island (SUHI) is dependent on land
surface temperature (LST) and has a strong correlation with the orientation of the surface
relative to the sun as well as land use and land cover [26,27] which can be measured by
radiometers onboard aircraft or satellites [28,29]. The great advantage of SUHI is that it
can be conveniently measured across large spatial domains for a large number of cities [30].
This makes it possible to compare UHI between cities in large regions to explore the role
of urbanization in affecting SUHI [31,32]. Canopy layer urban heat island (CLUHI) is
typically quantified by the air temperature data of urban and rural stations [33,34], which
are influenced by building geometry and the nature of pavement materials. The boundary
layer urban heat island (BLUHI) is governed by the heated air from the upstream urban
areas and the basic canopy layer where the canopy’s warm urban island occurs [24].

The long-term trends of SUHI and CLUHI were studied together in 272 cities in the
mainland of China using satellite data and station-based air temperature data [35]. The
studies reveal that the trend of the nighttime SUHI were strongly related to the CLUHI,
whereas the relationship between the trends during daytime were relatively weak. The
comparison of SUHI and CLUHI were studied recently for a better understanding of their
vertical structure over 366 global cities within various background climates [36]. The find-
ings of the study show that the annual mean SUHI is higher than CLUHI by 1.1 ± 1.9 ◦C
during the daytime and 0.3 ± 1.5 ◦C at nighttime in equatorial, warm temperate, and snow
climates. In contrast, in arid regions SUHI is lower than CLUHI by 0.8 ◦C. The relationship
of SUHI and air temperature were investigated across 145 global large cities for the period
2003–2013, based on MODIS data [37]. The relationship was unstable in space, and the
correlation differed significantly in macro-climatic conditions and was affected by the
difference in vegetation between urban and rural areas.

SUHI has been widely studied in recent decades by analyzing the land surface tem-
perature (LST) with available thermal remote sensing datasets of various spatial resolu-
tions. The peak in SUHI intensity (urban LST minus rural LST) is generally observed at
night [28,38]. The intensity of SUHI is weak during the daytime, but it becomes more
pronounced after sunset. Various thermal remote sensing data are used to estimate the
SUHI intensity, such as Landsat TM/ETM+/TIRS and Moderate Resolution Imaging Spec-
troradiometer (MODIS), which play an important role in SUHI research [14]. Generally,
SUHI has been studied at a fine-scale using Landsat data because of its higher spatial
resolution [39–41]. Meanwhile, MODIS LST data are used in regional and global SUHI
studies due to their broad spatial coverage and high temporal resolution [31,42–44]. SUHI
has been extensively studied over the different cities of the world situated over different
climatic conditions. For example, [45] studied the seasonal SUHI effect over Siberian cities
and found the strongest relationships between the UHI and population (log P). Addition-
ally, [46] explored the indicators for quantifying SUHI over European cities using MODIS,
and their study revealed that the temporal aspects and indicator selection were important
factors in determining the SUHI intensity. Moreover, [47] studied the SUHI phenomenon
over Ahmedabad, India, and found the impact of rural land cover dynamics in estimating
the SUHI variation over semi-arid cities. Additionally, some studies also analyzed the
underlying influencing factors of the SUHI, such as vegetation, albedo, evapotranspiration,
meteorological condition, and anthropogenic heat emissions [48–52]. For example, [53]
studied the SUHI phenomenon over 419 global cities and found that the intensity of SUHI
was significantly negative with the vegetation during the daytime, while an insignificant
relationship was observed during the nighttime. Also, [43] studied the SUHI footprint over
302 Chinese cities, and their findings indicated an increase in anthropogenic heat emission
and decrease of vegetation activities, and they asserted that surface albedos should take
lead responsibility for the expansion of SUHI footprint area.
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However, little attention has been paid to SUHI studies over the cities of cold desert
climates. The SUHI over desert cities shows contrasting behavior to that of the cities of
temperate and humid zones. An inversion of SUHI during daytime is seen, with the city
core appearing cooling than the surrounding suburban area during daytime. The cooling
effect over the arid and desert cities has been found over cities around the world [54–56].
For example, the findings of [57] suggest that the nearby green areas play an important role
in the control of atmospheric temperatures and in the promotion of citizens’ health and
fog in the metropolis of Isfahan. In [58] found that SUHI-influenced areas mostly lie in the
northern and southern parts of the city, where the vegetation cover is very low. A recent
study estimated that the Isfahan metropolis area is cooler than the suburbs during the
daytime, but at night it is around 2 K warmer than its surroundings [59]. With reference to
the temporal and spatial actions of the SUHI metropolis of Isfahan, it seems that changes in
the moisture, albedo, and composition of the atmosphere of the urban environment play a
major role in the creation of SUHI. The impermeable surface expansion in the city of Isfahan
was studied with Landsat data over the last three decades in the hot and cold months.
The findings revealed that impermeable surfaces have increased by 2.8 times during 1985–
2015 and observed a negative association with normalized difference vegetation index
(NDVI) during hot months, while in the cold months, the urban region was colder than the
surrounding rural area [60]. However, all the existing previous studies were focused on the
diurnal analysis of SUHI and its relationship with vegetation using a short span of data, and
they neglect the influence of other potential drivers of SUHI. Moreover, a detailed diurnal,
seasonal, monthly, and temporal study is necessary along with the important driving
factors to comprehend the SUHI phenomenon over Isfahan city, using a larger time series
of data. In spite of the detailed SUHI investigation, the present study has some limitations,
as it does not include the CLUHI study due to the non-availability of air temperature
data. The combine study of SUHI and CLUHI can provide a better understanding of the
vertical distribution of UHI and more in depth understanding of its dynamics, which are
sometimes responsible for the formation of deadly heat wave phenomenon.

Therefore, this research is a comprehensive study of the SUHI phenomenon over
the cold desert city of Isfahan, Iran. The main objective of the present research includes
(i) revealing the annual, seasonal, monthly, and temporally spatial and temporal variation
of LST from 2003 to 2019, (ii) estimating the annual, seasonal, monthly, and temporal
variation of SUHI intensity during 2003–2019, and (iii) examining the relationship between
the SUHI intensity and its associated influencing factors, including cropland, built-up area,
vegetation, evapotranspiration, and albedo over the study period.

2. Study Area

The study was located in Iran in the cold desert city of Isfahan, with a latitude and
longitude of 51◦40′ E, 32◦39′ N (Figure 1), and altitude of 1590 m [58]. The southern and
western regions of Isfahan are surrounded by the Zagros mountains, while the north-
ern and eastern regions are full of fertile plains [61]. Thus, this physiography creates a
significant difference in terms of climate between the eastern and western regions of Isfa-
han [46]. According to Koppen–Geiger’s climate classification, Isfahan has a characteristic
dry climate [62]. Dry weather and very low rainfall are the prominent features of this
classification, where the minimum and maximum temperatures are −10.6 ◦C and 40.6 ◦C,
respectively. The mean annual precipitation over the city is 116.9 mm [63].

According to national censuses, after industrial development and the establishment of
different factories around it, the population of Isfahan rose from 255,000 in 1956 to 1,791,000
in 2010 and experienced remarkable urbanization. The urbanization ratio rose in 1956 and
2006, respectively, from 44.2 to 83.5 [64] and the proportion of farmland decreased, while
the proportion of urban areas increased significantly during this period, primarily due to
the decrease in the agricultural region of Isfahan [65].
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Figure 1. Study area map of (a) Isfahan city in Iran map (b) Isfahan city and its surrounding area, 
prepared from true color composite image of Landsat 8 OLI bands (Path/Row: 164/037). 
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12.27 µm) of the MODIS sensor. The 8-day LST product is estimated using a generalized 
split-window algorithm under clear-sky conditions [66], and the accuracy of the product 
is also checked with in-situ measurements, proving a bias less than 0.5 K [67]. We used 
the latest version (006) that removed all the cloud-contaminated pixels to enhance the ac-
curacy. Moreover, the coefficients look up table (LUT) in this version is also updated, 
which considers a wide range of surface and atmospheric conditions, especially extending 
the upper boundary for (LST-Ts-air) in arid and semi-arid regions. Based on the quality 
control (QC) flag value, only pixels with high-quality LST were selected to eliminate the 
effect of retrieval algorithm and cloud cover. Data from 2003 to 2019 (17 years) from both 
Terra and Aqua satellite during both daytime and nighttime were used in this present 
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LULC maps were extracted from the yearly MODIS land use land cover product, 
MCD12Q1 (https://lpdaac.usgs.gov/products/mcd12q1v006/, accessed on 27 March 2021), 
at a spatial resolution of 500 m from 2003 to 2019 and classified the Earth’s surface accord-
ing to the International Geosphere-Biosphere Project (IGBP). The land cover classification 
scheme identifies a total of 17 classes, which include 11 classes of natural vegetation, 3 
classes of mosaic use, and 3 classes of non-vegetated land. Based on the official urban 
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Figure 1. Study area map of (a) Isfahan city in Iran map (b) Isfahan city and its surrounding area,
prepared from true color composite image of Landsat 8 OLI bands (Path/Row: 164/037).

3. Materials and Methods
3.1. Data Sources

The land surface temperature (LST) product obtained from MODIS sensor onboard
Terra and Aqua satellite is used in the study. The MODIS sensor consists of 36 spectral
bands ranging from 0.4 to 14.4 µm, providing data of different spatial resolutions (250 m,
500 m, and 1 km). The overpass time of the Terra and Aqua is between 10:30 a.m. and
13:30 p.m. local solar time during daytime, while during nighttime, it is between 22:30 p.m.
and 01:30 a.m. local solar time.

First, the MODIS derived an 8-day LST product from Terra (MOD11A2) and Aqua
(MYD11A2) satellite (https://modis.gsfc.nasa.gov/data/dataprod/mod11.php, accessed
on 27 March 2021), available at 1 km × 1 km is used in this study. This LST product
is derived using the two thermal infrared channels, band 31 (10.78–11.28 µm) and band
32 (11.77–12.27 µm) of the MODIS sensor. The 8-day LST product is estimated using a
generalized split-window algorithm under clear-sky conditions [66], and the accuracy of
the product is also checked with in-situ measurements, proving a bias less than 0.5 K [67].
We used the latest version (006) that removed all the cloud-contaminated pixels to enhance
the accuracy. Moreover, the coefficients look up table (LUT) in this version is also updated,
which considers a wide range of surface and atmospheric conditions, especially extending
the upper boundary for (LST-Ts-air) in arid and semi-arid regions. Based on the quality
control (QC) flag value, only pixels with high-quality LST were selected to eliminate the
effect of retrieval algorithm and cloud cover. Data from 2003 to 2019 (17 years) from both
Terra and Aqua satellite during both daytime and nighttime were used in this present
study. The seasonal LST of Isfahan city is prepared separately for the summer (April, May,
and June) and winter (December, January, and February) period. Besides, the monthly LST
images were also prepared for the city to analyze the monthly variation.

LULC maps were extracted from the yearly MODIS land use land cover product,
MCD12Q1 (https://lpdaac.usgs.gov/products/mcd12q1v006/, accessed on 27 March 2021),
at a spatial resolution of 500 m from 2003 to 2019 and classified the Earth’s surface accord-
ing to the International Geosphere-Biosphere Project (IGBP). The land cover classification
scheme identifies a total of 17 classes, which include 11 classes of natural vegetation,
3 classes of mosaic use, and 3 classes of non-vegetated land. Based on the official urban
limits of the city metropolitan areas studied, all pixels of the urban category inserted in
the respective boundaries were defined as the urban core of the metropolitan area. The
LULC maps were utilized for two main purposes: first, for urban and rural boundary

https://modis.gsfc.nasa.gov/data/dataprod/mod11.php
https://lpdaac.usgs.gov/products/mcd12q1v006/
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area delineation and second, to extract the two important parameters (cropland land and
built-up area), which were dominating in the study region for considering as SUHI drivers.

Besides, three more SUHI affective drivers were also analyzed in this present study:
vegetation, evapotranspiration, and albedo. As for LST, vegetation and albedo data were
extracted from the MODIS product. The enhanced vegetation index (EVI) was obtained
from the MOD13A1 (16-day composite) at a spatial resolution of 500 m. The main al-
gorithm of EVI generation is based on the constrained view angle and maximum value
composite. In this approach, the number of observations with the highest vegetation value
are compared and the observation with the smallest view angle, i.e., closest to nadir view,
is chosen to represent the 16-day composite cycle. These methods inevitably result in
spatial discontinuities because disparate days can always be chosen for adjacent pixels
over the 16-day period. Thus, adjacent selected pixels may originate from different days,
with different sun-pixel sensor viewing geometries and different atmospheric and residual
cloud/smoke contamination. The white sky albedo (WSA) data are extracted from the
daily MCD43A3 bi-hemispherical reflectance product at a spatial resolution of 500 m. The
MCD43A3 albedo model parameters product supplies the weighting parameters associated
with the Ross Thick Li Sparse Reciprocal BRDF model that best describe the anisotropy of
each pixel. These parameters can be used in a forward version of the model to reconstruct
the surface anisotropy effects and thus correct directional reflectance’s to a common view
geometry or to compute the integrated black-sky and white-sky albedos. Alternatively,
these parameters can be used with a simple polynomial to easily estimate the black-sky
albedo with good accuracy for any desired solar zenith angle. Data with the best (QC = 0)
and good (QC = 1) quality flags were used. The evapotranspiration (ET) data used in
this study are model data obtained from the operational simplified surface energy bal-
ance (SSEB) model [68]. This model provides monthly ET data at a spatial resolution of
1 km. The SSEB model has a unique parameterization for operational applications with
the pre-defined, seasonally dynamic boundary condition that is unique to each pixel. The
original formulation of this SSEB model is based on the hot/cold pixel principles of the
SEBAL [69] and METRIC [70] models. SEBAL (Surface Energy Balance Algorithm for Land)
uses surface temperature, hemispherical surface reflectance, and Normalized Difference
Vegetation Index (NDVI), as well as their interrelationships to infer surface fluxes for a
wide spectrum of land types. METRIC (Mapping Evapotranspiration at High Resolution
using Internalized Calibration) uses the instantaneous to daily ET extrapolation method
called alfalfa reference ET fraction, which employs wind speed and air temperature that
according to better incorporate local/regional surface/environmental conditions than the
evaporative fraction of other remote sensing ET algorithms.

3.2. Methods
3.2.1. Definitions of Urban and Rural Regions

The MODIS yearly land use land cover (LULC) data product (MCD12Q1) at a spatial
resolution of 500 m is used in this study to delineate the urban and rural regions from 2003
to 2019. Firstly, a square box around the city of Isfahan is chosen in such a way that the
urban and surrounding non-urban pixels are nearly in an equal ratio. The MODIS LULC
data consist of five different classes like open shrubland, grassland, cropland, urban or
built-up land, and barren land. Urban or built-up land is used to delineate the urban pixels,
while all other four classes were used to delineate the non-urban pixels [71], as shown in
Figure 2. As urban area changes continuously, in order to avoid biases in our result by
using the same boundary, we changed our urban and rural boundaries in the years 2003,
2007, 2011 and 2015. The mean LULC area for the above years is shown in Table A1 of
Appendix A. Whereas, the temporal LULC maps from 2003 to 2019 is shown in Figure A1
of Appendix A.
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3.2.2. Surface Urban Heat Island Assessment

The urban and non-urban (rural) boundary extracted from MCD12Q1 is used to
calculate surface urban heat island (SUHI) intensity. The Simplified Urban-Extent (SUE)
algorithm is used in this study to calculate to intensity of SUHI [71,72]. As per this
algorithm, SUHI defines as the difference in the LST of the urban pixels and the non-urban
pixels (Equation (1)).

SUHI = meanLSTurban pixels − mean LSTnon−urban pixels (1)

Figure 2 shows the steps for estimating the SUHI using 500 m MCD12Q1 LULC from
a 1 km MODIS LST product. Firstly, the urban and non-urban extent are clipped from land
cover data for the years 2003, 2007, 2011, and 2015 as defined in Section 3.2.1. After sub
setting, the mean LST of both subsets are calculated for each year, and their difference is
the surface UHI (SUHI) for that particular year.

3.2.3. LST Trend Analysis Method

We used the Mann–Kendall test to detect the temporal trend in the LST datasets [73].
The test has been extensively used in the hydro-climatic time series data and has al-
ways proven to be an efficient tool in comparison to other available tools for detecting
trends [74–78]. This test has numerous advantages as it analyzes time series that are not
required to follow a specific linear or nonlinear trend. We calculated the standardized
Mann–Kendall statistics, which display whether there is a significant trend is present
in the datasets or not at a specific significance level, p. A significance level of p = 0.5 is
considered in this study. Besides, the magnitude of the trend is also determined by Sen’s
slope estimator test [79]. A positive value indicates an increasing trend and a negative
value indicates a falling trend.
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3.2.4. Exploring the SUHI Drivers

It is very well known that the changes in land use land cover have significantly affected
the seasonal and diurnal variation of SUHI [14]. In the present study, five different potential
driving variables of SUHI are considered to understand the reason for SUHI variability over
the study period. Two of them, cropland and built-up index, are extracted from MODIS
LULC product, which predominated in the study area. The vegetation, evapotranspiration,
and albedo are the other three important factors (extracted from MODIS) that can affect
SUHI. The differences between an urban and rural area in enhanced vegetation idea (∆EVI),
evapotranspiration (∆ET), and white sky albedo (∆WSA) were considered to investigate
the SUHI variability. This difference was estimated exactly the same way as we did for
SUHI estimation in Equation (1). ∆EVI represents the difference in mean EVI over rural
pixels and mean EVI over non-rural pixels, and ∆ET and ∆WSA are estimated in the same
manner. Then, a Pearson’s correlation coefficient between the potential driving variables
and SUHII across the city and the years was computed.

4. Results
4.1. Spatial Variation and Temporal Trend of LST

The diurnal, seasonal, annual, monthly, and temporal variation of LST from 2003 to
2019 are analyzed in this section. The daytime (10:30 a.m. and 13:30 p.m.) and nighttime
(22:30 p.m. and 01:30 a.m.) variation was shown in this study.

4.1.1. Annual Spatial Pattern of LST

The spatial variation (first row) and temporal trend (second row) of the mean annual
LST during both daytime and nighttime from 2003 to 2019 are shown in Figure 3. It is
evident that the SUHI effect over the city was more pronounced during the nighttime
compared to the daytime. The mean LST over urban (U) and non-urban (NU) pixels (as
define in Section 3.2.1) was also calculated as in Table 1. During the daytime, the mean
annual LST was higher in non-urban pixels compared to urban pixels at both 10:30 a.m. and
13:30 p.m. The observed LST is higher at 13:30 p.m. (33.4 ± 2.5 ◦C for NU and 32.6 ± 2 ◦C
for U pixels), than 10:30 a.m. (29.9 ± 2.3 ◦C for NU and 28.9 ± 1.9 ◦C for U pixels). In
contrast, during nighttime, a reverse phenomenon is observed, witnessing a higher LST
over urban pixels compared to non-urban pixels at both 22:30 p.m. and 01:30 a.m. The
mean LST was lower at 01:30 a.m. (8 ± 1.4 ◦C for NU and 9.2 ± 1.9 ◦C for U pixels) in
comparison to 22:30 p.m. (10.1 ± 1.3 ◦C for NU and 11.4 ± 1.7 ◦C for U pixels). The
surrounding land cover is dominated by barren land, which can absorb heat much more
rapidly than built-up land after sunrise, explaining the higher LST in non-urban pixels.
Meanwhile, urban built-up land can retain heat for longer time than barren land cover
due to the higher thermal inertia, resulting in the slow emission of heat from built-up
lands. Due to this reason, the urban pixels witness a higher LST than the non-urban pixels
in nighttime.

The second row in Figure 3 shows Sen’s slope trend of mean annual LST during
2003–2019. During the daytime, the central urban area has a lower trend in mean LST
compared to the surrounding rural area. However, a significantly dispersed increasing
trend is observed during the nighttime compared to the cluster trend in the daytime. The
magnitude of Sen’s slope was higher in the daytime (0.49 to −0.26 ◦C/year) compared to
the nighttime (0.14 to −0.05 ◦C/year) trend.
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Table 1. Annual, seasonal (summer and winter), and monthly (January-December) mean LST from 2003 to 2019 for urban
and non-urban pixels at daytime (10:30 a.m. and 13:30 p.m.) and nighttime (22:30 p.m. and 01:30 a.m.).

Terra 10:30 a.m. Aqua 13:30 p.m. Terra 22:30 p.m. Aqua 01:30 a.m.

Annual
Non-Urban Pixels 29.9 ± 2.3 33.4 ± 2.5 10.1 ± 1.3 8 ± 1.4

Urban Pixels 28.9 ± 1.9 32.6 ± 2 11.4 ± 1.7 9.2 ± 1.9

Summer
Non-Urban Pixels 37.4 ± 3 40.5 ± 3.2 15.4 ± 1.4 12.6 ± 1.6

Urban Pixels 36.6 ± 2.3 40.2 ± 2.5 16.6 ± 1.7 13.8 ± 1.9

Winter
Non-Urban Pixels 14.5 ± 1.6 18.5 ± 1.8 −0.5 ± 1.1 −1.8 ± 1.1

Urban Pixels 13.6 ± 1.3 17.7 ± 1.5 0.7 ± 1.6 −0.5 ± 1.8

Jane
Non-Urban Pixels 11.9 ± 1.6 16.1 ± 1.8 −1.9 ± 1.2 −3 ± 1.2

Urban Pixels 11.1 ± 1.2 15.4 ± 1.4 −0.5 ± 1.7 −1.6 ± 1.8

February Non-Urban Pixels 18.4 ± 1.9 23.1 ± 1.9 1 ± 1.1 −0.7 ± 1.1
Urban Pixels 17.5 ± 1.6 22.2 ± 1.6 2.2 ± 1.6 0.5 ± 1.7

March
Non-Urban Pixels 25.9 ± 2 29.6 ± 2.1 5.7 ± 1.1 3.4 ± 1.2

Urban Pixels 25.3 ± 1.5 29 ± 1.6 6.9 ± 1.6 4.5 ± 1.7

April Non-Urban Pixels 30.1 ± 2.4 33.1 ± 2.5 9.9 ± 1.2 7.4 ± 1.3
Urban Pixels 29.6 ± 1.8 32.9 ± 1.9 11 ± 1.5 8.4 ± 1.7

May Non-Urban Pixels 36.3 ± 3.2 39.2 ± 3.3 14.7 ± 1.4 12 ± 1.5
Urban Pixels 35.7 ± 2.4 39.1 ± 2.6 15.9 ± 1.6 13.2 ± 1.8

June
Non-Urban Pixels 43.9 ± 3.5 47.3 ± 3.6 20.1 ± 1.7 17 ± 1.9

Urban Pixels 42.8 ± 2.8 46.6 ± 2.9 21.5 ± 1.8 18.3 ± 2.1

July Non-Urban Pixels 45.8 ± 3.5 49.6 ± 3.7 22.2 ± 1.7 19 ± 1.9
Urban Pixels 44.4 ± 3 48.5 ± 3.1 23.6 ± 1.8 20.2 ± 2.2

August Non-Urban Pixels 43.6 ± 3.6 47.5 ± 3.9 20.1 ± 1.9 17 ± 2.1
Urban Pixels 42.3 ± 3 46.4 ± 3.2 21.4 ± 2 18.2 ± 2.3

September Non-Urban Pixels 38.4 ± 3.2 41.8 ± 3.4 15.9 ± 1.9 13.2 ± 2.2
Urban Pixels 37 ± 2.7 40.6 ± 2.8 17.2 ± 2.1 14.4 ± 2.3

October
Non-Urban Pixels 30.7 ± 2.5 33.3 ± 2.5 10.3 ± 1.7 8 ± 1.9

Urban Pixels 29.3 ± 2.2 32.1 ± 2.2 11.4 ± 1.9 9 ± 2.1

November
Non-Urban Pixels 20.3 ± 1.7 22.7 ± 1.9 3.2 ± 1.3 1.8 ± 1.2

Urban Pixels 19.2 ± 1.6 21.4 ± 1.7 4.3 ± 1.7 2.7 ± 1.7

December
Non-Urban Pixels 13.1 ± 1.5 16.2 ± 1.7 −0.8 ± 1.2 −1.7 ± 1.2

Urban Pixels 12.3 ± 1.2 15.3 ± 1.5 0.5 ± 1.7 −0.4 ± 1.8
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4.1.2. Seasonal Spatial Pattern of LST

The seasonal variation of mean LST during 2003–2019 is shown in Figure 4a,b, where
the first row represents the mean LST, and the second-row represents Sen’s slope trend
during the study period. The daytime represents a clear heterogeneity in the LST distri-
bution compared to the nighttime imagery during both the season. The summer season
shows higher land surface temperature (50.2 to 31.2 ◦C during daytime and 19.5 to 9.2 ◦C
during the night) compared to the winter season (24.1 to 7.3 ◦C during daytime and 3.6
to −6.9 ◦C during the night) as shown in Figure 4a,b respectively. More clear evidence
of the surface urban heat island phenomenon is visible in the nighttime, while in the
daytime, a cool island effect is seen, where the surrounding non-urban regions show a
higher LST than the central urban region. The mean LST over urban and non-urban pixels
were also calculated as shown in Table 1. During daytime, the mean LST over urban
pixels (36.6 ± 2.3 ◦C at 10:30 a.m. and 40.2 ± 2.5 ◦C at 13:30 p.m. during summer and
13.6 ± 1.3 ◦C at 10:30 a.m. and 17.7 ± 1.5 ◦C at 13:30 p.m.) is comparatively lower than
that of non-urban pixels (37.4 ± 3 ◦C at 10:30 a.m. and 40.5 ± 3.2 ◦C at 13:30 p.m. during
summer and 14.5 ± 1.6 ◦C at 10:30 a.m. and 18.5 ± 1.8 ◦C at 13:30 p.m.). Meanwhile, at
night, the urban pixels show a higher LST (16.6 ± 1.7 ◦C in summer and 0.7 ± 1.6 ◦C in
winter at 22:30 p.m., and 13.8 ± 1.9 ◦C in summer and −0.5 ± 1.8 ◦C in winter at 1:30 a.m.)
compared to non-urban pixels (15.4 ± 1.4 ◦C in summer and −0.5 ± 1.1 ◦C in winter
and 22:30 p.m., and 12.6 ± 1.6 ◦C in summer and −1.8 ± 1.1 ◦C in winter at 1:30 a.m.),
witnessing the presence of the urban heat island phenomenon.
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Figure 4. (a) Spatial variation of mean summer LST (average over 2003–2019) during daytime (Terra
10:30 a.m. and Aqua 13:30 p.m.) and nighttime (Terra 22:30 p.m. and Aqua 01:30 a.m.) in first row
and the value of Sen’s slop for the corresponding LST images in the second row, and (b) for the
winter season.
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The result of Sen’s slope suggests a higher increasing trend in the summer season
compared to the winter season which is also higher in the daytime than the nighttime
within the same season. The center urban area witnesses a lower trend compared to the
surrounding rural area in the summer season (second row of Figure 4a), while the winter
season shows a relatively different trend pattern than summer and annual. In winter
nighttime, a positive LST trend is observed in an urban area (more pronounced at 1:30 a.m.)
as compared to daytime (Figure 4b). The trend varies from 0.57 to −0.35 ◦C/year in the
daytime to 0.25 to−0.04 ◦C/year in the nighttime in the summer season. By contrast, in the
winter season, it varies from 0.37 to −0.19 ◦C/year in the daytime to 0.23 to −0.10 ◦C/year
in the nighttime.

4.1.3. Monthly Spatial Pattern of LST

The monthly spatial variation of mean LST during 2003–2019 over the city is also
analyzed in this study during both daytime and nighttime (Figure 5). The result obtained
from monthly variation also suggests that the SUHI was intensified during the nighttime
(more at 22:30 p.m. as compared to 1:30 a.m.) compared to during daytime, in which
an urban cool island effect can be seen. The mean LST variation is plotted as a box and
whisker plot in Figure 6. It can be seen that the maximum mean LST was observed during
the month of July, while the minimum was observed in January. Noticeably, the mean
LST at 13:30 p.m. was always higher than at 10:30 a.m. during the daytime, while during
nighttime, it was always lower at 1:30 a.m. compared to 22:30 p.m. This also suggests
an occurrence of the urban cool island during daytime as non-urban pixels had a higher
mean LST than urban pixels at 10:30 a.m. and 13:30 p.m. However, during the nighttime
(both 22:30 p.m. and 1:30 a.m.), the mean LST over urban pixels was always higher than
non-urban pixels suggesting a positive urban heat island over the city (Table 1).

Atmosphere 2021, 12, x FOR PEER REVIEW 10 of 20 
 

 

The result of Sen’s slope suggests a higher increasing trend in the summer season 
compared to the winter season which is also higher in the daytime than the nighttime 
within the same season. The center urban area witnesses a lower trend compared to the 
surrounding rural area in the summer season (second row of Figure 4a), while the winter 
season shows a relatively different trend pattern than summer and annual. In winter 
nighttime, a positive LST trend is observed in an urban area (more pronounced at 1:30 
am) as compared to daytime (Figure 4b). The trend varies from 0.57 to −0.35 °C/year in the 
daytime to 0.25 to −0.04 °C/year in the nighttime in the summer season. By contrast, in the 
winter season, it varies from 0.37 to −0.19 °C/year in the daytime to 0.23 to −0.10 °C/year 
in the nighttime. 

4.1.3. Monthly Spatial Pattern of LST 
The monthly spatial variation of mean LST during 2003–2019 over the city is also 

analyzed in this study during both daytime and nighttime (Figure 5). The result obtained 
from monthly variation also suggests that the SUHI was intensified during the nighttime 
(more at 22:30 pm as compared to 1:30 am) compared to during daytime, in which an 
urban cool island effect can be seen. The mean LST variation is plotted as a box and 
whisker plot in Figure 6. It can be seen that the maximum mean LST was observed during 
the month of July, while the minimum was observed in January. Noticeably, the mean 
LST at 13:30 pm was always higher than at 10:30 am during the daytime, while during 
nighttime, it was always lower at 1:30 am compared to 22:30 pm. This also suggests an 
occurrence of the urban cool island during daytime as non-urban pixels had a higher mean 
LST than urban pixels at 10:30 am and 13:30 pm. However, during the nighttime (both 
22:30 pm and 1:30 am), the mean LST over urban pixels was always higher than non-urban 
pixels suggesting a positive urban heat island over the city (Table 1). 

 
Figure 5. Monthly spatial variation of mean LST (average over 2003–2019) during daytime (Terra 10:30 am and Aqua 13:30 
pm) and nighttime (Terra 22:30 pm and Aqua 01:30 am) from January to June. 
Figure 5. Monthly spatial variation of mean LST (average over 2003–2019) during daytime (Terra 10:30 a.m. and Aqua
13:30 p.m.) and nighttime (Terra 22:30 p.m. and Aqua 01:30 a.m.) from January to June.



Atmosphere 2021, 12, 1368 11 of 19
Atmosphere 2021, 12, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 6. Monthly variation of (average over 2003–2019) during daytime (Terra 10:30 am (D1) and Aqua 13:30 pm (D2)) 
and nighttime (Terra 22:30 pm (N1) and Aqua 01:30 am (N2)). 

Further, the pixel-based Sen’s slope trend of mean LST is also calculated at a monthly 
level (Figure 7) from 2003 to 2019 during both the daytime and nighttime. The trend was 
comparatively higher in the daytime hours compared to nighttime. During the daytime, 
the maximum trend was observed from June to September (in the range of 0.70 to 0.87 
°C/year), while the minimum trend was observed in the months of November to February 
(in the range of 0.19 to 0.36 °C/year. At nighttime, the maximum trend was only 0.33 
°C/year in September and the least in February with 0.16 °C/year. 

 

Figure 6. Monthly variation of (average over 2003–2019) during daytime (Terra 10:30 a.m. (D1) and Aqua 13:30 p.m. (D2))
and nighttime (Terra 22:30 p.m. (N1) and Aqua 01:30 a.m. (N2)).

Further, the pixel-based Sen’s slope trend of mean LST is also calculated at a monthly
level (Figure 7) from 2003 to 2019 during both the daytime and nighttime. The trend was
comparatively higher in the daytime hours compared to nighttime. During the daytime, the
maximum trend was observed from June to September (in the range of 0.70 to 0.87 ◦C/year),
while the minimum trend was observed in the months of November to February (in the
range of 0.19 to 0.36 ◦C/year. At nighttime, the maximum trend was only 0.33 ◦C/year in
September and the least in February with 0.16 ◦C/year.

Atmosphere 2021, 12, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 6. Monthly variation of (average over 2003–2019) during daytime (Terra 10:30 am (D1) and Aqua 13:30 pm (D2)) 
and nighttime (Terra 22:30 pm (N1) and Aqua 01:30 am (N2)). 

Further, the pixel-based Sen’s slope trend of mean LST is also calculated at a monthly 
level (Figure 7) from 2003 to 2019 during both the daytime and nighttime. The trend was 
comparatively higher in the daytime hours compared to nighttime. During the daytime, 
the maximum trend was observed from June to September (in the range of 0.70 to 0.87 
°C/year), while the minimum trend was observed in the months of November to February 
(in the range of 0.19 to 0.36 °C/year. At nighttime, the maximum trend was only 0.33 
°C/year in September and the least in February with 0.16 °C/year. 

 

Figure 7. Monthly spatial variation of Sen’s slope trend of LST (average over 2003–2019) during daytime (Terra 10:30 a.m.
and Aqua 13:30 p.m.) and nighttime (Terra 22:30 p.m. and Aqua 01:30 a.m.) from January to June.



Atmosphere 2021, 12, 1368 12 of 19

4.2. SUHI Intensity Variation

The annual, seasonal, and monthly variations of SUHI intensity during daytime and
nighttime hours are shown in Figure 8. The results clearly indicate the presence of urban
cool islands during the daytime and urban heat islands in the nighttime. During the
daytime, the SUHI intensity was much lower at 10:30 a.m. compared to at 13:30 p.m. The
months from July to October show minimum SUHI intensity values compared to other
months. In the nighttime, there was not much variation in SUHI values thought out the
year. The intensity of SUHI was higher at 22:30 p.m. compared to that at 1:30 a.m.
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22:30 p.m. and Aqua 01:30 a.m.).

4.3. Relationships between the SUHI Intensity and Its Potential Influencing Factors

The relationship between SUHI intensity (SUHII) and its potential influencing factors
was examined, which contribute to understanding the specific cause of the SUHI effect. To
explore the cause of SUHI variability, five different variables were analyzed and correlated
with SUHII: Cropland area (Crop), built-up area (BI), ∆ET, ∆EVI, and ∆WSA (i.e., ET,
EVI, and WSA urban–rural difference). Figure 9a shows the annual, seasonal (summer
and winter), and monthly (January to December) Pearson’s correlation coefficient plot
of SUHII with the different driving parameters, average to yearly level during daytime
(Terra 10:30 a.m. and Aqua 13:30 p.m.), while Figure 9b shows during nighttime (Terra
22:30 p.m. and Aqua 01:30 a.m.). The daytime SUHII shows a significant strong positive
correlation with Crop and ∆WSA, while negative with ∆ET, ∆EVI, and to some extent BI
as well. The daytime correlation was more significant at 13:30 p.m. than 10:30 a.m. The
nighttime SUHII shows very less correlation except with the negative correlation of ∆ET
and ∆EVI. For seasonal correlation, the summer has a much more significant correlation
with the driving parameters compared to the winter.

The results of monthly variation reveal that the daytime SUHII was significantly
positively correlated with Crop irrespective of the months. The BI shows a significant
correlation with SUHII during daytime (more so in the months of July, August, and Septem-
ber), while in the nighttime, the correlation was very less and insignificant. ∆ET shows
a significant negative correlation in the daytime compared to the nighttime, especially
in the months from March to September. The nighttime correlation of ∆ET with SUHII
is less negative than daytime, where a slight positive correlation is seen from January to
March. The correlation of ∆EVI was also negative with SUHII and more in the daytime
than nighttime, and higher in the summer months (March–May) than in the winter months.
The correlation of ∆WSA is the opposite, as it shows a positive correlation during daytime
(higher in summer months than winter months) and negative in the nighttime (significant
in winter months, especially in November and December).
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5. Discussion
5.1. Variations in the SUHI Intensity

The present study examines the diurnal, annual, seasonal, and monthly behavior of
LST and SUHI intensity over Isfahan city from 2003 to 2019 using MODIS datasets. The
diurnal and monthly variation of the SUHI index can be found in the previous study [59].
Their findings suggest that the Isfahan metropolitan area is 3–4 K colder than the sur-
rounding suburban area during the daytime, while at nighttime, it is 2 K warmer than its
surroundings. The result of the present study also found evidence of the occurrence of the
urban cool island during daytime 10:30 a.m. and 13:30 p.m.), while at nighttime (22:30 p.m.
and 01:30 a.m.), a positive heat island phenomenon is profoundly visible over the city. The
SUHI intensity was found to be minimum at 10:30 a.m. and maximum at 22:30 p.m. The
lower land surface temperature over the Isfahan city as compared to surrounding rural
area during daytime is also found in previous studies using Landsat data [57,58,60,80].
Moreover, another study [57] suggests that the central portion of the Isfahan metropolis
exhibits the highest portion of cold and very cold classes of LST. The findings also suggest
that the northern, southern, and eastern portions of the city show much warmer LST,
which is also seen in the present study. Considering the seasonal behavior of SUHI, it is
evident that the SUHI intensity is weaker in the summer season and stronger in the winter
season [59]. The maximum SUHI intensity was found during the January month while the
minimum in the months of the summer season.

The phenomenon of a higher LST over the urban area compared to the surrounding
rural areas pertaining to negative SUHI during daytime is a typical characteristic of cities
situated over arid regions [14,54,55,81]. Moreover, during the daytime, there was an
obvious seasonal variation in SUHI, except for the city of the equatorial zone. The amount of
rural vegetation cover, direct solar radiation, and longer sunshine duration in summer may
contribute to the seasonal variation in SUHI [82]. A negative SUHI during daytime is also
reported in various urban areas of the world, including northwestern China [83], central
Asia [53], western United States [84], and cities in India [85–87] and South America [88]. All
these urban areas are situated over arid or semi-arid regions, a similar climatic characteristic
prevailing over the present study area of Isfahan city. Cities situated over arid and semi-arid
climatic zones such as Abu Dhabi, Kuwait, Riyadh, Las Vegas, and Phoenix experienced
lower LST than the suburban area during daytime. The data suggest that this negative
SUHI is due to the existence of a large number of bare lands present in suburban areas,
which mostly absorb sunlight rather than reflecting it, leading to a higher temperature
in suburban areas than in city cores [59,89,90]. The present study area’s dominating land
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cover is bare land in the suburban region, which leads to a higher land surface temperature
than the urban area of the city.

5.2. The Effects of Each Factor on SUHI Intensity

The second objective of the present research was to explain the potential driving
variables affecting the diurnal, seasonal, and monthly variation of SUHI intensity. The
SUHI phenomenon is driven by various factors that can be broadly categorized as LULC
distribution and its spatial pattern, urban site characteristics, and landscape configuration.
During the daytime, SUHII was negatively correlated with ∆ET, meaning that an increase
of SUHI intensity is related to a reduction of the urban ET or a rise of the rural ET. The
evaporation from the water surfaces and transpiration from green leaves provides cooling
to the rural area, resulting in positive SUHI over the cities. The evaporative cooling is a
much more dominant controlling parameter in the daytime for cities over dry climatic
regions [55]. The results of the study conducted by [86] suggest that the ET increase in the
city area due to higher water use and gardening with irrigating resulted in negative SUHII
during the daytime. The relationship between the SUHI intensity and vegetation was
significant during the daytime due to the evaporative cooling affect by vegetation [53,55].
The correlation for summer days was significant and negative between the SUHII and
∆EVI in this study compared to winter days, which was similar to the results of the other
previous studies [47,53,91]. The vegetation over the city is less affected by seasons, and so
a decreasing ∆EVI can intensify the SUHII, even in the summer. The lack of vegetation
transpiration in the absence of sunlight during the nighttime leads to an insignificant
relation of SUHII with ∆EVI [91,92]. The rural area with higher vegetation cover can
increase the latent heat flux via the process of transpiration, which provides cooling, thus
lowering the LST of the urban area and resulting in a cool urban heat island during the
daytime. It is inferred from the previous studies that vegetation plays an important role
in the mitigation of the SUHI effect [93]. The study in Guangzhou, China, found that a
decrease in 16% of urban vegetation from 1990–2007 caused an increase in LST by 2.5 ◦C [94].
Except for ∆EVI and ∆ET, there is no significant negative correlation of SUHI intensity
with other parameters. Cropland and ∆WSA are found to be effective SUHI controlling
variables during the nighttime with a significant positive correlation. In the winter, the
LST over cropland is lower than the urban LST due to irrigation and plantation growth,
and the rural LST is lower during nighttime, which causes an insignificant correlation with
SUHI compared to the summer season. Urbanization generally decreases surface albedo
and emissivity, largely due to the urban canopy effect and the nature of the newly added
urban material [95,96]. They are responsible for reducing heat loss through increased heat
storage and net all-wave radiation in urban areas. The night SUHII is mainly driven by
the surface heat fluxes that originate from heat storage during daytime, resulting in the
positive correlation of SUHII with the urban–rural difference in albedo (∆WSA) in the
nighttime as seen in our study. This result is also supported by the previous research that
suggests urban regions with lower surface albedo tend to increase the diurnal LST and
have more energy for releasing at night [97]. Moreover, the recent study on SUHI study
also supports a strong diurnal control of albedo in SUHI variation [55].

6. Conclusions

The present study investigated the diurnal, seasonal, annual, and monthly spatiotem-
poral variation of the LST and SUHII of Isfahan city, Iran, during the last 17 years (2003–
2019) based on the MODIS datasets of 1 km resolution. Correlation analyses were also
conducted to reveal the relationship between the SUHII and its driving factors, including
cropland, built-up area, ∆EVI, ∆ET, and ∆WSA.

The results show the presence of an urban cool island during the daytime and a
positive heat island during the nighttime. Considering the diurnal variation of SUHI,
the maximum SUHII was observed at 22:30 p.m., while the minimum was observed at
10:30 a.m. The SUHII values ranged from −1.5 to +1.5 ◦C over the metropolis area of
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Isfahan. This seasonal variation suggests that the SUHI was much more dominating in the
winter season compared to the summer season, with both higher and lower SUHII value
during daytime and nighttime in the winter season. The SUHII were higher from June
to August months, while minimum from February to May months. The SUHI intensity
was significantly and negatively correlated with ∆EVI and ∆ET during the daytime. This
negative correlation suggests that the negative SUHI during daytime is ascribed to the low
vegetation activity in the rural area, dominated by croplands and bare land, which absorb
much more heat and warm the surrounding rural surfaces. Furthermore, the nighttime
SUHII was related to cropland and ∆WSA. The lower albedo material in the urban area due
to urbanization is responsible for reducing heat loss through increased heat storage and
net all-wave radiation in urban areas. The nighttime SUHI mainly drivees the surface heat
flux driven by heat storage. Therefore, a strong positive correlation of WSA is observed
with the SUHII over Isfahan during the nighttime.

Due to the significant SUHI effects observed over Isfahan city in recent years, vari-
ation in the urban thermal environment and its related ecological responses should be
comprehensively analyzed. The result of present study can be an important reference for
understanding the spatiotemporal variations in the SUHI effect, and the interaction be-
tween human activities and land-surface ecosystems. However, some uncertainties remain,
and other factors (e.g., soil moisture, thermal inertia, landscape configuration) that are
associated with the SUHI phenomenon should be thoroughly studied in the future work.
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Appendix A

Table A1. Mean area (km2) of the different LULC classes.

LULC 2003 2007 2011 2015

Open Shrub land 218.75 243.58 285.73 280.77

Grassland 76.27 75.10 80.81 102.34

Cropland 414.81 404.67 344.75 316.01

Urban or Built-up 319.86 326.46 339.53 350.55

Barren land 480.20 467.09 479.08 490.28
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