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Abstract: Tropospheric ozone is the only normal pollutant with a continuously increasing annual
average concentration worldwide. In this study, data were monitored at the Nankai University
Air Quality Research Supersite (NKAQRS) (38.99◦ N, 117.33◦ E) between 1 April, and 31 August
from 2018 to 2020, 33 O3 episodes from 2018 to 2020 were analyzed to reveal the characteristics
of O3, VOCs and OFP during O3 episodes and to evaluate the driving factors. The O3 episodes
showed a decreasing trend in terms of pollution frequency, days, heavy pollution duration and peak
concentration. Ethane, acetylene, cyclopentane, and methylcyclopentane were the major types in
2020, while 1-hexene was the main component in 2019. The main ozone-contributing species in 2020
were propene cyclopentane methylcyclopentane and ethylene. Alkenes were important contributors
to ozone formation. Using generalized additive models (GAMs), the explanatory variables in the
study are divided into environmental and meteorological factors, and 16 impact factors are selected
as explanatory variables. We found that the influence of these meteorological factors on O3 pollution
was nonlinear and impacted by the interaction between variables. O3 episodes were mainly driven
by meteorological and precursor (NO) factors in 2018, while meteorological conditions (T), followed
by precursor (NO2) were the driving factors in 2019 and 2020, suggesting that O3 episodes were
mainly driven by meteorological conditions.

Keywords: O3 episodes; OFP; GAM; driving factors

1. Introduction

Tropospheric ozone is a normal pollutant with a continuously increasing annual
average concentration in the mainland China [1]. Ozone affects the healthy growth of
plants, leading to a decline in crop yields, and is also hazardous to the human respiratory
system, organs, immune system and tissues, which threatens health and even human
life [2–6]. Tropospheric ozone (O3) is mainly produced by the photochemical reaction of
its precursors (NOx, VOCs et al.) under favorable meteorological conditions [7–10]. The
concentration of ambient O3 always shows a nonlinear correlation with these precursors,
suggesting a complex physicochemical mechanism in the ozone formation process [11–14].

As key precursors of O3 pollution, volatile organic compounds (VOCs) can be trans-
mitted over long distances [15], and they are mostly toxic [16,17] and carcinogenic [16,17].
Under UV irradiation, VOCs react with NOx to generate ozone and enhance atmospheric
oxidation [18,19]. They are one of the main contributors to regional air pollution in recent
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years [20,21]. Meteorological factors also play an important role in ozone formation, dilu-
tion, diffusion and transportation [22], including temperature, humidity, solar radiation
and wind [8,23–26]. Studies have shown that high ozone levels are usually related to strong
solar radiation, high temperature, low wind speed, low or least rainfall, and low relative
humidity [27–29].

Due to the nonlinearity between ozone pollution and its precursors, it is difficult to
effectively control ozone pollution. It is necessary to evaluate the relationship between
O3 episodes and its influencing factors and to identify the major factors. The common
nonlinear methods are the convergent cross mapping (CCM) method [30], the generalized
additive model (GAM), and the Observation-Based Model (OBM) [31]. Compared to
traditional nonlinear statistical models, the Generalized Additive Model (GAM) can directly
deal with the complex nonlinear relationships between multiple response and explanatory
variables, can introduce nonlinear and nonmonotonic variables into the analysis [32], and
is widely used to identify impact factors and evaluate the nonlinear relationship related
to air pollution [33,34], and is a better method for evaluating the nonlinear relationship
between influencing factors and air pollution. Gong et al. [35] used GAM to quantify
the impact of individual meteorological conditions on O3 pollution in 16 Chinese cities,
emphasizing that the model can explain the relationship between meteorological conditions
and O3 concentration. Kim and Hong [36] used a multiple linear regression model and
GAM to study the response of O3 pollution to meteorological factors (i.e., wind speed,
temperature and humidity) in Seoul, South Korea. Although a great deal of research
has been conducted, it is still challenging to fully understand the impact of meteorology
on ozone concentration. First, previous studies have mainly considered meteorological
conditions and the effect of precursors on ozone concentrations, among them, VOCs
instead of alkenes, alkanes, aromatics, and acetylene are used as explanatory variables in
GAM. Secondly, since different meteorological factors interact closely, and most of them are
nonlinear relationships, commonly used correlation analyses may lead to biased results [37].
Therefore, this study refines VOCs into alkenes, alkanes, aromatics and acetylene, and
incorporates all factors that affect ozone formation such as meteorological conditions and
precursors in the GAM model to quantify the impact of various influencing factors on
ozone pollution.

The regional study by Lu et al. [38] pointed out that compared with other industri-
alized regions in the world, China’s short-term and long-term human exposure to and
plant damage by ozone were severe. Ozone pollution becoming the key pollutant in
summer of northern China has attracted increasing attention. O3 episodes often occur
in the form of pollution processes that continue for several hours or even days. It is of
great value to analyze the process of O3 episodes to understand the fluctuation law of
ozone pollution. Currently, most of these studies have mainly focused on the North China
Plain, Yangtze River Delta, and Pearl River Delta regions [30,39–42]. The studies of the
relationships between O3 episodes and the influencing factors are rarely reported. Tianjin
is an important economic center and a densely populated urban agglomeration area in
northern China [43,44], therefore we focused on Tianjin in this study. The purposes of
this study are as follows: 1—Analyze changes in O3 episodes between 1 April and 31
August from 2018 to 2020 in Tianjin and the differences in the concentrations of VOCs and
OFP in different years. 2—Analyze the main influencing factors (including precursors,
meteorological factors, etc.) of O3 episodes in different years through the GAM model, and
determine the main driving factors of O3 episodes.

2. Methods and Materials
2.1. Site Description

VOCs data were monitored at the Nankai University Air Quality Research Supersite
(NKAQRS) (38.99◦ N, 117.33◦ E) between 1 April, and 31 August from 2018 to 2020, which
is located on the Nankai University campus in the Jinnan Distinct, Tianjin (Figure 1). A
student dormitory area is located to the south of the NKAQRS, and a road with relatively
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low traffic flow is sited 20 m to the north. Easterly and southeasterly winds prevailed
during the study period. According to Chinese National Ambient Air Quality Standard
and Technical Regulation on Ambient Air Quality Index (AQI) of China (MEE, 2012a), we
define an O3 episode as one day or a set of continuous days longer than 2 days with a
maximum daily 8 h average (MDA8) ozone concentration exceeding 160 µg m−3. A day
with mean ozone values of the maximum daily 8 h average (MDA8) exceeding 160 µg m−3

is defined as a high-O3 day. The mean wind speed (ws), temperature (T) and the relative
humidity (RH) were 1.6 ± 1.1 m/s, 23.7 ± 6.5 ◦C, 64.4 ± 23.1%, respectively during O3
episodes. The meteorological conditions and pollutants were shown in Table S1.
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2.2. Species Monitoring

VOC-species data were continuously monitored at intervals of 1 hr using a GC955
series 611/811 VOC analyzer (Syntech Spectras Inc., Groningen, the Netherlands). In total,
54 VOC species designated as photochemical precursors by the United States Environmen-
tal Protection Agency (US EPA) were monitored and used in the premonitoring equipment
calibration. The analyses were performed using a photo (PID) and a flame (FID) ionization
detector, which ensured high sensitivity and effective identification. The GC955 series 611
and 811 devices are two separated sample and column systems, which measure high (C6–
C10) and low (C2–C5) boiling-point VOC species, respectively. For the series 811, the C2–C5
VOC species in ambient air were preconcentrated on Carbosieves SIII at a temperature
of −5 ◦C. The enriched compounds were then thermally desorbed by heating (to 270 ◦C)
and were purged into the separation column. The target compounds were then detected
by the PID and an FID. The Series 611 was used to determine C6–C10 VOC-species. Air
samples were preconcentrated on Tenax GR at ambient atmospheric temperature (~30 ◦C).
Target compounds were then desorbed at 230 ◦C, brought into a stripper column, and then
an analysis column for separation and a PID for detection. Quality assurance and quality
control measures were performed, including routine maintenance of the instrument every
week, fortnightly five-point calibration and verification, daily single-point correction, and
weekly filter replacement. The analyzer was calibrated using standard gas to determine
the retention times and control peak areas; correlation coefficient typically varied between
0.900 and 1.000. The method detection limits (MDL) for VOC species ranged from 0.019 to
0.599 ppbv. In accordance with the detection results, we obtained data for 54 VOC species
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within four VOC subcategories. Wind roses during the study period are given in Figure S1
in the Supplementary Materials. The data were subject to strict quality control measures,
and abnormal data were excluded from the analysis.

SO2, NO2, CO data were obtained from SO2 analyzer (API., Baltimore, ML, USA),
NOx analyzer (API., Baltimore, ML, USA), CO analyzer (API., Baltimore, ML, USA) in
the Nankai University Air Quality research Supersite (38◦59′ N, 117◦20′ E) in the Jinnan
district of Tianjin, China.

2.3. Methods
2.3.1. Ozone Formation Potential (OFP)

The maximum incremental reactivity (MIR) method proposed by Carter [45] is widely
used as a good indicator for comparing the ozone formation potential (OFP) of individual
VOC species, and has been used to evaluate the photochemical reactivity of VOCs with
OH radicals and for estimation of the contribution of individual organic compounds to
ozone formation, and it is defined as follows:

OFPi= MIRi ×Ci (1)

OFP =∑ OFPi (2)

Here, [VOC]i is the concentration of VOC species i, OFPi is defined as the ozone
formation potential of individual species i, MIRi is defined as the maximum incremental
reactivity coefficient for individual species i, which is updated by Carter [46]. Additionally,
OFP is defined as the ozone formation potential of the total species.

2.3.2. GAM

GAM have a nonlinear relationship between the corresponding variables and predic-
tors using a smooth function,

g(ui) = a0 + f1(x1i) + f2(x2i) + . . . + fk(xki) + εi (3)

where i indicates the ith hour’s observation. k refers to the type of impact factors. fk(x)
are smooth functions of the data. The element g(µi) is the “link” function, which specifies
the relationship between the linear formulation on the right side of Equation (1) and the
response µi. Nonlinear functions fk(x) are used to represent the complex relationship
between ozone and impact factors. εi is the residual [47].

In this study, we considered hourly O3 concentration as the response variable, and
hourly value of the relevant influencing factors, which were divided into environmental
and meteorological factors in this study, as the explanatory variable. The GAM model
check is mainly used to evaluate the quality of the proposed optimal model through the
gam.check function in the R language mgcv package. In addition, we used the adjusted R2

and variance interpretation rate to evaluate the quality of the fitted GAM. The higher the
adjusted R2 and variance interpretation rate are, the better the model fitting effect are.

3. Results
3.1. Characteristics of Ozone and Its Precursors during O3 Episodes

O3 episodes with MAD8 greater than 160 µg/m3 are shown in Table S2. In total, 33
O3 episodes from 2018 to 2020 were analyzed in this study. The ozone concentration of
O3 episodes in 2020 was 66.4 ppbv, which was higher than 2018 (61.9 ppbv) and lower
than 2019 (75.5 ppbv). The frequency of O3 episodes were 15, 17, 4 and the number of
days were 29, 28, and 5 d in 2018, 2019 and 2020, respectively (Figure 2). The longest
duration of O3 episodes was 2 days in 2020, while the longest were 6~8 d in 2018 and
2019. The total hours of O3 episodes with an hourly value greater than 160 µg/m3 were
209, 191, and 30 h, and the hourly peak concentrations were 344, 258 and 211 µg/m3 in
2018, 2019 and 2020, respectively. The hourly peak concentrations in 2017 was observed
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(279 µg /m3) in the JJJUA [48]. The MAD8 peak concentration from 2014 to 2018 was
observed (297 µg /m3) in Shijiazhuang [49]. It can be seen that although the value of ozone
concentration in 2020 was not the lowest, the O3 episodes showed a decreasing trend in
terms of pollution frequency, days, heavy pollution duration and peak concentration. This
has a lot to do with the unprecedented reduction in air pollution emissions caused by the
various containment measures taken by the Chinese government during the period of
COVID-19 outbreak [50–52].

Atmosphere 2021, 12, x FOR PEER REVIEW 5 of 14 
 

 

3. Results 

3.1. Characteristics of Ozone and Its Precursors during O3 Episodes 

O3 episodes with MAD8 greater than 160 μg/m3 are shown in Table S2. In total, 33 O3 

episodes from 2018 to 2020 were analyzed in this study. The ozone concentration of O3 

episodes in 2020 was 66.4 ppbv, which was higher than 2018 (61.9 ppbv) and lower than 

2019 (75.5 ppbv). The frequency of O3 episodes were 15, 17, 4 and the number of days were 

29, 28, and 5 d in 2018, 2019 and 2020, respectively (Figure 2). The longest duration of O3 

episodes was 2 days in 2020, while the longest were 6~8 d in 2018 and 2019. The total hours 

of O3 episodes with an hourly value greater than 160 μg/m3 were 209, 191, and 30 h, and 

the hourly peak concentrations were 344, 258 and 211 μg/m3 in 2018, 2019 and 2020, re-

spectively. The hourly peak concentrations in 2017 was observed (279 μg /m3) in the JJJUA 

[48]. The MAD8 peak concentration from 2014 to 2018 was observed (297 μg /m3) in Shi-

jiazhuang [49]. It can be seen that although the value of ozone concentration in 2020 was 

not the lowest, the O3 episodes showed a decreasing trend in terms of pollution frequency, 

days, heavy pollution duration and peak concentration. This has a lot to do with the un-

precedented reduction in air pollution emissions caused by the various containment 

measures taken by the Chinese government during the period of COVID-19 outbreak [50–

52]. 

2018 2019 2020
0

2

4

6

8

10

12

14

16

18

2018 2019 2020
0

5

10

15

20

25

30

2018 2019 2020
0

50

100

150

200

250

300

350

400

2018 2019 2020
0

50

100

150

200

250

(d)(c)

(b)

ti
m

e
s

 times(a)

d
a
y
s 

 days

p
e
a
k
 c

o
n
c
e
n
tr

a
ti

o
n
s 

(μ
g
/m

3
)

year

 peak concentrations

h
o
u
rs

 

year

 hours

 

Figure 2. The frequency (a), the number of days (b), the hourly peak concentrations (c) and the total hours of O3 episodes 

with an hourly value greater than 160 μg/m3 (d) of O3 episodes in different years. 

The average value of NO2 were 25, 19, and 15 ppbv during O3 episodes in 2018, 2019 

and 2020, respectively, showing a decreasing trend. From the diurnal variation of pollu-

tants during O3 episodes (Figure 3), we can see that CO and SO2 in 2020 were 1.7 ppbv 

and 3.3 ppbv, respectively, which is significantly higher than previous years. 
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with an hourly value greater than 160 µg/m3 (d) of O3 episodes in different years.

The average value of NO2 were 25, 19, and 15 ppbv during O3 episodes in 2018, 2019
and 2020, respectively, showing a decreasing trend. From the diurnal variation of pollutants
during O3 episodes (Figure 3), we can see that CO and SO2 in 2020 were 1.7 ppbv and
3.3 ppbv, respectively, which is significantly higher than previous years.

3.2. Characteristics of VOCs and OFP during O3 Episode

The highest concentration and proportion of alkanes were ethane (2.8 ppbv, 19.5%),
cyclopentane (2.4 ppbv, 16.8%), methylcyclopentane (2.3 ppbv, 15.9%), propane (1.6 ppbv,
11.3%) and n-butane (1.3 ppbv, 8.9%) during O3 episodes in 2020 (Figure S2). Propane
(2.6 ppbv, 29.9%) and ethane (1.9 ppbv, 21.8%) were of the highest content during O3
episodes in 2018. The concentration of propane (2.7 ppbv) was the highest, followed
by cyclopentane, ethane, n-butane, i-pentane, and n-pentane during O3 episodes in
2019. Ethane and propane mainly come from incomplete combustion of motorcycles
and motor vehicles [53] and liquefied petroleum gas/natural gas [54,55], and gasoline
volatilization/emissions are characterized by high content of C4 and C5 alkanes [23].
i/n-pentanes were typical tracers for gasoline vehicle exhausts [56]. Cyclohexane can be
released from diesel fuel evaporation [57]. Above all, among O3 episodes, LPG/natural
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gas emissions were important sources in 2018, and both LPG/natural gas and gasoline
volatilization/emissions were important sources in 2019 and 2020.
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The concentration and proportion of 1-hexene (0.5 ppbv, 31.2%), ethylene (0.3 ppbv,
22.8%), and propene (0.3 ppbv, 21.9%) were the highest among the alkenes during O3
episodes in 2020. 1-hexene (3.3 ppbv, 48.9.4%), Styrene (1.5 ppbv, 22.1%), isoprene (1.3
ppbv, 19.7%),had the highest concentrations and proportions during O3 episodes in 2019.
The concentration and proportion of propene (0.4 ppbv, 34.1%), isoprene (0.4 ppbv, 32.8%),
ethylene (0.3 ppbv, 24.8%) and cis-2-butene (0.1 ppbv, 13.4%) were the highest during
O3 episodes in 2018. Ethylene and propene are important raw materials and products
for rubber, plastics and other chemical manufacturing industries [58,59]. Isoprene was
mainly derived from biological sources, indicating that rubber, plastics and other chemical
manufacturing industries were important sources, and the impact of biological emissions
may show a downward trend.

Toluene (0.7 ppbv, 34.6%), benzene (0.6 ppbv, 29.6%), and m,p-xylene (0.4 ppbv, 20%)
were major species among aromatics during O3 episodes in 2020. BTEX accounted for 91%
of aromatics, indicating that they were affected by vehicle emissions [60,61] and solvent
sources [62]. The concentrations and proportions of toluene (0.6 ppbv, 37.5%) and benzene
(0.5 ppbv, 30.7%) were the highest during O3 episodes in 2019, when BTEX accounted
for 90% of aromatics. Toluene (0.7 ppbv, 42.0%), benzene (0.5 ppbv, 30.3%), m,p-xylene
(0.2 ppbv, 12.7%) and ethylbenzene (0.1 ppbv, 8.9%) were major species among aromatics
during O3 episodes in 2018, and BTEX accounted for 94% of aromatics. A toluene/benzene
ratio lower than 2 indicates predominantly vehicular emissions, and a value greater than
2 was considered a complex emission source (motor vehicles, industry, solvent use). The
toluene/benzene ratios during O3 episodes from 2018 to 2020 were 1.7 ± 2.0, 1.2 ± 1.5 and
1.5 ± 2.1, respectively, indicating that vehicular emissions were an important source.

The top ten substances of VOCs concentrations are shown in Figure 4. The major
VOCs components during O3 episodes were essentially consistent in 2018 and 2020, and
most of the components were low-carbon alkanes. During O3 episodes, propane, ethane,
acetylene and i-pentane were the major species in 2018, and ethane, acetylene, cyclopentane
and methylcyclopentane were the major species in 2020. Additionally, 1-hexene was the
main component in 2019, followed by propane and cyclopentane.
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The value of OFP during O3 episodes from 2018 to 2020 are shown in Figure S3. The
top ten OFP species are shown in Figure S4, where the main ozone-contributing species
were propene (4.68 ppbv), isoprene (4.08 ppbv), and ethylene (2.58 ppbv) in 2018. The main
ozone-contributing species in 2020 were propene (6.11 ppbv), cyclopentane (4.30 ppbv),
methylcyclopentane (3.55 ppbv) and ethylene (3.18 ppbv), and alkenes were the important
contributor to ozone formation. The top ten substances of OFP in 2019 were significantly
different, and the main ozone-contributing species were 1-hexene (17.72 ppbv), isoprene
(11.83 ppbv), propene (6.25 ppbv) and cyclopentane (4.83 ppbv).

During the O3 episodes in 2018 (Figure 5), the concentration of O3 was high from
12:00 to 19:00, and the concentration of propane and i-pentane in this period first decreased
significantly, then increased sharply after 14:00, and then decreased and leveled off after
16:00. In 2019, the concentration of O3 was higher from 14:00 to 20:00, and the concentration
of 1-hexene and propane first decreased significantly during this time period, then increased
after 20:00. In 2020, the concentration of O3 was higher from 12:00 to 21:00; the concentration
of methylcyclopentane first decreased significantly during this time period, and increased
sharply after 16:00, then decreased and stabilized after 19:00, and acetylene increased
sharply after 18:00. Other major VOCs species did not show an obvious trend during this
period.

3.3. Evaluation of the Influencing Factors on O3 Episodes

Relevant research shows that the concentration of ozone is related to CO, SO2, NO, NO2,
acetylene, alkenes, aromatics, alkanes, wd(wind direction), ws(wind speed), T(temperature),
RH(relative humidity), P(average air pressure), pre(precipitation), vis(visbility), TSRI(Total
solar radiation intensity) and other influencing factors. Spearman’s correlation analysis
was conducted between hourly ozone and the corresponding influencing factors during
O3 episodes from 2018 to 2020 (Figures S5–S7). The explanatory variables in the study are
divided into environmental and meteorological factors. Environmental factors include CO,
SO2, NO, NO2, acetylene, alkenes, aromatics and alkanes; meteorological factors include
wd, ws, T, RH, P, Pre, TSRI, vis. A total of 16 impact factors were selected as explanatory
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variables, and O3 concentration as the response variable, whose distributions are all normal
(Figure S8). The multifactor correlation analysis was carried out through the GAM model,
and the effective data was totaled into 1475 groups.
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Multivariate analysis showed that retention factor significantly affected the change
of O3 concentration at the level of p < 0.001, which was statistically significant. Factors
that did not pass the significance analysis of TVOC were deleted, and O3 was taken as the
explanatory variable used to reconstruct the multifactor GAM model until all variables
passed the significance test. Factors which were included in the final GAM model in
different years are listed in Table S3. The R2 of the multifactor GAM model during O3
episodes from 2018 to 2020 were 0.92, 0.90 and 0.98, respectively, and the deviances
explained were 94%, 90.8% and 98.9%. The model-fitting effect in Table S3 was better.

The gam.check function was used through the mgcv program package of R version
4.0.2 to evaluate the fitting effect of the multifactor model (Figures S9–S11). From the model
residual QQ diagram, the points were approximately distributed in a straight line. From
the residual histogram, the residual mean was close to 0, and the frequency distribution
was centered at 0. The closer to 0, the higher the frequency, and the two sides were
essentially symmetrical. The model residuals were approximately normally distributed.
From the scatter plot of residuals and predicted values, the points were essentially randomly
distributed, indicating that the residuals were not related to the predicted values. Judging
from the scatter plot of the observed values and the fitted values, the two basically had a
straight-line distribution of y = x, indicating that the response variable after the model was
fitted has a higher degree of matching with the fitted value. In conclusion, the multifactor
model proposed in this paper had a good fitting effect.

The F value reflects the relative importance of each explanatory variable of the model
to the dependent variable [63]. During O3 episodes in 2018, vis (16.6), RH (15.3), NO (14.3),
and T (13.1) had the highest F value and had the greatest impact on O3. T (70.7), NO2 (22.9),
wd (22.8), and vis (21.9) had the highest F values in 2019 (Table S3). T (81.8), NO2 (39.8),
vis (24.8), and ws (24.4) had the highest F values in 2020. It can be seen that O3 episodes
were mainly driven by meteorological and precursor (NO) factors in 2018. O3 episodes
were mainly driven by meteorological conditions (T), followed by precursor (NO2), in 2019
and 2020.

Multifactor correlation analysis was performed through the GAM model to obtain
the impact effect map of the influencing factors (Figure 6), and the specific influence of
each influencing factor on O3 concentration were analyzed. T was the factor that had the
greatest influence on O3 during O3 episodes in 2019 and 2020, which was much higher than
other factors. O3 and T had a mainly nonlinear and positive correlation, with O3 episodes
mainly occurring when T was greater than 20 ◦C, and ozone concentration increased with
the rise of temperature. Further, there was an obvious inflection point, and when the
temperature was higher, the increase in ozone concentration was more obvious, while the
trend tends to be flat. In 2018, the effect of T on ozone was not obvious at 20–35 ◦C, and
the ozone concentration showed an increasing trend with the increase in temperature after
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35 ◦C. High temperatures can enhance solar radiation and reduce cloud cover, which in
turn increases the intensity of photochemical reactions, leading to an increase in ozone
concentration [64].
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Figure 6. Response curves of O3 concentration to changes in temperature in 2018 (a), 2019 (b), 2020 (c),
NO2 concentration in 2018 (d), 2019 (e), 2020 (f), NO concentration in 2018 (g), 2019 (h), vis in 2018 (i),
2019 (j), 2020 (h) and RH in 2018 (l), 2019 (m), 2020 (k). The y-axis represents the smoothing function
values; for example, s (T) shows the trend in O3 concentration when air temperature changes, and df
is the degree of freedom for the trend. The x-axis represents the measured values of the influencing
factor, the solid curve indicates the trend in O3 concentration with the change of influencing factors,
and the shaded area that is centered around the solid line indicates the CI (lower and upper limits) of
O3 concentration.

NO2 was a factor that has a greater impact on O3 during O3 episodes in 2019 and
2020, second only to T. O3 and NO2 were mainly nonlinear and negatively correlated,
and the O3 concentration decreases with the increase of NO2 concentration, and the
confidence interval of NO2 concentration was relatively narrow, indicating that there
was a significant negative effect. NOx emission controls in China have been motivated
mainly by the goal of decreasing nitrate PM2.5, and further controls were expected in
the future (http://env.people.com.cn/n1/2020/0515/c1010-31710781.html, accessed on
20 August 2021). NO had a greater impact on O3 during O3 episodes in 2018 and 2019.
When the NO concentration was lower than 10 ppbv, the O3 concentration showed a
decreasing trend, but when the NO concentration was high, the overall impact trend was
positive. This may be due to the role of HO2 in promoting the oxidation of NO to NO2 in
the high-concentration environment [65], and photolysis generating O3 and increasing its
concentration. Under certain conditions, nitrogen oxides, nitric oxide and VOCs generate

http://env.people.com.cn/n1/2020/0515/c1010-31710781.html
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ozone through photochemical reactions, which increase the ozone concentration and cause
higher ozone pollution.

Vis was the factor that had the greatest impact on O3 during O3 episodes in 2018, and
it also had a greater impact on O3 in 2019 and 2020. Visibility may be affected by several
factors such as rain or thunderstorms, haze, fog and mist. The O3 concentration and vis
were mainly nonlinear and negatively correlated in 2018 and 2019. As the vis increased,
the O3 concentration gradually decreased. Vis showed a nonlinear, positive correlation at
10–20 km in 2020, and a nonlinear, negative correlation after 20 km. RH was a factor that
had a great impact on O3 during O3 episodes in 2018—it was second only to vis. The O3
concentration was mainly nonlinearly related to RH. When RH < 60%, the effect of RH
on O3 concentration did not change significantly; when RH > 60%, the O3 concentration
decreased with the increase in RH, and the decrease range was larger. TVOC (alkenes,
aromatic hydrocarbons, alkynes, alkanes) had relatively low effects on O3 concentration,
and some had not passed the GAM significance test. Compared with meteorological factors,
their impact on ozone was very small.

4. Conclusions

1. O3 episodes from 2018 to 2020 were analyzed in this study, The ozone concentration
of O3 episodes in 2020 was 66.4 ppbv, which was higher than 2018 (61.9 ppbv) and lower
than 2019 (75.5 ppbv), although the value of ozone concentration in 2020 was not the lowest,
the O3 episodes showed a decreasing trend in terms of pollution frequency, days, heavy
pollution duration and peak concentration. The average value of NO2 during O3 episodes
showed a decreasing trend, CO and SO2 in 2020 were 1.7 ppbv and 3.3 ppbv, respectively,
significantly higher than previous years.

2. The major VOCs components during O3 episodes were essentially consistent in
2018 and 2020, and most of the components were low-carbon alkanes. Propane, ethane,
acetylene and i-pentane were the major species in 2018, ethane, acetylene, cyclopentane,
and methylcyclopentane were the major species in 2020; 1-hexene was the main component
in 2019. Above all, LPG/natural gas emissions were important sources in 2018, and both
LPG/natural gas and gasoline volatilization/emissions were important sources in 2019
and 2020.

3. The main ozone-contributing species were propene (4.68 ppbv), isoprene (4.08 ppbv),
and ethylene (2.58 ppbv) in 2018. The main ozone-contributing species in 2020 were
propene (6.11 ppbv), cyclopentane (4.30 ppbv), methylcyclopentane (3.55 ppbv) and ethy-
lene (3.18 ppbv), and alkenes were important contributors to ozone formation. The top ten
substances of OFP in 2019 were significantly different. The main ozone-contributing species
were 1-hexene (17.72 ppbv), isoprene (11.83 ppbv), propene (6.25 ppbv) and cyclopentane
(4.83 ppbv).

4. Based on the GAM results, O3 episodes was mainly driven by meteorological and
precursor (NO) factors in 2018, while meteorological conditions (T), followed by precursor
(NO2) were the main driving factors in 2019 and 2020. Different factors had different
driving impact on the O3 episodes. T had a nonlinear and positive impact, while NO2 had
a nonlinear and negative impact.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/atmos12111517/s1, Figure S1: Wind roses during study period in 2018(a), 2019(b), 2020(c) and
during O3 episodes from 2018 to 2020(d), Figure S2: The mean concentrations of VOCs during the O3
episodes in this study, Figure S3:The mean OFP during the O3 episodes in this study, Figure S4: TOP
10 OFP species in this study during O3 episodes, Figure S5: The spearman correlation coefficients
during O3 episodes in 2018, Figure S6: The spearman correlation coefficients during O3 episodes in
2019, Figure S7: The spearman correlation coefficients during O3 episodes in 2020, Figure S8: Density
plot of O3, Figure S9: Residual error result test ((a) Residual QQ plot,(b) Residual histogram,(c)
Scatter plot of residuals and predictions,(d) Scatter plot of observed and fitted values) in GAM model
during O3 episodes in 2018, Figure S8: Density plot of O3, Figure S9: Residual error result test ((a)
Residual QQ plot,(b) Residual histogram,(c) Scatter plot of residuals and predictions,(d) Scatter plot
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of observed and fitted values) in GAM model during O3 episodes in 2018, Figure S10: Residual error
result test ((a) Residual QQ plot,(b) Residual histogram,(c) Scatter plot of residuals and predictions,(d)
Scatter plot of observed and fitted values) in GAM model during O3 episodes in 2019, Figure S11:
Residual error result test ((a) Residual QQ plot,(b) Residual histogram,(c) Scatter plot of residuals
and predictions,(d) Scatter plot of observed and fitted values) in GAM model during O3 episodes
in 2020. Table S1: Statistics analysis for meteorological parameters and pollutants during the the
study period, Table S2: O3 episodes between 1th April, and 31th August from 2018 to 2020, Table S3:
Estimated degree of freedom (Edf), degree of reference (Ref. df), P-value, F-value (which measures
the relative importance of smoothed variable) for the smoothed variables in the GAM model.
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