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Abstract: The Fourier Transform Spectrometer (FTS) at the Beijing Satellite Meteorological Ground
Station observed XCO2 (the dry carbon dioxide column) from 2 March 2016 to 4 December 2018. The
validation results of ground-based XCO2, as well as GOSAT, OCO-2, and TanSat XCO2, show that the
best temporal matching setting for ground-based XCO2 and satellite XCO2 is±1 h, and the best spatial
matching setting for GOSAT is 0.5◦ × 0.5◦. Consistent with OCO-2, the best spatial matching setting of
TanSat is 5◦ × 5◦ or 6◦ × 6◦. Among GOSAT, OCO-2, and TanSat, the satellite observation validation
characteristics near 5◦ × 5◦ from the ground-based station are obviously different from other spatial
matching grids, which may be due to the different observation characteristics of satellites near 5◦ × 5◦.
To study the influence of local CO2 sources on the characteristics of satellite observation validation,
we classified the daily XCO2 observation sequence into concentrated, dispersive, increasing, and
decreasing types, respectively, and then validated the satellite observations. The results showed
that the concentrated and decreasing sub-datasets have better validation performance. Our results
suggest that it is best to use concentrated and decreasing sub-datasets when using the Beijing Satellite
Meteorological Ground Station XCO2 for satellite validation. The temporal matching setting should
be ±1 h, and the spatial matching setting should consider the satellites observation characteristics of
5◦ × 5◦ distance from the ground-based station.

Keywords: FTS; carbon dioxide; daily time series feature; colocation sensitivity; satellite validation

1. Introduction

In recent years, greenhouse gas (GHGs) emissions have reached unprecedented levels.
Carbon dioxide (CO2) has the highest concentration among the greenhouse gases in the
atmosphere and constitutes about 63% of the radiative forcing by greenhouse gases [1,2].
Atmospheric CO2 has increased from 278 parts per million (ppm) in preindustrial times to
413.2 ppm in 2020 [3].

Remote sensing by satellites plays an important role in monitoring the global distribu-
tion of CO2. It is expected to improve the accuracy of the carbon budget and supplement
the classic in situ measurement of CO2 [4]. With high spatial-temporal resolution, many
researchers have demonstrated that the monitoring of atmospheric CO2 by satellites has
the potential to reduce the uncertainties in estimating CO2 surface flux [5–7]. Furthermore,
the inverse CO2 surface flux, XCO2 (the dry carbon dioxide column) product from satellites,
needs an accuracy of 99.5% [8]. Early infrared band satellite detection payloads capable of
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detecting CO2 cannot detect near-ground source and sink information [9–11]. The reason
is that the detection band is similar to the emission band of the surface of the earth, and it
is difficult to distinguish the near-surface atmospheric signal. CO2-detecting satellites that
also detect the reflection of the sun in the near-infrared band have been developed. Studies
show that CO2 satellites carrying near-infrared detectors can obtain XCO2 with sufficient
accuracy to estimate near-ground sources and sinks [12–14]. The first near-ground sensitive
carbon dioxide satellite, the Greenhouse Gases Observing Satellite (GOSAT), was launched
by Japan in January 2009. Later, the Orbiting Carbon Observatory-2 (OCO-2) was launched
by the National Aeronautics and Space Administration (NASA) in July 2014 [15]. In De-
cember 2016, the Global CO2 observation and monitoring satellite (TanSat) was launched
by China [16]. Soon after, the GaoFen-5 (GF-5) in China and the GOSAT-2 in Japan were
launched in 2018, about a year before the Orbiting Carbon Observatory-3 (OCO-3) was
brought to the International Space Station by the CRS-17 Cargo Dragon Replenishment
Mission in May 2019 [17]. Although satellite observations have shown great potential in
estimating CO2 sources and sinks, ground-based observations as auxiliary data are still
needed for validation of satellite observations.

With the higher intensity of incident light observed by a ground-based Fourier Trans-
form Spectrometer (FTS), higher quality spectra are available compared to those observed
by satellites. Since a ground-based FTS detects direct sunlight, while satellites detect sun-
light reflected by the earth, a ground-based FTS has a higher signal-to-noise ratio than a
satellite does [18]. The Total Carbon Column Observing Network (TCCON) (Figure 1) is a
global network for ground-based FTSs, which operates in the near-infrared spectral region
to record direct solar spectra [19]. One of the aims of TCCON is to provide accurate mea-
surements of CO2 for calibrating satellite-based retrieved CO2. The ground-based FTS data
from TCCON were widely used in validating the XCO2 data products of satellites [19–32].
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Figure 1. TCCON site map: red dots denote operational FTS sites, and the solid blue square denotes
the future site (https://tccon-wiki.caltech.edu/Main/TCCONSites (accessed on 10 November 2021)).

In December 2015, a ground-based FTS with high-resolution dedicated to recording
the near-infrared direct solar spectra at Beijing in China was installed. A three-year-long
ground-based FTS measurement campaign was undertaken in Beijing from 2 March 2016
to 4 December 2018. To study the impacts of the spatial-temporal matching strategy
of ground-based validation in urban areas and the characteristics of the ground-based
observation sequences on validation, we analyzed the sensitivity of the ground-based data
validation for the GOSAT, OCO-2, and TanSat data to spatial-temporal matching. Based on
the characteristics of the daily time series, the dataset is then classified into sub-datasets,
and the sensitivity analysis of spatial-temporal matching with satellite data is performed.

https://tccon-wiki.caltech.edu/Main/TCCONSites
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2. Materials and Methods
2.1. Site FTS Measurements and Retrieval Method

The FTS site is located at the Beijing Meteorological Satellite Ground Station (40◦3′ N;
116◦16.8′ E; 51 m.a.s.l.), in the center of Beijing (Figure 2), with an average elevation of
45 m. The site is located in a densely populated area in Beijing, and many large Internet-
based companies are located around it. The measurements at Beijing are made by a high-
resolution FTS (Bruker 125HR, Bruker Optics, Germany) and a solar tracker (A547N, Bruker
Optics, Germany) (Figure 3). The FTS records the near-infrared spectra (4000–10,000 cm−1)
with a resolution of 0.02 cm−1, covering the retrieval bands of XCO2. The ground-based
FTS obtains direct solar absorption measurements under clear sky conditions and has been
operational since December 2015.
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Near the FTS instrument, an automatic meteorological station in the meteorological
observation network of the Chinese meteorological administration was used to monitor the
surface temperature, pressure, relative humidity, and wind velocity. We operated the mea-
surement routines during the validation campaign from 2 March 2016 to 4 December 2018,
weather permitting. The data are generally not compromised by clouds and adverse
weather conditions, as we only collected data on sunny days. The interferogram of the
solar shortwave spectrum was recorded by the FTS every five minutes. We recorded
7118 spectra during these three years. Those spectra were prepared to retrieve XCO2 for
the validation of CO2 monitoring satellites.

The standard retrieval software for TCCON, GGG, is utilized to retrieve gases from the
spectra collected by FTS, while GFIT is the algorithm of GGG. The GFIT algorithm performs
a least-square spectral fit over a prescribed window of a series of spectra to determine the
slant column abundances of the fitted gases [33]. The algorithm was developed by Geoff
Toon at the Jet Propulsion Laboratory (JPL) and has been adopted by TCCON to analyze
the spectral data recorded by the ground-based FTS [34]. Total column CO2 is retrieved
in two bands, (6310.00–6380.00 cm−1) and (6180.00–6260.00 cm−1), and the official report
shows that the measurement uncertainty of the TCCON XCO2 retrievals is smaller than
0.25%. The a priori profiles of temperature, pressure, water vapor, and geopotential height
are derived from the National Centers for Environmental Prediction/National Center for
Atmospheric Research (NCEP/NCAR) reanalysis data.

The retrieved results of atmospheric composition are in units of parts per million
(ppm) and can be strongly affected by the surface pressure and the topography. The XCO2
retrievals are less sensitive to variations in the surface pressure. This characteristic can
provide direct comparisons to minimize the error of the measurements of trace gases
in the atmosphere between different sites, during different seasons, and with in situ
measurements. The XCO2 results observed from the ground are shown in Figure 4.
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2.2. Satellite Data
2.2.1. GOSAT Data

Jointly developed by JAXA, NIES, and MOE, GOSAT is a project designed to detect
CO2 and methane in the atmosphere. GOSAT was launched into a sun-synchronous orbit
with an inclination angle of 98◦ and an altitude of 666 km on 23 January 2009 [35]. The
time for GOSAT to complete one orbit is about 100 min, the revisit period is three days,
and the time to cross the local equator is 13:00 local time. GOSAT is equipped with two
instruments, namely the Thermal and Near Infrared Sensor for Carbon Observations
Fourier-Transform Spectrometer (TANSO-FTS) and the Thermal and the Near Infrared
Sensor for Carbon Observation-Cloud and Aerosol Imager (TANSO-CAI). The TANSO-FTS
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is the main instrument used to detect CO2 and CH4 [20]. The FTS contains three narrow
bands with central wavelengths of 0.76 µm, 1.61 µm, and 2.06 µm in the visible, near-
infrared, and a wide band in the thermal near-infrared of 5.56–14.3 µm. The TANSO-CAI is
a camera that observes the daytime state of the atmosphere and land surface and provides
additional aerosol and cloud information for the FTS. The field of view of the TANSO-FTS
is 15.8 mrad, the diameter of the nadir footprint is 10.5 km, and the observation time of a
single datapoint is 4 s [36].

GOSAT SWIR L2 Data has two major versions: v01.xx and v02.xx. Compared with the
XCO2 of TCCON and GOSAT, the XCO2 retrieval results based on v01.xx showed negative
biases of –8.85 ppm and standard deviations of 4.75 ppm, which are much higher than the
XCO2 results from version 02.xx [23]. As a result of the updated solar irradiation database
and aerosol scattering calculation, the errors of the v01.xx algorithm were corrected. The
version 02.xx total data, after screening, are more than that of version 01.xx, and the XCO2
of version 02.xx were of high quality (biases of –1.48 ppm and standard deviation of
2.09 ppm compared with TCCON XCO2) [24]. We used version 02.085 SWIR XCO2 L2 data
in this paper (Figure 5a).
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2.2.2. OCO-2 Data

The OCO-2 is a NASA project initiated for the accurate, precise, and high spatial
distribution of CO2 detection. The CO2 retrievals of OCO-2 have sufficient precision and
accuracy and can accurately describe the sources and sinks of CO2 as well as diagnose
regional changes [37]. The OCO-2 satellite is a replica of the OCO that failed in 2009 [38].
OCO-2 was launched into the 705 km EOS A-train sun-synchronous orbit, located as the
first satellite of the A-train. The orbital time is 98.8 min, the intersection crossing time is
13:36 local time (LT), and the revisit period is 16 days. The OCO-2 satellite only carries
a three-band grating imaging spectrometer. This spectrometer can detect near-infrared
reflections and sun-scattered light from the surface of the earth, collecting the 0.765 µm
O2 A band as well as the 1.61 µm and 2.06 µm reflected sunlight spectra. The OCO-2
spectrometer collects eight continuous observations on the ground surface at a frequency of
3 Hz. The footprint produced at the nadir is 2 km along the ground path, and the resolution
of the vertical ground path is 1 km [15].

The ACOS algorithm is a CO2 retrieval process developed by the NASA ACOS team.
The official L2 XCO2 products of OCO-2 are all based on the ACOS algorithm. The first
version of the ACOS algorithm was released in 2012 [39]. Currently, the ACOS retrieval
algorithm has nine versions. The latest three versions are ACOS B7, ACOS B8, and ACOS B9.
Compared to ACOS B7, ACOS B8 updated the spectroscopy, land Bidirectional Reflectance
Distribution Function (BRDF), Upper Tropospheric/Lower Stratospheric (UTLS) aerosol,
GEOS5-FP-IT meteorology, and L1B improvement, plus numerous small changes. As a
result, the XCO2 of version B8 data has 20% of the error variance of version 7 over land
and 40% of the error variance of version 7 over the ocean [40]. ACOS version B9 revised
the bias correction in ACOS version B8. It corrected for the observation point error and
incorrect time sampling of the meteorological analyses in ACOS version B8, which resulted
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in a better estimate of surface pressure, helping to reduce XCO2 biases in regions of rough
topography [41]. We used ACOS version B9 Lite XCO2 L2 data in this paper (Figure 5b).

2.2.3. TanSat Data

The TanSat satellite is the first Chinese satellite dedicated to the space-based remote
sensing of atmospheric CO2. The TanSat satellite was successfully launched into a sun-
synchronous orbit on 22 December 2016, with an orbital height of about 700 km, an orbital
inclination of 98.2◦, and a local crossing of the equator at 13:30 LT [32]. TanSat carries
two instruments, the Atmospheric Carbon Dioxide Grating Spectrometer (ACGS) and the
Cloud and Aerosol Polarimetric Instrument (CAPI). The ACGS is a grating spectrometer
for observing the backscattered light of the sun, used for CO2 inversion and oxygen
inversion. It includes three sub-spectrometers to observe: the oxygen A band in the range
of 758–778 nm, the weak absorption band of CO2 in the wavelength range of 1594–1624 nm,
and the strong absorption band of CO2 in the range of 2042–2082 nm. CAPI is a multi-
band imager, including five bands ranging from ultraviolet to near-infrared (365–408 nm,
660–685 nm, 862–877 nm, 1360–1390 nm, and 1628–1654 nm), used to obtain aerosol and
cloud information. The 660–685 nm and 1628–1654 nm bands are used for polarization [42].

The TanSat global XCO2 product is retrieved by the IAPCAS (the Institute of At-
mospheric Physics Carbon Dioxide Retrieval Algorithm for Satellite Remote Sensing)
algorithm, which was developed by the Institute of Atmospheric Physics (IAP). It has
a general accuracy of 2.11 ppm and the absolute biases over TCCON stations such as
Sodankyla and Karlsruhe are more than 2.9 ppm [43,44]. The ACOS XCO2 retrieval algo-
rithm was used to process the TANSAT L1B data, noting that the average bias of ACOS
algorithm is smaller than that of OCO-2, which is 0.85 ppm [32]. The Department for
Eco-Environmental Informatics (DEEI) of the State Key Laboratory of Resources and Envi-
ronmental Information System of China has developed a TanSat Retrieval algorithm by
combining the SCIATRAN radiation transfer model and OEM method. The XCO2 bias of
the DEEI algorithm was 2.62 ppm compared with the ground-based FTS measurement,
with a standard deviation of 1.41 ppm [45]. We use the DEEI XCO2 L2 data in this paper
(Figure 5c).

2.3. Methods

In areas far away from anthropogenic CO2 sources, the concentration of the CO2
column observed by ground-based observations is a concentrated quadratic function that
first rises and then falls, as shown in Figure 6a [46]. Observations at the Beijing station
are affected by near-surface anthropogenic sources, and, therefore, the daily change is
no longer just showing a trend of rising first and then falling (Figure 6a). The sequences
of continuous growth and continuous decline, as well as first decline and then rise, also
appear in the observations at Beijing Station (Figure 6b–d). Some daily sequences also
show a trend of divergence (Figure 7b).

To study the impact of different types of ground-based data on satellite validation,
we classify the daily XCO2 time series into four sub-datasets. The classification criteria
are as follows. First-order fitting is performed on the daily sequence and the observation
time; sequences with positive fitting coefficients are regarded as increasing types, and
sequences with negative fitting coefficients are regarded as decreasing types. According to
this method, the sequence that first increases and then decreases (Figure 6a) as well as the
sequence that first decreases and then increases (Figure 6d) are recognized as increasing
and decreasing types, respectively. If the number of points with an absolute difference
between adjacent observations greater than 0.25 ppm exceeds half of the total number of
points, the sequence is identified as a dispersive sequence. Conversely, those that fail to
meet the conditions are identified as a concentrated sequence.
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The purpose of using ground-based data for validation is to limit the satellite and
ground-based data to a certain space-time matching range. The satellites and ground-
based data within the matching range are regarded as multiple measurements of the
same amount, and the satellite data and ground-based data in the matching range are
averaged as the representative data. The representative data of the ground is used as
the proxy truth value. The bias, standard deviation, and Pearson correlation coefficient
between the representative data of the satellite and the proxy truth value are evaluated.
The bias represents the systematic error between the proxy truth value and the satellite
representative data. During the calculation of the bias, the random error is eliminated
by averaging the data. The standard deviation evaluates the degree of dispersion of the
absolute difference between the representative data of the satellite and the proxy truth
value and is used to represent the random error of the satellite observation. To describe the
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similarity between the satellite data and ground-based data, we use the Pearson correlation
coefficient to evaluate the linear correlation between satellite data and ground-based data.
The terms bias, sd, and r represent the bias, standard deviation, and Pearson correlation
coefficient, respectively; X and Y represent the ground-based XCO2 and satellite XCO2,
respectively, and the formulas are as follows:

bias = ∑n
i=1(Xi −Yi)

n
(1)

sd =

√√√√∑n
i=1 (Xi −Yi − ∑n

i=1(Xi−Yi)
n )

2

n
(2)

r = ∑n
i=1(Xi −∑n

i=1 Xi) ∗ (Yi −∑n
i=1 Yi) /n√

∑n
i=1 (Xi−∑n

i=1 Xi)
2∗∑n

i=1(Y−∑n
i=1 Yi) 2

n2

(3)

3. Results

To assess the performance of the observed Beijing ground-based data in the satellite
validation, we use the comprehensive ground-based observation data to validate the
GOSAT, OCO-2, and TanSat satellite data and proceed with the sensitivity analysis.

The standard of a good spatial-temporal matching strategy is that there is a large
correlation coefficient and small bias compared to the real systematic error between satellite
observation and ground-based observation as well as a small standard deviation between
satellite data and ground-based data. The validation results of ground-based data and
GOSAT data are shown in Figure 8. For the time matching strategy, the±1 h time matching
strategy has the largest correlation coefficient and the smallest standard deviation, while the
±0.25-h matching strategy has the smallest deviation and the smallest standard deviation.
For the spatial matching setting, the 0.5◦ × 0.5◦ spatial matching setting has the largest
correlation coefficient, the smallest deviation, and the smallest standard deviation. When
the spatial matching setting is either 4◦ × 4◦ or 5◦ × 5◦, the validation characteristics
of ground-based data and satellite data are quite different from the smaller or larger
spatial matching setting; that is to say, that a 4◦ × 4◦ or 5◦ × 5◦ has a small deviation and
correlation coefficient with a large standard deviation.
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Ground-based data and OCO-2 validation results show that, overall, ±1 h is the
best time matching strategy (Figure 9). For the spatial matching setting, the 4◦ × 4◦ has
the smallest deviation and standard deviation, but its correlation coefficient is too small.
Spatial matching settings of 5◦ × 5◦ and 6◦ × 6◦ have the largest correlation coefficients and
smaller standard deviations. Similar to GOSAT, the OCO-2 and ground-based validation
results show that under both 5◦ × 5◦ and 6◦ × 6◦ spatial matching settings, the validation
characteristics are quite different from the smaller or larger spatial matching settings. The
correlation coefficients for the 5◦ × 5◦ and 6◦ × 6◦ spatial matching settings validation
results are much larger than the smaller or larger spatial matching strategies, and the biases
are much larger than the smaller spatial matching settings and much smaller than the
larger spatial matching settings. The standard deviations are much smaller than the larger
space matching setting and much larger than the smaller space matching setting.
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There are a few matching points between the ground-based data and TanSat (Figure 10),
and the validation results of different temporal and spatial matching are greatly affected
by random errors. In the validation of the ground-based data and TanSat, the validation
results of the 5◦ × 5◦ and 6◦ × 6◦ spatial matching settings are quite different from those
of larger space matching settings. The spatial matching of 5◦ × 5◦ or 6◦ × 6◦ has a larger
deviation and Pearson correlation coefficient, with a smaller standard deviation.

The datasets classified from the overall dataset are validated separately and subjected
to sensitivity analysis. The sensitivity analysis results are compared with the overall
validation results, and the relationship between different sub-datasets is analyzed. The
four different types of result classifications are shown in Table 1.

Table 1. Time series classification results.

Classification Increasing Decreasing Concentrated Dispersive

Number 133 69 129 73
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To study the sensitivity of different types of sub-datasets to spatial matching settings,
we choose ±1 h as the time-matching setting and analyze the validation performance of
the sub-datasets under different spatial matching settings on GOSAT and OCO-2 data.

Concentrated, dispersive, increasing, and decreasing sub-datasets have their own
validation characteristics. As shown in Figures 11 and 12, validation results with GOSAT
data and OCO-2 data show that the concentrated sub-dataset has larger bias and correlation
coefficients as well as smaller standard deviations than the scattered sub-datasets. The
decreasing sub-dataset has a larger bias and correlation coefficient as well as a smaller
standard deviation than the increasing sub-dataset.

Atmosphere 2021, 12, x FOR PEER REVIEW 11 of 15 
 

 

The decreasing sub-dataset has a larger bias and correlation coefficient as well as a 
smaller standard deviation than the increasing sub-dataset. 

   

   

Figure 11. Sensitivity analysis results of validating classified ground-based data and GOSAT data as well as the compar-
ison with total ground-based data. (a) Pearson correlation coefficient, (b) bias, and (c) standard deviation of spatial sen-
sitivity validation and comparison of concentrated, dispersive, and total ground-based data, (d) Pearson correlation co-
efficient, (e) bias, and (f) standard deviation of the spatial sensitivity validation and comparison of increasing, decreas-
ing, and total ground-based data. 

   

   
Figure 12. Sensitivity analysis results of validating classified ground-based data and OCO-2 data as well as the compar-
ison with total ground-based data. (a) Pearson correlation coefficient, (b) bias, and (c) standard deviation of spatial sen-
sitivity validation and comparison of concentrated, dispersive, and total ground-based data, (d) Pearson correlation co-
efficient, (e) bias, and (f) standard deviation of the spatial sensitivity validation and comparison of increasing, decreas-
ing, and total ground-based data. 

4. Discussion 
The vertical column concentration measured by the ground is the integral of the CO2 

concentration with respect to the depth of the entire atmosphere. It is insensitive to ver-

Figure 11. Sensitivity analysis results of validating classified ground-based data and GOSAT data as well as the comparison
with total ground-based data. (a) Pearson correlation coefficient, (b) bias, and (c) standard deviation of spatial sensitivity
validation and comparison of concentrated, dispersive, and total ground-based data, (d) Pearson correlation coefficient,
(e) bias, and (f) standard deviation of the spatial sensitivity validation and comparison of increasing, decreasing, and total
ground-based data.
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4. Discussion

The vertical column concentration measured by the ground is the integral of the CO2
concentration with respect to the depth of the entire atmosphere. It is insensitive to vertical
transport and temporal changes and insensitive to zonal transport. Therefore, the vertical
column concentration can reflect changes in surface flux [19]. In this study, we tested the
validation sensitivity of XCO2 observed on the ground and obtained the optimal spatio-
temporal matching settings for different satellite data. In order to study the influence
of local sources on ground-based validation performance, we classified ground-based
observation datasets into four categories for validation sensitivity tests and compared the
validation performance differences between different categories.

Under time matching setting of ±0.25 h, there are fewer satellite and ground-based
data within the matching range. The statistical results are greatly affected by random errors
from a single measurement. Due to the weak sensitivity of ground-based observations of
XCO2 data to time, increasing the time matching setting can expand the amount of matched
satellite and ground-based observation data and reduce the influence of random errors on
the validation results. When the time matching setting was increased to ±1 h, the best time
matching setting is obtained.

The best spatial matching strategy between the ground-based data and GOSAT is
0.5◦ × 0.5◦. Under this spatial matching setting, GOSAT and ground-based instruments
observe XCO2 in the same area; therefore, the ground-based data had good validation
performance. When the spatial matching setting increases, the validation performance
deteriorates rapidly (Figure 8). The reason is that the ground base station is in a city, and
the surface type, atmospheric state, CO2 concentration field, etc., change rapidly, so the
measurement of the satellite-derived XCO2 also changes. The best spatial matching setting
for OCO-2 and TanSat data verification is 5◦ × 5◦ or 6◦ × 6◦. The possible reason is that the
observations and ground-based observations of OCO-2 and TanSat at a distance of 5◦ × 5◦

from the ground site are in good agreement, as shown in the discussion below.
In the ground-based validation, the satellite observations of GOSAT, OCO-2, and

TanSat showed anomalies near the 5◦ × 5◦ spatial matching setting. For GOSAT data,
under 5◦ × 5◦ or 4◦ × 4◦ spatial settings, the validation performance is worse than smaller
or larger spatial matching settings. For OCO-2 and TanSat data, under a 5◦ × 5◦ or 6◦ × 6◦
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space setting, the validation performance is better than a larger spatial matching setting.
Since the satellite representative data is the average of satellite observations in the spatial
matching grid, the validation performance anomaly of the satellite observations in the
5◦ × 5◦ space matching setting is derived from the satellite observation anomalies near
5◦ × 5◦. The possible reason of satellite observation anomalies is the observation by the
satellite of the water area at a distance of 5◦ × 5◦ from the ground site.

When using ground-based data to validate satellite data, small bias, standard devia-
tions, and large correlation coefficients are the criteria for judging that satellite data and
satellite observations have good consistency. Satellite observations and ground-based
observations have a fixed system bias. When comparing satellite validation characteristics
of sub-datasets from the same ground-based dataset, the sub-datasets whose deviations are
close to the fixed system deviation of satellite observations and ground-based observations
are more representative of ground-based observations, as opposed to the sub-data set
whose deviation is close to zero. The validation results of four classified sub-datasets show
that the concentrated and decreasing sub-datasets have higher validation performance,
compared with the scattered and increasing sub-datasets, respectively. The possible reason
is that the concentrated and decreasing sub-datasets are less affected by the CO2 source
of the ground base station; therefore, the ground-based observations and the satellite
observation data within the space-time matching range have a better consistency.

A study used CO2 observations at the TCCON Caltech site in Los Angeles to validate
the CO2 observed by OCO-3. The results of this study showed that the root mean square
error (RMSE) between satellite data and ground-based data was 0.23 ppm, and the Pearson
correlation coefficient was 0.99 [47]. In this study, the spatial matching setting is 0.1◦ × 0.1◦,
which is smaller than the spatial matching setting tested in our research, partly because the
Caltech site is very close to the water area, which will affect the validation performance of
satellite observations. Unlike the classification methods we use in this study, the method
of identifying local sources is to compare satellite observations in urban areas with obser-
vations far away from urban areas. In another study, CO2 observations were used as an
indicator of anthropogenic sources [48]. In future research, we will combine the above two
methods of local source identification to study the impact of urban anthropogenic sources
on the performance of ground-based observation validation.

Based on our study, we recommend that: (1) the best time matching strategy for
validation of Beijing ground-based XCO2 and satellite CO2 is±1 h, the best space matching
setting for GOSAT is 0.5◦ × 0.5◦, and the best spatial matching setting for OCO-2 and
TanSat is 5◦ × 5◦ or 6◦ × 6◦. (2) The data validation feature at a distance of 5◦ × 5◦ from
the Beijing Observation Station is significantly different from other spatial matching grids.
The use of this spatial grid for ground-based validation needs to consider the observation
characteristics of satellite observations in this spatial grid. (3) It is a better choice to use
concentrated or decreasing sub-datasets for satellite validation in the Beijing FTS site.
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