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Abstract: Climate change implications are a severe risk to food security and the economy. Global
warming could disturb the production of both rainfed and irrigated agriculture thru the amplify of
yield water requests in many areas. In this study, the fast-track projections available through the
Inter-Sectors Impact Model Intercomparison Project (ISI-MIP) were presented and analyzed to assess
the effects of two global warming (GW) levels (1.5 and 2.0 ◦C) on the maize and wheat yields in
Egypt. Outcomes proposed spatial variations in the effects of temperature change on crop yield.
Compared with the referenced situation, an observed national average change in wheat yield about
5.0% (0.0% to 9.0%) and 5.0% (−3.0% to 14.0%) under GW1.5 and GW2.0 respectively. While for
maize yield, the change in national average about −1.0% (−5.0% to 3.0%) and −4.0% (−8.0% to 2.0%)
under GW1.5 and GW2.0 respectively. GW1.5 could be helpful for wheat yield, but the positive effect
decayed when the warming level reached 2.0 ◦C overhead the pre-industrial level. Nevertheless,
the possible deviations to Egypt’s maize production under the GW1.5 and GW2.0 scenarios are
unclear where the models do not agree with the sign of change. Adjusting the temperature rise
within 1.5 ◦C would diminish the yield reduction, as it is an extraordinary priority to safeguard crop
production. To achieve Progress of innovative agronomic managing plans and swapping to additional
drought-resistant crops may be valuable for coping with climate change in regions vulnerable to
yield decline.

Keywords: climate change; wheat; maize; global warming; Egypt; food security

1. Introduction

The mean global temperature increased between 0.74 ◦C and 0.85 ◦C throughout the
period from 1880 to 2012 [1–3], with an average of 0.2 ◦C ± 0.1 ◦C/decade [4]. Climate
change is assumed to be one of the main challenges facing regional and global crop
production [3,5,6], and population growth added to global food security [7].

The agricultural system is still one of the most sensitive systems to climate change [8,9],
because agricultural production is greatly dependent on weather conditions and climate, as
both provide energy and materials for crop growth and are vital in controlling the effective
operation of agricultural technologies [10]. High temperatures, frost, dense rainfall, and
drought can severely reduce crop yield and quality [11,12], or cause total crop damage,
especially in severe cases of heat stress or prolonged drought [13]. It also affects soil water
accessibility and carbon-storing [14]; and increases food shortages [15].

To cope with the threats of climate change, the United Nations Paris Agreement
adopted efforts to limit global warming to only 1.5 ◦C above preindustrial levels [16]. The
goal of limiting temperature rise to 1.5 degrees Celsius is a critical constraint for nations that
can only be met by reducing greenhouse gas emissions [17]. Meanwhile, global warming is
currently approaching 1.5 degrees Celsius [18]. All countries must predict the impact of
global warming and adopt the necessary adaptation actions.

Globally, 760 million tonnes of wheat (Triticum aestivum L.) are cultivated on the
world’s farmland [19]. It is the most widely cultivated cereal, accounting for nearly 30%
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and 50% of global grain production and trade, respectively [20]. Global wheat production
is being hampered by global warming, water scarcity, and rainfall variations [21–23].
Consequently, the susceptibility of wheat production in the future has become a key
anxiety factor as certain areas could experience a reduction in yield, while others could
experience an increase in yield [24,25]. An increase in temperature by 1 ◦C would cause a
6% drop in wheat yield production globally, based on an ensemble of 30 different wheat
models over 30 worldwide sites [23].

In Egypt, wheat is the major crop in bread production. The wheat stock was suffi-
cient to provide 175 kg per capita in the 1980s, corresponding to a world average of less
than 60–75 kg per capita [26]. In 2012, consumption jumped from 100 kg per capita to
200 kg per year [27]. Most of the wheat cultivated area lies in the Nile Delta (57%) and
smaller zones in Middle and Upper Egypt (18 and 17%, respectively) [28]. Maize is a
dual-purpose crop for feed and food, and it has become an important element of global
food security [29]. Maize is one of the three chief summer crops in Egypt, competing for
the accessible arable space with rice and cotton, where the cultivated part of maize is the
most cultivated amongst these three crops [28].

Early work reported a reduction in wheat and maize ranging between 19-23% [30,31]
using the MAGICC/SCENGEN model. A change in wheat around −18.0% [32], and a
reduction in maize by 14.0% [33], and 19.0% [32] based on the Special Report on Emissions
Scenarios (SRES) developed by the IPCC [34]. Likewise, projected losses of about (10–12%)
and (13–15%) in 2030 for wheat and maize respectively using the RCP6.0 emission scenario
simulated by the CCSM4 global climate model [35].

Prediction of crop yields under future climate emission scenarios is vital for evaluating
food security [36]. Modeling is the main tool to discover agricultural impacts and alterations
to climate change [37]. Crop growth models were used in studies all over the world to assess
the effects of climate variation on crop yields and production [38,39]. The Inter-Sectoral
Impact Model Intercomparison Project (ISI-MIP) is a global collaboration of climate-impact
researchers to measure cross-sectoral climate influences under different global warming
levels, such as 1.5 ◦C and 2 ◦C related to the preindustrial situation [40].

This paper aimed to introduce and analyze the fast-track simulations of the ISI-
MIP impact models according to global warming levels of 1.5 ◦C and 2.0 ◦C for wheat
and maize production across diverse planting zones in Egypt. The goals of this study
were to: (1) quantify the changes in seasonal maximum and minimum temperatures and
evapotranspiration caused by 1.5 ◦C and 2.0 ◦C increases in air temperature; (2) explain the
spatial variation of the projected impacts of 1.5 ◦C and 2.0 ◦C global warming on wheat and
maize yields in different cultivation regions of Egypt; and (3) quantify the spatial variation
of the projected impacts of 1.5 ◦C and 2.0 ◦C global warming on wheat and maize yields in
different cultivation regions of Egypt.

2. Materials and Methods
2.1. The Study Area

Egypt is in the north-eastern corner of Africa, between latitudes 22◦and 32◦ N and
between longitudes 24◦and 37◦ E. It is surrounded by the Mediterranean Sea to the north,
and the Red Sea in the East, Libya to the west, and Sudan to the south (Figure 1). The
total area of Egypt is close to 1.0 million km2, which includes a massive desert plateau
perturbed by the Nile Delta and Valley that occupy nearly 4% of the total Egyptian area [41].
Because of scarce rainfall, Egypt’s agricultural land is limited and covers about 3% of the
total Egyptian area. This agricultural area is limited to the narrow Nile Valley from Aswan
to Cairo and the Delta to the north [42]. Egypt is characterized by a very high ratio (95%)
of crop production using some form of irrigation [43], with land being cultivated more
than once per year. The seasonal mean of maximum and minimum temperatures for
the two growing seasons for wheat and maize during the referenced period (1986–2005)
are presented in Figure 2. The winter season for wheat is from November to April, and
the summer season for maize is from May to October. The seasonal mean maximum
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temperature (TX) during the winter season, (Figure 2a) ranged between 20–22 ◦C on the
Mediterranean coastline and about 23–25 ◦C along the Red Sea. In the Middle of Egypt, it
ranges from 26 to 28 ◦C up to the south to Aswan. During the summer season (Figure 2b),
TX increases from about 26–28 ◦C on the Mediterranean coastline to about 34 ◦C on the
Red Sea shoreline. In Cairo, it is about 40 ◦C and higher going farther south to Aswan. The
minimum temperature (TN) ranges from is 10 to 14 ◦C (Figure 2c), and from 20 to 26 ◦C
(Figure 2d), going from north to south for winter and summer seasons, respectively.

Recently, the area was affected by numerous climatic hazards [44,45] as the extreme
drought periods, especially in the northeastern area in Egypt. According to IPCC representa-
tive concentration pathways, RCP4.5 and RCP8.5 (RCP4.5 and RCP8.5 are correspondingly
a medium-low and high radiative forcing scenarios. The two scenarios have the radiative
forcing topping at 4.5 and 8.5 Wm-2 by 2100 individually) emissions scenarios [3], the
area will experience intense drought events by the 2050s. The future projections of both
warm and cold temperature extremes indices such as the percentage of warm days and
nights (the percentage of warm days and nights) will increase or decrease according to
different emissions scenarios [46,47], also the cultivated area will reduce by 7.0% and 19.0%
for wheat and maize respectively in 2030 [48].

2.2. The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) Simulations

ISI-MIP was launched in 2012 with the ISI-MIP Fast Track, which brought together
about 35 impact models [39]. The focus of this first phase was future projections of global
impacts for multiple impact sectors (agriculture [49], water [50], biomes [51,52], malaria [53],
and coastal infrastructure [54,55] based on CMIP5 GCM simulations [56].
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In this study we used the simulations computed from the ISI-MIP Fast-Track archive
based on six global gridded crop models (GGCM) listed in Table 1, driven by five global cli-
mate models from CMIP5 listed in Table 2. These results were accessed from
(https://climateanalytics.org/tools/, accessed on 23 October 2021) through the online
tool RegioCrop. The ISI-MIP dataset covers the period from 1950 to 2099 and is spatially
interpolated on a horizontal resolution with 0.5◦ × 0.5◦ [57]. The input data sets for the
ISI-MIP Fast Track include socio-economic data, land-cover, topographic data, and climate
data presented in Table 3.

The GGCMI phase 1 protocol is applied to aggregate the spatial modeling responses
of maize, rice, soybeans, and wheat to 0.5◦ × 0.5◦ grids. Sowing dates and the length of the
growing season were obtained from [58].

https://climateanalytics.org/tools/
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Table 1. The GCCM global crop climate models and their sources.

GCCM Model The Institution Reference

EPIC BOKU, University of Natural Resources and Life Sciences, Vienna [59]

GEPIC EAWAG Swiss Federal Institute of Aquatic Science and Technology [60]

pDSSAT University of Chicago Computation Institute [61]

PEGASUS Tyndall Centre, University of East Anglia UK/McGill University, Canada [62]

LPJmL Lund Potsdam Jena managed land [63–65]

LPJ-GUESS Lund Potsdam Jena General Ecosystem Simulator [66]

Table 2. The CMIP5 global climate models and their sources.

GCM Model The Institution Resolution (lat × lon) Reference

GFDL-ESM2M NOAA Geophysical Fluid Dynamics Laboratory, NOAA GFDL 2.5 × 2.0 [67,68]

HadGEM2-ES Met Office Hadley Centre, MOHC 1.9 × 1.2 [69]

IPSL-CM5A-LR Institute Pierre-Simon Laplace, IPSL 2.5 × 1.3 [70]

MIROC-ESM-CHEM Japan Agency for Marine-Earth Science and Technology 2.8 × 2.8 [71]

NorESM1-M Norwegian Climate Centre, NCC 2.5 × 1.9 [72,73]

Table 3. The climate parameters involved in ISI-MIP climate data.

Surface air temperature (average, minimum and maximum)
Precipitation
Surface radiation (Short and longwave downwelling)
Near-surface wind speed
Surface air pressure
Near-surface relative humidity
CO2 concentration

3. Results

The episodes of global warming contiguous to 1.5 ◦C and 2.0 ◦C above the pre-
industrial level for 20 years were set in 2020–2039 under RCP2.6 and 2040–2059 under
RCP4.5 respectively [74,75].

3.1. The Climate Variables under GW1.5 and GW2.0

Figure 3 shows the absolute change in average seasonal maximum temperature un-der
GW1.5 (2020–2039) and GW2.0 (2040–2059) from 1986–2005 baseline climate averaged over
CMIP5 models. A general increase in maximum temperature for both seasons under the
two warming levels. During the winter season (Figure 3a,c), the projected maximum
temperature increases over Egypt are around 0.75–1.02 ◦C and 1.2–1.7 ◦C due to GW1.5
and GW2.0 respectively. For the summer season (Figure 3b,d), the change ranged between
0.8–1.35 ◦C and 1.4–2.0 ◦C corresponding to GW1.5 and GW2.0 individually. Figure 4,
describes the projected seasonal minimum temperature in Egypt under GW1.5 and GW2.0.
A gradual increase of minimum temperature from north to south, where the area of Upper
Egypt was examined and an increase of seasonal minimum temperature up to 2 ◦C under
GW2.0 was found, while at the Delta region to the north expected to have an increase of
about 0.7–1.0 ◦C and 1.3–1.5 ◦C under GW1.5 and GW2.0, respectively.
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The historical and future CMIP5 dataset for minimum and maximum temperature
and evapotranspiration was used to assess the area average climate change under GW1.5
and GW2.0. The historical period is 1986–2005 and the two upcoming periods of 2020–2039
and 2040–2059 as presented in Figure 5. For all warming levels, there was a systematic
rise in maximum and minimum temperatures ranging from 1 ◦C (GW1.5 by 2039) to
2 ◦C (GW2.0 by 2050) (Figure 5a,b). The higher increase is reasonably detected for the
second period (2040–2059) and GW2.0. For instance, the average difference between the
maximum temperature and observed values during January and February was 0.9 ◦C
(1.2 ◦C), whereas this difference for August was 1.46 ◦C (1.8 ◦C) under GW1.5 2039 (GW2.0
2059). In the case of GW1.5, minimum temperature and observed values during January-
February was 0.8 ◦C, while this difference for August was only 1.3 ◦C. Under GW2.0,
the minimum temperature difference with the referenced values during May was 1.4 ◦C,
while this difference for December is 2.6 ◦C. This increased temperature will also disturb
reference evapotranspiration (ET). In this study, monthly ET (Figure 5c), was expected to
increase by 0.14% (1.66%) in December and up to 5.28% in August under GW1.5 and in
September by 8.83% under (GW2.0). There was a drop in ET around 1.3%, 0.94%, 0.12%,
1.48%, and 0.03% in February, March, May, June, and November respectively under GW1.5



Atmosphere 2021, 12, 1589 7 of 16

level, whereas under GW2.0, the decrease in (ET) was just in March (0.17%), May (2.97%)
and June (1.17%).
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3.2. Wheat Production under GW1.5 and GW2.0

The wheat crop favors a moderately cool temperature, so the growth and yield could
be influenced by climate variations. Consequently, the susceptibility of wheat production
in the future has become of main concern, as some zones could experience a rise in yield
while other areas could experience a reduction in yield [24,25].

Figure 6a describes the Fast-Track ISI-MIP simulations for historical wheat yield in
the average of the year 2000 and the relative change at 1.5 ◦C and 2.0 ◦C warming levels.
As shown in Figure 6a, the highest wheat production was found in Lower Egypt followed
by Middle and Upper Egypt [76]. The negative impacts of climate change on wheat yield
inclined to increase from the northeast to the southwest of the study area.
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Under GW1.5 (Figure 6b), there was an increase in relative change of wheat production
(more than 15.0%) in Lower Egypt especially to the east at governorates Gharbia, Sharqia,
and south of Dakahlia. There was a small reduction (−5.0 to 5.0%) in the north of the
Delta region at Beheira, Kafr El-Sheikh, and Dakahlia governorates. An increase of about
5.0 to 15.0% in wheat production in Alexandria, Cairo, Monufia, Giza, Qalyubia, and
Beni Suef was recorded. The wheat potential yield for the Upper Egypt zone exhibited
large inter-model dissimilarities, owing to great uncertainties among different ISI-MIP
projections, except at Qena and Luxor, there was an increase of about 5.0 to 15.0% and a
small change of about −5.0 to 5.0%, respectively.

Under the GW2.0 level (Figure 6c), the risk of high temperature expands on many
zones from north to south Egypt which has negative impacts on wheat production. There
was an increase (more than 15.0%) in Gharbia, Sharqia, and south of Dakahlia also Cairo
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and Beni Suef. A positive change ranged between 5.0 and 15.0% in Monufia, Qalyubia, and
Giza, where there was a general reduction in the rest of the cultivated areas.

Table 4 presented the change in national average year%, in the year 2000. For wheat
yield, an average growth of about 5% with the range of (0–9.0%) for GW1.5 and (−3.0 to
14.0%) for GW2.0 level. The data listed in Table 4 is accessed through (http://regiocrop.
climateanalytics.org/choices, accessed on 23 October 2021).

Table 4. The change in national yield of wheat and maize under 1.5 ◦C and 2.0 ◦C levels of tempera-
ture change.

Crop
Change in National Average Yield (%)

+1.5 ◦C +2 ◦C

Wheat 5 [0 to 9] 5 [−3 to 14]

Maize −1 [−5 to 3] −4 [−8 to 2]

The increase of the wheat production in the Lower Egypt area, due to the fertilizer
effect and high CO2 concentration that result in improvement in crop photosynthesis [77],
also the temperature increases of winter and spring seasons diminish frost damage [78],
which would amend the climate change impressions on wheat growth and yield.

The reduction of wheat production especially under the GW2.0 level corresponds
to the increased air temperature that frequently reduced wheat growth period, and bore
the rates of respiration, photosynthesis, and grain filling [79]. Extreme temperatures can
significantly destruct crops’ cellular structure and hinder their capability to reproduce [80].

3.3. Maize Production under GW1.5 and GW2.0

Figure 7a presented the spatial distribution of maize yield across Egypt, where the
highest (lowest) percentage of maize production existed in Lower Egypt (Upper Egypt) [76].
Under GW1.5 (Figure 7b), the yield in the northeast of the Delta increased at Dakahlia
and Kafr El-Sheikh governorates by (5.0 to 15.0%). Small change about (−5.0 to 5.0%)
respectively due to the elevation of temperature and CO2. This increase in maize in the
north-eastern Delta, mainly from the rise of minimum temperature, which beneficial to
germination and seedling growth, and a higher minimum temperature in September
provided more optimal conditions for grain filling and avoided the damage by early
frost [81].

The change in maize yield at the national level would be −1.0% (−5.0% to 3.0%) and
−4.0% (−8.0% to 2.0%) under GW1.5 and GW2.0 respectively. Similar results found in
many regions globally, in the United States, by 18–33% under RCP4.5 and by 33–46% under
RCP8.5 observed in southwestern Kansas [82]; in range of 19% to 37% in Alabama [83];
whereas, Central Great Plain examined a decline up to 21% [84], also in Africa, the in-
creasing temperature and diminishing rainfall had a negative influence on maize yield
production [85–87].

This reduction in maize yield might be due to the negative impacts of the relatively
higher temperatures [84,88,89]. The rise in temperatures reduced the crop maturity period,
which resulted in significant yield declines [84–90].

A reduced maturity period could decrease the time length of the crop to capture more
solar radiation and assimilate CO2 [84–91], which then lessen the accretion of biomass and
yield. Also, the high temperatures and low water availability affect photosynthesis which
in turn contributed to yield reduction [84–88].

Furthermore, various studies displayed those high temperatures at the time of flow-
ering could decrease pollen viability [92], cause kernel abortion [93], and decrease the
number of seeds or number of kernels [93,94].

http://regiocrop.climateanalytics.org/choices
http://regiocrop.climateanalytics.org/choices
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in the sign of change under each warming level, and this belongs to the uncertainty.

Matched with GW1.5, the maize yield drop risk in Egypt is inclined to increase under
GW2.0. This outcome indicated that keeping global warming lower than 1.5 ◦C would be
more valuable for agriculture production. The reasons for the reduction of maize yield in
the future, due to the disclosure to overhead optimum temperature threshold [95], which
reduce pollen feasibility [91], and might also link to the lessening of kernel set [95], which
diminish the number of kernels or number of seeds [93].

4. Discussion

In addition to the substantial warming trend, increasing air temperature tends to
raise evapotranspiration and contribute to drought situations [77], signifying extra severe
impacts of drought risks caused by climate change with the biggest influence in Upper
Egypt than the Delta and the Lower Egypt regions, results in a reduction in the yields.

Compared with the reference period (the 2000s), the average wheat yield increased
under GW1.5 and GW2.0, especially in Lower Egypt, but its magnitude was lower under
the GW2.0 level.

The increase in wheat yield under GW1.5 by 5.0% (0% to 9.0%) could be explained, by
the warmer temperatures accompanied by greater amounts of solar radiation improving
the photosynthesis process [78]. Similar results were found, in In Australia, where climate
warming could benefit for the cold wheat-growing areas [96]; in Chitral district (Pakistan),
an expected increase by 14% and 23% [97]; 1% in wheat yields in North Kazakhstan and
Akmola districts (Kazakhstan) [98].

The reduction in wheat yield under the GW2.0 level can be linked to the rise of
temperatures above the optimum threshold value. This increase led to a drop in water
usage due to the intensification in evapotranspiration [99]. This percentage of reduction in
wheat yield is higher in Upper Egypt, which is characterized by the warm climate than in
Lower Egypt. Similar results of reduction in yield were found in the warm growing zone in
Australia [96], India [100,101], and in Europe’s eastern Mediterranean coastal areas [102].

There is a general reduction of maize in Egypt under both GW1.5 and GW2.0 and,
explained by the water stress which, will be more severe because the coupling of higher
temperatures and radiation will rise evapotranspiration by disturbing saturated vapor
pressure deficit [103].
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Maize crops are exaggerated by drought, during the phase of productivity, water lack
can also consequence in the inhibition of photosynthesis, hence also dropping the nutrient
quantity [104]. Additionally, compact soil moisture accessibility can advance increase the
probability of heat stress [105].

The increase in CO2 will encourage photosynthesis in plants such as wheat, but in
yields as maize, photosynthesis gets saturated and does not improve with any further
increase in CO2 concentrations [106,107].

The higher temperatures in the future would increase crop transpiration and soil
evaporation [105,108] and shorten the crop growth cycle [23], which finally leads to a
decline in crop production.

It was clear that the influences of temperature increase were completely different and
were dependent on plant category and site. These alterations in the sensitivity of the crops
to climate deviations, due to the definite temperature thresholds of each crop, can distress
diurnal production and tolerance to temperature excesses [92].

5. Conclusions

This study analyzed the spatial variation and changes of wheat and maize production
in Egypt under GW1.5 and GW2.0 and further discussed the causes of these changes.
Compared with the reference year 2000, the average wheat yield increased under GW1.5
and GW2.0, but its magnitude was lower under GW2.0. The maize yield will decrease under
both two warming levels. Additionally, the magnitude of evapotranspiration increase will
be greater in GW2.0 than in GW1.5. Spatially, the distributional range of yield reduction of
maize extended from Upper Egypt to the rest of the planting areas in the Delta when the
temperature rose from 1.5 ◦C to 2.0 ◦C. The results show that Upper Egypt is projected to
become a high-risk region for maize and wheat yield reduction in the warmer future. The
urgency of adaptation measures ought to be applied herein in response to global warming.
Our findings showed that warming had both positive and negative effects on wheat and
maize yields. These results indicated that limiting global warming to 1.5 ◦C would be more
beneficial for agriculture production, thus making it easier to attain the United Nations
Sustainable Development Goals.

Therefore, Adaptation approaches, containing shifting sowing time, breeding new
cultivars with better heat resistance, and regulating wheat planting zone [109–112] have
been suggested to better deal with climate changes. Region-definite adaptation policies
should be provided according to the climate and production scenarios in different sub-
regions. For instance, wheat and maize production were projected to be affected more in
the Upper Egypt region than the northern Lower Egypt regions. Additionally, improved
farm practices, such as soil conservation and fertilizer management, form chief adap-
tation plans [113]. Adaptation strategies ought to improve the total farming/cropping
systems, which might contain increasing crop intensities and planting various types of
crops [113,114].
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