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Abstract: The impact of human-caused environmental pollution and global climate change on
the economy and society can no longer be underestimated. Agriculture is the most directly and
vulnerably affected sector by climate change. This study used beans, the food crop with the largest
supply and demand gap in China, as the research object and established a panel spatial error model
consisting of multiple indicators of four factors: climate environment, economic market, human
planting behavior and technical development level of 25 provinces in China from 2005 to 2019 to
explore the impact of climate environmental changes on the yields of beans. The study shows that:
(1) The increase in precipitation has a significant positive effect on bean yields; however, the increase
in temperature year by year has a significant negative effect on bean yields; (2) carbon emissions do
not directly affect bean production at present but may have an indirect impact on bean production;
(3) artificial irrigation and fertilization behavior on bean production has basically reached saturation,
making it difficult to continue to increase bean yields and (4) the development of technology and
human activity is a mixed blessing, and the consequent inhibiting effects on bean production are
currently unable to offset their promoting effects. Thus, when it comes to bean cultivation, China
should focus mainly on the overall impact of environmental changes on its production, rather than
technical enhancements such as irrigation and fertilization.

Keywords: yield per unit area of beans; climate change; panel spatial error model

1. Introduction

In recent decades, the global climate has undergone significant changes due to natural
environmental changes and human activities, and this change is mainly characterized by
global warming. The main reason for the warming is the emission of greenhouse gases
such as carbon dioxide caused by human activities [1]. Climate change research intends to
assess the effects of climate change on ecosystems, economies and societies by predicting
possible future changes of climate [2]. The influence of climate change on human beings is
comprehensive, multi-level and multi-scale. Agriculture is the sector most directly affected
by and vulnerable to climate change. It is also the sector on which human society depends
for the output of basic means of living, and the sustainable development of agriculture is
directly related to the survival and development of human society [3,4]. As grain is a crucial
agricultural product, grain security, grain varieties and grain production have always been
the top priority of the global economy. With the advancement of agricultural technologies
and the improvement of life quality, the yields of crops and productivity have been boosted
over time. At the same time, climate warming, precipitation instability, extreme weather
and disasters have brought negative impacts on food production [5]. Studies have shown
that the determinants of crop production are climatic (e.g., rainfall, high temperatures) and
weather extremes (e.g., floods, droughts and storms) [6]. Changes in rainfall patterns and
increased temperature could have a marked impact on food production [7]. According to
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IPCC (2012), crop production is sensitive to climate change associated with temperature
increases, changes in rainfall patterns and extreme weather events. In addition to the
changes of climate and temperature, carbon dioxide also affects the food production, and
it has a higher impact on C3 species (including wheat, rice and bean) than C4 species
(including maize and sorghum) [8]. Food production in countries around the world is
currently under serious threat from climate change, which leads to challenges to sustainable
development as well [9]. Climate change is also an important challenge for food production
and security in China. In the context of global warming, changes in temperature and
precipitation patterns could lead to a 20–36% decline in maize, wheat, and rice yields in
China over the next 20–80 years [10]. China’s grain production with the background of
climate change has the following three main problems: Firstly, grain production becomes
more volatile; secondly, the structure and layout of food production may change, and
crop cultivation systems need to change accordingly and thirdly, climate change will
substantially increase the cost of grain production [11].

China is a global grain-producing country. For example, in 2020, the total grain
production in China reached 669 million tons, an increase of 0.85% year-on-year, accounting
for about 24% of the world’s grain production, and the grain supply was more than
adequate. However, the production of bean products accounted for only 3.42%, or about
22.87 million tons. In contrast to the reality of limited bean supply, China is a major
consumer of beans in the world, and bean consumption is rising annually, with bean
consumption demand exceeding 120 million tons in 2018 and 2019, implying a huge
domestic bean supply and demand gap in China and high dependence of the bean industry
on imports [12,13]. Therefore, this study turned the research perspective to the Chinese
bean industry, which is severely limited in self-sufficiency, and investigated the impact of
climate change on bean production so as to provide some practical suggestions for the bean
industry in China regarding future changes in the structure, layout of food production and
the long-term development.

The impact of climate change on agricultural production is an interdisciplinary subject
between climatology, agronomy and economics, and different methods and emphases have
been adopted by different disciplines in the study of this subject. In existing studies, the
impact of agronomic climate change on agricultural production has been mainly used in
the crop growth simulation model (CGSM), which examines the changes in crop growth,
development and yield due to changes in climatic factors by dynamically simulating crop
growth and development processes and their relationships with climatic factors, soil prop-
erties and management techniques and provides a quantitative tool for predicting early
warning and assessing the effects of crop productivity under different conditions [14–16].
The agronomic approach focuses on the process of crop growth and development cycles
without considering economic factors, while the economic approach focuses more on
the economic value dimension. The representative studies in economics have measured
agricultural production by constructing land value indicators and with the help of crop
yields, progress in controlling technology and economic factors using a large quantity of
statistical data and relevant econometric models to examine the causal relationship between
climate factors and agricultural production [17,18]. A review of representative literature
reveals that the current research trend gradually shifts to examine specific crop yields,
and the empirical method of causality shifts from traditional cross-sectional regression
to panel spatial econometric empirical analysis [19–21]. Spatial measurement is a com-
mon econometric method. When spatial correlations and spatial differences exist among
individual research objects, spatial measurement can be used to consider the variability
under multiple influencing factors in different spaces at the same time, removing these
differential influences and focusing on the main influencing factors of the research object.
In the present studies on the relationship between grain production and climate in China,
most of the research objects are cereal grains such as wheat and rice, and the influencing
factors are covered comprehensively with various analysis methods; however, the research
on beans is relatively insufficient and covered with fewer dimensions of influencing fac-
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tors. This study used bean productivity as the research object and analyzed the influence
of four influencing factors on bean production: climate environment, economic market,
human planting behavior and technology development level. The spatial error model
was selected in this study for empirical analysis, which focuses on climatic environmental
factors as the variables of interest, while economic market, human planting behavior and
technology development level are the variables that need to be controlled. Moreover, the
inter-regional factors such as geographic rationality and policy institutional differences
should be excluded.

2. Materials and Methods
2.1. Variable Selection

In this study, the unit area yield of bean crops was selected as the explanatory variable,
and the four factors affecting the unit area yield of bean crops were climate environment,
economic market, human cultivation behavior and technology development level. Eco-
nomic market factors mainly include economic factors such as market price and cost of
food. Human cultivation behavior refers to the human intervention in food crops, in-
cluding both fertilization and irrigation. The level of technological development refers to
the level of technology in growing food, which is reflected in the paper using the degree
of modernization of the cultivation area. Therefore, the specific indicators including the
explanatory variables and the four aspects of explanatory variables selected in this study
are shown in Table 1 below.

Table 1. Table for selection of variable indicators.

Explained and Explanatory Variables Name of Indicator

Production of beans Bean yields (per unit)

Climatic environment

Effective cumulative temperature
Precipitation (meteorology)

Extent of disaster
Carbon Emissions

Sulfur dioxide emissions from exhaust gases
Total wastewater discharge

Economic market Food benefit–cost ratio

Human cultivation behavior
Fertilizer use per unit area

Effective irrigated area ratio

Level of technological development Rural electricity consumption

2.2. Modeling

In this study, a panel spatial error model was constructed to analyze the effect of
climatic environmental changes on the yield per unit area of beans. The model was
constructed as shown below [22].

Yi,t = Hi,tβ0 + Pi,tβ1 + Xi,tβ2 + Ei,tβ3 + Ai,tβ4 + Ti,tβ5 + λt + εi,t (1)

εi,t = ρ∑
i′

Wi,i′ εi′ ,t + ηi,t (2)

(1) In the equation, i and t denote province and year, respectively; Yi,t denotes grain
yield; Hi,t, an indicator of regional heat resources, denotes effective cumulative temperature,
the sum of effective temperature of crops during the reproductive period, reflecting the
heat demand of biological growth and development; pi,t denotes total annual precipitation
of each province and Xi,t denotes other climate variables, including the degree of disaster,
carbon emission, SO2 emission in exhaust gas and total wastewater discharge. Considering
that coal is the main source of carbon emissions, coal usage was chosen to represent carbon
emissions, while the degree of disaster was calculated by dividing the number of disasters
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by the total sown area in each province. Ei,t represents economic market factors, expressed
as the benefit–cost ratio of grain cultivation. Due to the interplay between economic
market factors and bean yields, there is a significant endogeneity problem between the two
variables. A one-period lagged price variable was used in this study as a proxy for current
period prices. The rationale for this treatment is that climatic conditions and market factors
in the previous year have a strong influence on farmers’ decisions to plant in the following
year, which in turn changes farmers’ expectations of the returns and costs of planting
in the current year, but there is no direct link between climatic conditions and economic
factors in the previous year and crop yields in the current year (i.e., the residuals of the
model). Thus, the price index of agricultural production with a lag of one period can be
considered as the expected return to planting in the current period, while the price index of
agricultural production materials in the current period represents the cost of planting faced
in the current period, and the ratio of these two price indices, i.e., expected return/cost
of planting, characterizes economic market factors, with higher ratios indicating greater
returns to planting [23]. Ai,t characterizes human behavioral interventions, including
fertilizer use per unit area and effective irrigated area. The ratio of effective irrigated area
is calculated by dividing the effective irrigated area by the total sown area [24]. The factor
Ti,t characterizes technology development, i.e., the level of modernization of the growing
area, as reflected by rural electricity consumption, and the time fixed effect λt captures
factors that do not change with the area, such as policy regimes.

In addition, other influences not captured by the independent variables in Equation (1)
were all included in the residual term (εi,t), including regional farming systems, regional
soil environments, and regional cropping habits that are both highly correlated with local
climate and affect bean yields and therefore also affect the consistency of the estimation
results. To compensate for potential omitted variable bias, this study allows for spatial cor-
relation between samples and uses residuals from neighboring provinces (εi′ ,t) to explain
province-specific residuals (εi,t) to capture all omitted variables with regional character-
istics. The basic idea behind the ability of the spatial error models to correct for omitted
variable bias is that anything that cannot be captured by the independent variables in the
regression model will enter the model residual term (εi,t); however, once the unobservable
omitted variables share common spatial regional characteristics (i.e., regional character-
istics common to a particular province and adjacent provinces, such as regional farming
systems, regional natural hazards, regional varieties and soil types), using the residuals εi′ ,t
as an additional independent variable to explain crop yields (Yi,t) in a given province from
adjacent provinces can reflect all common regional characteristics as shown in Equation
(2). In Equation (2), Wi,i′ is the spatial weighting matrix that specifies the range of spa-
tially correlated influences. The spatial adjacency matrix was used in this study to reflect
the spatial correlation of the samples, with a priori assumption that there are spatially
correlated influences between neighboring sample provinces but no spatial correlation
between non-adjacent sample provinces. The spatial adjacency matrix is a square matrix
whose elements take the values (0, 1). It takes the value 1 if the sample county domains
are adjacent and 0 if they are not. The spatial adjacency matrix was chosen as the baseline
case in this study for three reasons: first, to be consistent with the existing literature [17,22];
second, because existing studies [17,25] confirm that while the choice of different spatial
weighting matrices affects the magnitude of the spatially relevant degree, indicator ρ does
not significantly change the coefficient estimates of the climate variables of interest to the
empirical analysis model. Furthermore, in the panel data case, it is often assumed that
the extent and magnitude of spatially correlated impacts (i.e., spatial weighting matrices
Wi,i′ ) do not change over time [26]. The degree of spatial correlation between neighboring
sample provinces is reflected by the estimated coefficients. Equations (1) and (2) form the
panel spatial error model in this study, after stripping out εi,t the spatial correlation, where
ηi,t is the true residual term of the empirical analysis model.
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Thus, the economic significance of the climate factor coefficients (β0, β1, β2) in this
paper is the marginal impact per unit (Hi,t, Pi,t, Xi,t) change in climate factors on crop
yields, with all else remaining the same(Ei,t, Ai,t, Ti,t and λt).

2.3. Data Sources and Processing

The sample data used in this study contained the following four aspects: planting
data, basic climate data, environmental data and socioeconomic data. The time interval
was 2005–2019, and the research sample area was initially selected from 31 provinces in
China. Among them, considering the special geographical environment of Hainan Province
and Tibet Autonomous Region, their low bean yield and missing data, these regions were
excluded. At the same time, the four municipalities directly under the central government
of Beijing, Tianjin, Shanghai and Chongqing have less arable land compared with other
provinces and have a higher level of modernization, which makes them unsuitable for the
cultivation of beans and other agricultural products and not representative for the analysis
of factors influencing bean yields in this study, so they were also excluded. The specific
sources of data for the four areas are as follows.

Planting data: Among the 25 provinces, planting data were selected to include bean
planting area, yield per unit area, effective irrigated area and fertilizer use per unit area
for each province. The data were obtained from the Yearbook of the National Bureau of
Statistics of China and the CSMAR database, respectively, and all 375 complete sample
data were collected.

Basic climate data: The basic climate data were obtained from 820 meteorological
observation sites across the country, and the meteorological data of daily values from
25 urban meteorological stations with the highest bean production in each province were
selected as the representative of the basic climate data in the province. The growing
temperature of bean crops is above 10 ◦C, so the average daily temperature greater than
10 ◦C in each station in each year was accumulated in this study as the annual effective
cumulative temperature value in the province, which reflects the influence of temperature
in bean cultivation. Precipitation data for each province were obtained from the China
National Meteorological Science Data Sharing Service Platform—China Terrestrial Climate
Information Daily Value Dataset v3.0. These data were complete and free of defects.

Environmental data: Environmental data mainly include total carbon emissions, total
SO2 emissions in exhaust gas, total wastewater emissions and severity of disaster, where
severity of disaster is expressed as the number of disasters per year in the province divided
by the area of bean cultivation. The data on total carbon emissions and the number of
disasters were obtained from the yearbook of the National Bureau of Statistics of China, in
which there were 25 missing values for the indicator of total carbon emissions; the data on
total SO2 emissions in exhaust gas and total wastewater emissions were obtained from the
statistical database of the China Economic Network, in which there were 25 missing values
for total wastewater emissions, and the missing values above were supplemented by the
interpolation method.

Socioeconomic data: The socioeconomic data include the benefit–cost ratio of food and
rural electricity consumption; the benefit–cost ratio is calculated by dividing the relative
price index of agricultural production in the previous period by the relative price index of
agricultural production materials in the current period. The data on the relative price index
of agricultural production and the relative price index of agricultural production materials
were obtained from the CSMAR database, and the data were complete and free of missing
values; the data on rural electricity consumption were obtained from the CSMAR database,
and the data had 25 missing values, which were completed by interpolation.

Numerous studies have shown that precipitation has an important influence on the
production of crops. The national precipitation is plotted for the years 2005–2009, 2010–2014
and 2015–2019 as shown in Figures 1–3, respectively. The major growing provinces of
beans in China are in Xinjiang Uyghur Autonomous Region, Fujian Province, Shandong
Province and Guangdong Province, and as can be seen from the figure, the distribution of



Atmosphere 2021, 12, 1591 6 of 16

precipitation in these provinces varies widely, indicating that beans are not very sensitive
to precipitation. The result is not quite consistent with the conclusion that the yields of
many cereal crops are more sensitive to changing patterns of precipitation.

For the 11 independent variables selected in this study, the same descriptive statistics
are shown in Table 2 for each of the 5-year periods 2005–2009, 2010–2014 and 2015–2019.

As can be seen in Table 2, the average bean yields in China increased steadily; there
was also a gradual increase in temperature levels and average precipitation across the
country. The level of disasters decreased year by year, although this was not because the
number of disasters became less frequent. In contrast, the frequency of disasters increased
gradually, but the area of bean cultivation in China decreased year by year, and the area
of efficient, bean-adapted arable land also decreased year by year. Emissions of SO2 from
exhaust gases decreased significantly from 2015 to 2019. As a positive effect of policy
interventions, the control of emissions from wastewater increased year by year. There is a
more pronounced downward trend in the benefit–cost ratio of food, which implies that the
willingness of Chinese farmers to grow on their own may have declined to some extent,
and the use of fertilizer per unit area remains largely stable or even slightly declines as
an indication of this phenomenon. Rural electricity consumption, on the other hand, has
shown a very significant upward trend, indicating that the modernization and scientific
and technological development of China’s rural areas over the past 15 years have had a
remarkable effect.
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Table 2. Descriptive statistics of the sample.

Variable Name
Variable

Identification Unit

2005–2009 2010–2014 2015–2019

Average Value Standard
Deviation Average Value Standard

Deviation Average Value Standard
Deviation

Bean Yields Yield kg/ha 1877.857 565.6416 1921.798 566.7584 2024.988 581.6842
Effective Cumulative Temperature EAT degrees centigrade 2566.77 972.2334 2525.814 948.9907 2598.245 969.6687

Precipitation (Meteorology) PRE mm 894.4729 416.7491 933.9605 436.7277 990.1309 478.927
Extent of Disaster DISASTER times/ha 0.3049891 0.156439 0.2023446 0.1127987 0.1386728 0.1045211
Carbon Footprint COAL million tons 256.1646 166.7895 396.4381 262.6799 446.6218 330.7543

Sulfur Dioxide Emissions from Exhaust Gases SO2 million tons 90.30312 44.34946 79.5552 37.38318 33.45112 26.404
Total Wastewater Discharge WASTE million tons 198,086.6 153076.4 245,094.4 183,915.9 265,363.5 203,324

Food Benefit–cost Ratio RATIO 1.0303 0.0919729 1.024677 0.0604204 0.9843792 0.0406275
Fertilizer Use Per Unit Area FER kg/ha 326.8883 108.8031 366.5041 126.2272 360.5308 134.1082

Effective Irrigated Area Ratio IRRI 0.3855871 0.1445012 0.4070513 0.1502828 0.423296 0.1480573
Rural Electricity Consumption POWER billion kWh 201.9817 286.5458 282.9348 402.312 323.7136 450.8923
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3. Model Results and Conclusions
3.1. Testing for Spatial Effects

Moran’s index and Geary’s c coefficient, which measure the existence of spatial
autocorrelation between global areas, and the spatial adjacency matrix (W) was used as the
baseline matrix reflecting the spatial correlation of the sample, which is defined in the same
way as in Section 2.2. If both Moran’s index and Geary’s c coefficient values are significant,
this indicates that there is correlation between bean unit yield samples. The positive
or negative sign of the coefficient reflects the corresponding spatial correlation between
samples. Table 3 shows the results of the test for spatial correlation for this indicator of
bean yields for the sample studied in this work.

Table 3. Results of spatial autocorrelation test.

Test Coefficient Bean Yields

Moran‘s I 0.201 **
Geary’s c 0.733 **

** denotes 5% level of significance.

The results of the above tests indicate that there is a significant positive spatial correla-
tion effect between the bean unit yield samples. The traditional panel model is inadequate
to deal with the spatial correlation problem since its estimation results are not only biased
but could greatly overestimate the significance level of the variables. The bias essentially
stems from the omission of spatial factors, and therefore, a spatial econometric model was
used in this study for the empirical analysis.

3.2. Model Selection and Robustness Tests

The stability test is a necessary step before using the model for panel data. It is
necessary to ensure that each variable is a stable series and that a cointegration between
the variables can be modeled. The test revealed that bean yields were not stable, so they
were logarithmically processed. The results of the stability test of the processed bean yields
with the rest of the variables are shown in Table 4.

In this study, the Levin–Lin–Chu test, Hadri (2000) panel unit root test and Im–Pesaran–Shin
test were selected for the above 11 variables. In the test results of these three coefficients,
more than two coefficients needed to be significant to consider the variable as a stable series.
The results in Table 4 show that the panel data of the above variables are all stable series.

Section 3.1 validates the findings of this study using a spatial econometric model from
the perspective of a single variable, grain yields. The LM test, on the other hand, tests
whether a spatial regression method or the OLS regression method should be used for
ordinary panel data from the perspective of the panel data containing all variables. The LM
test can test whether there are spatial error effects and spatial lag effects in the overall panel
data. Table 5 shows the results of LM test for the overall model. The three test coefficients
of spatial error effect are significant, indicating that the panel data has spatial error effect,
while the robust Lagrange multiplier in spatial lag effect is not significant, so it is not fully
confirmed that the panel data has a spatial lag effect.
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Table 4. Table of results of stability tests.

Inspection Method Test Results

Ln(Yield)
LLC −9.013 ***

HARDI 15.238 ***
IPS −1.781 *

EAT
LLC −11.331 ***

HARDI 7.187 ***
IPS −2.304 ***

PRE
LLC −12.314 ***

HARDI 1.216
IPS −2.236 ***

DISASTER
LLC −14.212 ***

HARDI 12.848
IPS −2.550 ***

COAL
LLC −4.327 **

HARDI 37.559 ***
IPS −1.175

SO2

LLC −3.725
HARDI 33.522 ***

IPS −0.717

WASTE
LLC −5.141 *

HARDI 34.790 ***
IPS −0.988

RATIO
LLC −19.627 ***

HARDI −1.484
IPS −3.602 ***

FER
LLC −8.599 ***

HARDI 27.550 ***
IPS −1.588

IRRI
LLC −12.055 ***

HARDI 28.060 ***
IPS −2.329 ***

POWER
LLC −7.422 ***

HARDI 37.509 ***
IPS −1.374

*** denotes 1% level of significance. ** denotes 5% level of significance. * denotes 10% level of significance.

Table 5. LM test results.

Spatial Error

Moran’s I 15.347 ***
Lagrange multiplier 204.345 ***

Robust Lagrange multiplier 13.433 ***
*** denotes 1% level of significance.

The test provides strong support for the choice of the spatial error model, while for
panel data, whether to use the fixed effect or random effect model depends on the Hausman
test. Table 6 shows the results of the Hausman test.

The original hypothesis of the Hausman test is that there is a random effect in these
panel data. As can be seen from Table 6, the p-value is 0.0008, so the original hypothesis can
be rejected at the 95% confidence level. That is, the panel data do not have a random effect
but a fixed effect, and the fixed effect model should be selected. The four tests in Tables 3–6
provide support for model Equations (1) and (2) outlined in Section 2.2 of this paper.
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Table 6. Hausman test results.

Coef. Std. Err. p-Value

_Cons 7.200671 *** 0.2130221 0.000
EAT 0.000091 * 0.0000525 0.083
PRE 0.0000683 0.0000633 0.280

DISASTER −0.1533701 ** 0.0771955 0.047
COAL 2.58929 *** 0.7248598 0.000

SO2 −0.4844776 3.493605 0.890
WASTE −0.0051428 ** 0.0022797 0.024
RATIO −0.1334411 0.1251934 0.286

FER −0.0001154 0.0002452 0.638
IRRI 0.6176916 *** 0.2025145 0.002

POWER 0.0000286 0.0001004 0.775
*** denotes 1% level of significance. ** denotes 5% level of significance. * denotes 10% level of significance.
H0: Difference in coefficients not systematic chi2(11) = 31.74 Prob > = chi2 = 0.0008.

3.3. Model Results

According to the settings of panel spatial error model (1) and (2), the goodness of fit
of the three models of time fixed effect, individual fixed effect and double fixed effect was
0.27, 0.06 and 0.03, respectively, so the time fixed effect model was chosen to examine the
effects of the four types of factors on bean yields in China, and the regression results are
shown in Table 7.

Table 7. Regression results of panel spatial error model.

Coef. Std. Err. p-Value

EAT −0.0002578 *** 0.0000468 0.000
PRE 0.0004895 *** 0.0000757 0.000

DISASTER −0.6823345 *** 0.1305011 0.000
COAL −0.00009 0.000079 0.254

SO2 0.0015519 *** 0.0006016 0.010
WASTE 7.67 × 10−7 *** 2.38 × 10−7 0.001
RATIO 0.227392 0.3739179 0.543

FER 0.0002584 0.0001873 0.168
IRRI 1.03056 *** 0.128758 0.000

POWER −0.000172 ** 0.0000844 0.041
within between overall

R-sq 0.0094 0.5439 0.2793
*** denotes 1% level of significance. ** denotes 5% level of significance.

Table 7 reflects the following findings. The overall R squared is 0.2793, which indicates
that the overall fit of the model is good. The within R squared is 0.0094, which shows that
the within fit of the model is poor. The between R squared is 0.5439, indicating that the
between fit of the model is good.

(1) Biologically, similar to cereals such as wheat and rice [27], there is an “inverted
U-shaped” relationship between temperature and precipitation and unit yield of beans,
i.e., the effect of temperature and precipitation on bean production is a non-linear relation-
ship that increases first and then decreases. The model results showed that the current
effective cumulative temperature had a negative effect on bean yields (Coef. = −0.0002578,
p < 0.01), i.e., for every 1 ◦C increase in effective cumulative temperature, bean yields
decreased by 0.02578%. The result not only implies that the effect of extreme weather on
bean yields is significant, with either lower or higher cumulative temperatures causing
a reduction in bean yields, but also, combined with the descriptive statistics in Table 2,
we can conclude that the warming phenomenon occurring in China significantly and
negatively affects bean production. In the long run, elevated temperatures can adversely
affect crop production [28,29], and the results of this paper suggest that the relationship
between legumes and temperature factors is consistent with this conclusion. There is also a
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positive relationship between precipitation and bean yields (Coef. = 0.0.0015519, p < 0.01),
i.e., grain yields increase with increasing rainfall, with each 100 mm increase in precip-
itation increasing bean yields by 4.895%. In countries such as China, where agriculture
is more dependent on rainfall, climate change is more significant for crop production,
and changes in rainfall may adversely affect crop production [30]. There is a negative
relationship between rice production and precipitation in China, which is contrary to the
findings of the relationship between legumes and precipitation studied in this research.
The current precipitation situation in China remains in an interval of positive effects on
bean production and growth.

(2) Among the climatic variables in the environment category, there are significant rela-
tionships between SO2 emissions from exhaust gases (Coef. = 0.0015519, p < 0.05), wastew-
ater emissions (Coef. = 7.67 × 10−7, p < 0.05) and severity of damage (Coef. = −0.68233,
p < 0.01) and bean yields. Among them, the effect of SO2 emissions from waste gas on bean
yields is the largest, with an increase of 0.155194% in bean yields for every 10,000 tons of
SO2 emissions from waste gas. The effect of wastewater emissions on bean yields is the
smallest and almost negligible, with an increase of 0.0000766% in bean yields for every
10,000 tons of increase in wastewater emissions. The results show that there is a positive
relationship between SO2 emissions from exhaust gas and wastewater emissions and bean
yields, which is different from the hypothesis.

With the rapid development of China’s economy, the domestic energy situation is
becoming increasingly scarce, and the demand for natural gas as a clean gas fuel and
an important chemical raw material is increasing. Therefore, some domestic scholars
have studied the short-term and long-term effects of SO2 emissions from waste gas on the
environment, soil and crops. Some studies have shown that although SO2 is higher than the
requirements of the Limits of Concentration of Air Pollutants for the Protection of Crops, it
does not cause acute harm to wheat, rice, beans, corn or rapeseed in the predicted impact
area, let alone to their long-term growth [31]; some studies have also shown that high sulfur
gas field SO2 emissions from high sulfur gas fields can significantly reduce the thousand-
grain-weight of rice seeds, thereby affecting rice yield and reducing rice quality [32]. There
are no studies that support a positive effect of SO2 emissions on bean yield, which is
contrary to the results of the study, probably due to the inaccurate location of the selected
emissions data collection, which does not fully reflect the effect on bean cultivation, and
the fact that emissions are related to human activities and industrial production, which
may have omitted variables and endogeneity problems. Similarly, the same problem exists
in the relationship between wastewater emissions and bean yields. It has been suggested
that each percentage point increase in CO2 emissions decreases cereal production by 0.29%,
showing a negative correlation [30,33–35], and it has also been suggested that there is no
significant relationship between CO2 emissions and cereal production [36]. The effect of
bean yields and CO2 emissions studied in this work is similar to the findings of Sossou
et al., who studied cereal yields, where the effect of carbon emissions (Coef. = −0.00009,
p > 0.05) on bean yields was not significant. The reason may be that on the one hand, the
increase in carbon emissions brings negative climate effects such as extreme weather and
global warming, which have a negative effect on the growth of beans, and on the other
hand, CO2 is a condition for photosynthesis in beans, which has a positive effect on their
growth, and the two effects are currently in a state of offset; carbon emissions have not
yet had a significant effect on bean yields. There is a negative relationship between the
degree of damage and bean yields. In bean growing areas, each increase in the degree of
damage per hectare reduces bean yields by 68.233%, indicating that the degree of damage
is the most serious factor affecting bean yields per unit area. This is in agreement with
Chijioke et al. who concluded that extreme climatic events such as floods and droughts
significantly affect crop yields [37], suggesting that beans as a crop are also sensitive to the
degree of damage.
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(3) The benefit–cost ratio of grain does not have an effect on bean yields (Coef. = 0.227392,
p > 0.05), and farmers’ expected returns and costs of growing beans are not significantly
related to bean yields.

(4) Among the human behavioral intervention factors, there is a positive relationship
between effective irrigated area ratio (Coef. = 1.030, p < 0.001) and bean yields, i.e., an
increase in effective irrigation ratio boosted grain yields, whereas the effect of fertilizer
being used per unit area (Coef. = 0.0002584, p > 0.005) on grain yield is insignificant. This
may be due to the good soil environment of the farmland, where fertilizer self-supply and
micro-ecological cycles are at a better level and the farmers’ fertilizer application for bean
tillage is at a more desirable level, which has a weaker effect on bean growth.

(5) There is a negative relationship between rural electricity consumption (Coef. =−0.0001,
p < 0.05), a proxy for the technology level factor, and bean yields, with an increase in rural
electricity consumption of 100 million kWh reducing bean yields by 0.01%. An increase
in electricity consumption in turn reduces bean yields. The development of modern
technology has effectively improved agricultural cultivation techniques, which will increase
the production capacity of beans to a certain extent, but from another perspective, the
modernization of the countryside means an increase in human activities, overexploitation
of the ecological environment and a reduction in the area of high-quality arable land, all
of which have a negative impact on the production capacity per unit area of beans, and
the conclusion shows that the negative impact under this factor is slightly greater than the
positive effects.

4. Discussion

A large number of observations and research results show that climate change has
different impacts on crop growth and development, cropping systems and yield quality,
with both advantages and disadvantages, but the negative impacts outweigh positive
ones. The relationship between climate change and grain production in China is complex.
From an ecosystem perspective, not only are there two major agroecosystems, the southern
paddy field and the northern dryland, which play an important role in crop growth, but
grain production is also affected differently by climate change due to the vast geographical
area, the diversity of crops, the many varieties, the differences in cultivation practices,
cropping systems and production structures [38]. In this study, based on panel data of
25 Chinese provinces from 2005 to 2019, we analyzed the effects of the above factors on the
unit yield of beans in China in four dimensions: climatic environment, economic market,
human cultivation behavior and technological development level, where the focus is on
the climatic environment factor and other factors are considered as control variables in
the model.

The results of this study show that in recent years, all aspects of bean production in
China have been characterized by progressive changes in the context of climate change.
During 1979–2002, climate warming was more favorable for bean growth in China, espe-
cially in the northeast, where warmer temperatures could extend the growing period of
the crop and reduce the impact of frost damage on beans [39]. However, the results of
this study of 2005–2019 show that as global warming intensifies and the growing season
accumulation temperature exceeds the inflection point optimum accumulation level, the
increase in temperature begins to show a suppressive effect on bean yields, which is dif-
ferent from the relationship between temperature change and bean yields in 1979–2002.
In addition, carbon emissions increase each year. Kumar, P. et al. indicated a positive
relationship between carbon emissions and cereal production [40]; Pickson, R. B et al. stated
that CO2 emissions have a significant negative impact on cereal production in the long
run [30] and show a unidirectional causality and Ahsan F et al. had the same conclusion
as Pickson, R. B et al. on the relationship between cereal production and CO2 emissions,
but their study showed a bidirectional causal relationship between CO2 emissions and
cereal production [35]. These findings are not the same as the relationship between bean
yields and CO2 emissions in this paper, but this does not mean that it has no effect on the
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growth of bean crops in China. Excessive carbon emissions are an important cause of large
changes and significant fluctuations in climate, and the most direct result is the increase
in the number of disasters each year, which has a significant effect on the reduction in
bean yields. It can be seen that the increasing temperature will cause changes in the spatial
and temporal distribution of light, temperature, water and other climatic resources in the
main grain-producing regions of China, which will lead to changes in soil organic matter,
soil microorganisms and soil fertility and intensify the outbreak of agricultural pests and
meteorological disasters in local areas.

At the same time, climate change will also lead to changes in the physiological and
ecological characteristics of grain crop varieties by changing environmental factors, thus
affecting the grain yield, cropping system, production method and structure in China.
Climate change also leads to changes in the physiological and ecological characteristics
of food crop varieties through changes in environmental factors, thus having far-reaching
effects on China’s grain production, cropping systems, production methods, structural
layout and variety quality. In addition, the high level of rural modernization has started
to have a slight negative impact on the growing environment of beans, which is also a
conclusion that deserves our attention. The growing industry is one of the most sensitive
areas to climate change, which has caused changes in crop fertility, farming systems,
etc., and increased frequency and intensity of disasters, posing risks to and increasing
pressure on global food production systems and food security. Ensuring sustainable
agricultural development and food security is one of the important objectives of addressing
climate change.

In international studies, many other countries have studied the relationship between
local bean production and climate, for example, Wurr, D. et al. conducted a detailed
analysis of French bean production in relation to CO2 emissions and temperature variation.
They concluded that temperature has a large positive effect on French bean production,
while CO2 has a negative or even no significant effect on French bean growth [41]. The
current studies on bean crop yield in China are insufficient, and the factors involved are
not comprehensive. The panel spatial error model used in this study explains the impact
of current climatic and environmental factors on the yield per unit area of beans in China
in four aspects, and the conclusions of the paper provide a reference for Chinese bean
cultivation in response to climate change, while showing a positive correlation between
CO2 and SO2 emissions, wastewater emissions and bean yield and the negative correlation
between technological level development and bean yield. The two findings, which are
different from cereal yields, are worthy of our attention and consideration. However, the
limitations of the index still hindered the study somewhat. When considering the impact
of air pollution and water environment pollution on bean production, SO2 emissions from
exhaust gas and total wastewater discharge essentially reflect the emission behavior of
human life, which can only reflect the actual situation of air pollution and water pollution
to a certain extent, while the distinction between planting and non-planting areas in these
two indicators appears difficult to achieve, which is due to the low selectivity of statistical
indicators for planting areas. Therefore, only the overall indicator can be chosen to replace
the indicator for planted areas. The errors introduced by this indicator choice may lead to
problems such as lower overall model fit superiority and insignificant estimated coefficients.
In later studies, other alternative variables or instrumental variables that are highly accurate
and can be collected to respond to pollutant concentrations in air and water pollution need
to be considered.
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