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Abstract: Multi-source meteorological data can reflect the development process of single meteorologi-
cal elements from different angles. Making full use of multi-source meteorological data is an effective
method to improve the performance of weather nowcasting. For precipitation nowcasting, this paper
proposes a novel multi-input multi-output recurrent neural network model based on multimodal
fusion and spatiotemporal prediction, named MFSP-Net. It uses precipitation grid data, radar echo
data, and reanalysis data as input data and simultaneously realizes 0–4 h precipitation amount
nowcasting and precipitation intensity nowcasting. MFSP-Net can perform the spatiotemporal-scale
fusion of the three sources of input data while retaining the spatiotemporal information flow of them.
The multi-task learning strategy is used to train the network. We conduct experiments on the dataset
of Southeast China, and the results show that MFSP-Net comprehensively improves the performance
of the nowcasting of precipitation amounts. For precipitation intensity nowcasting, MFSP-Net has
obvious advantages in heavy precipitation nowcasting and the middle and late stages of nowcasting.

Keywords: radar echo data; reanalysis data; precipitation amount grid data; deep learning; spa-
tiotemporal prediction; multimodal fusion; multi-task learning; RNN; precipitation nowcasting

1. Introduction

Precipitation nowcasting can forecast the distribution and development of precipita-
tion in nearby periods with high temporal and spatial resolution. Accurate precipitation
nowcasting can not only provide convenience for people’s daily life [1,2] but also help
in disaster prevention and mitigation [3,4]. The current common operational system for
precipitation forecasts is the numerical weather prediction (NWP) [5] model, but it can-
not provide accurate nowcasting due to spin-up [6]. In order to improve accuracy, deep
learning has become an important development direction of precipitation nowcasting.
Many scholars have conducted research [7–17] in this direction. Precipitation nowcast-
ing based on deep learning includes precipitation intensity nowcasting and precipitation
amount nowcasting, which predict the instantaneous value and the cumulative value of
precipitation.

Precipitation intensity nowcasting based on deep learning is generally realized by
radar echo extrapolation. First, the future radar echo data are predicted by the past radar
echo data, and then the Z–R relationship is used to convert the predicted radar echo data
into precipitation intensity data to realize precipitation intensity nowcasting. Various
types of deep learning neural networks are used in radar echo extrapolation, including
convolutional neural networks (CNN), recurrent neural networks (RNN), and generative
adversarial networks (GAN). RNN uses the hidden state to save time-related features and
continuously updates the hidden state according to new data as time advances. Com-
pared with other deep learning neural networks, RNN has strong modeling capabilities for
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sequence data. In 2015, Shi et al. [18] formulated radar echo extrapolation as a spatiotem-
poral prediction problem and used the ConvLSTM network, which applied a convolution
structure to LSTM for prediction. Shi et al. [19] further proposed TrajGRU to improve
the effect of precipitation intensity nowcasting. This approach uses the generated optical
flow [20] to guide the connection structure in the network, and the point in the convolution
structure is connected to points with a higher correlation instead of a fixed number of
surrounding points. Many spatiotemporal prediction methods [21–23] have regarded radar
echo extrapolation as one of the tasks to evaluate the spatiotemporal prediction ability
of their methods. Wang et al. [24] proposed a spatiotemporal prediction method called
PredRNN, which makes the spatial features of each layer of ConvLSTM interact in time
series. PredRNN adds spatiotemporal memory units and connects them through a zigzag
structure to make features spread in space and time. Bonnet et al. [10] used the spatiotem-
poral prediction method PredRNN++ [25] to achieve precipitation intensity nowcasting.
PredRNN++ utilizes causal LSTM units to integrate temporal and spatial features and the
gradient highway (GHU) to alleviate gradient disappearance. In order to improve the long-
term extrapolation ability of the spatiotemporal prediction model, HPRNN [26] proposes a
hierarchical prediction strategy which reduces the accumulation of prediction errors over
time through a recurrent coarse-to-fine mechanism. Lin et al. [27] proposed self-attention
memory (SAM) to memorize the features of long-distance dependence in terms of spatial
and temporal domains. SAM can be embedded in most spatiotemporal prediction recurrent
neural networks. Wu et al. [22] utilized the MotionRNN framework to capture complex
changes in motion and adapt to the spatiotemporal changes in the scene, simultaneously
modeling transient changes and motion trends through the MotionGRU unit.

There are few precipitation amount nowcasting methods based on machine learning
and deep learning. Zhang et al. [28] used a multi-layer perceptron to forecast the precipita-
tion amount data of 56 weather stations in China for the next 3 h. The forecast is derived
from 13 physical factors related to precipitation in the surrounding area. RN-Net [9] regards
precipitation amount nowcasting as a spatiotemporal prediction problem. It takes past
precipitation amount grid data and radar echo data as input data, and then forecasts the
precipitation amount grid data for the next 2 h.

Unlike most other computer vision problems, some data in the meteorological field
have multiple sources. Multiple sensors from multiple angles observe a meteorological
element to obtain data. The WRF model [29] uses a variety of data assimilation methods
to fuse meteorological data. Most weather nowcasting methods based on deep learning
do not take advantage of the multi-source data. They only use themselves as the basis for
forecasting. Among the few weather nowcasting methods that use multi-source data, the
multimodal fusion method is relatively simple. LightNet [30] uses WRF simulation data
and observation data as the basis for 0–6 h lightning nowcasting, and RN-Net [9] uses radar
echo data and observation data as the basis for 0–2 h precipitation amount nowcasting.
Both use the late fusion method to fuse a variety of data. However, simply fusing the
extracted spatiotemporal features cannot fully utilize the advantages of multi-source data.

In this paper, we make full use of multi-source meteorological data through a deep
learning network design. For 0–4 h precipitation nowcasting, precipitation grid data, radar
echo data, and reanalysis data are used as the basis for nowcasting. We deeply combine
spatiotemporal prediction and multimodal fusion and adopt the multi-task learning [31]
strategy. This paper proposes a novel precipitation nowcasting model, MFSP-Net, based on
spatiotemporal scale fusion, which simultaneously realizes precipitation intensity nowcast-
ing and precipitation amount nowcasting. MFSP-Net can take meteorological data with
different temporal and spatial resolutions as its input. The dual-input dual-output MFSP-
LSTM unit in the model retains the spatiotemporal information flow of the two sources of
input data while fusing them at the hidden state level. The global spatiotemporal receptive
field of the MFSP-LSTM unit is expanded by introducing the SAM unit. Multi-task learning
strategy is used in training, and three kinds of nowcasting are learned in parallel. The
dataset used in the experiment includes 20-month precipitation amount grid data, radar
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echo data, and reanalysis data, and two months of precipitation amount forecast data of
the WRF model for comparison. The experimental results show that MFSP-Net is better
than RN-Net [9] for precipitation amount nowcasting. Compared with other precipitation
intensity nowcasting models, MFSP-Net has apparent advantages in heavy precipitation
nowcasting.

The rest of this paper is organized as follows: Section 2 introduces the data used in
the paper. Section 3 introduces common networks composed of multimodal fusion and
spatiotemporal prediction and details the proposed MFSP-Net. The results and analysis of
the experiment and the ablation study are in Section 4. Discussions and conclusions are
given in Sections 5 and 6, respectively.

2. Data
2.1. Dataset

The dataset used in this paper includes precipitation amount grid data, radar echo
data, and reanalysis data, which are related to precipitation. Below, we introduce the three
types of data.

Precipitation amount grid data are precipitation fusion products that combine au-
tomatic weather station precipitation amount data and satellite retrieval precipitation
products. The automatic weather stations’ precipitation amount data contain the precipita-
tion amount data of more than 30,000 automatic weather stations in China. The satellite
retrieval precipitation products are the precipitation products derived from real-time satel-
lites (CMORPH) [32] developed by the Climate Prediction Center of the National Centers
for Environmental Prediction (NCEP). The first probability density function matching and
the optimal interpolation are used for fusion. Its overall error is within 10%, which can be
approximated as the truth of precipitation amount data.

We use Doppler radar mosaic data as the radar echo data in this paper. The radar echo
data contain many echo noises, such as interference echoes, non-meteorological echoes,
etc., which affect the nowcasting. In the experiment, we construct a singular point filter and
a bilateral filter to filter the value domain and the spatial domain, effectively eliminating
the pulsation and clutter while retaining the echo characteristics. In addition, a high-pass
filter is constructed to remove data below 15 dBZ, and only data related to precipitation
are retained.

The reanalysis data comprise precipitation-related data from the ERA5 dataset [33] of
the European Centre for Medium-Range Weather Forecasts (ECMWF). The data contain
temperature, relative humidity, geopotential, vorticity, and wind (divided into v direction
and u direction) data at 500 hPa, 700 hPa, and 850 hPa. When using the reanalysis data, we
concatenate them into a tensor with 18 channels.

The spatial range and time range of the three types of data are the same. Their spatial
range is 21–33◦ N and 112–124◦ E. The approximate spatial range is shown in Figure 1. This
area is located in southeastern China and has a subtropical monsoon climate. Their time
range includes May–September 2017–2020. In the dataset, 465 days for training, 29 days for
validation, and 57 days for testing are included. The data on some days were incomplete
due to equipment failure or other reasons. The time and spatial resolution of different data
are different, as shown in Table 1. In addition, due to the large gap in the numerical range
of various data, we have normalized various data separately.
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Figure 1. Schematic diagram of the location of the dataset. The area within the dotted line is the
spatial range of the dataset.

Table 1. The parameter information of the three types of data. The original time resolution of the
radar echo data is 6 min.

Time Resolution Spatial Resolution Size

Precipitation amount grid data 1 h 10 km 120 × 120
Radar echo data 12 min (6 min) 5 km 240 × 240
Reanalysis data 1 h 25 km 48 × 48

2.2. WRF Model

The WRF model is used to compare the 0–4 h precipitation amount nowcasting
effect with MFSP-Net. The WRF model [34] is configured with a one-domain nested grid
system. The horizontal resolution of the domain is 10 km, with 120 × 120 grid points. The
domain has 35 vertical layers, with the model top at 50 hPa. The boundary conditions are
updated every 6 h from the 0.25◦ × 0.25◦ National Centers for Environmental Prediction
(NCEP) Final Operational Model Global Tropospheric Analysis. The primary physical
parameterization schemes are shown in Table 2. The model is integrated every 6 h, the
forecast time is 12 h, and the results are output every 1 h.

Table 2. Physical parameterization schemes.

Name Scheme

Microphysics Thompson scheme
Cumulus parameterization Kain–Fritsch (new Eta) scheme
Planetary boundary layer Mellor–Yamada–Janjic TKE scheme

Surface layer Revised MM5 Monin–Obukhov scheme
Longwave radiation Rapid radiative transfer model for GCMs
Shortwave radiation Rapid radiative transfer model for GCMs

3. Model

The deep learning neural networks used in this paper combine multimodal fusion and
spatiotemporal prediction. In Section 3.1, we review the framework of the spatiotemporal
prediction method and introduce the architecture of the ConvLSTM network. In Section 3.2,
we introduce two spatiotemporal prediction models that use the simple multimodal fusion
method and use them as comparison networks in the experiment. We introduce the
architecture of MFSP-Net in Section 3.3. In Section 3.4, we detail the structure of the
MFSP-LSTM unit.
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3.1. Spatiotemporal Prediction Network

Spatiotemporal prediction is performed for spatiotemporal sequence data, such as
video frames. The spatiotemporal sequence data can be regarded as a series of 3D tensors
X1, X2 · · · Xt in the time period t. The size of each 3D tensor is C×M×N, where C, M, and
N represent the number of channels, length, and width, respectively. The spatiotemporal
prediction predicts the most probable length-n sequence in the future given the previous
length-q sequence including the current observation.

The ConvLSTM network is an RNN with an encoding–decoding structure. It encodes
the past data to extract the spatiotemporal features and then decodes them to make pre-
dictions. In the ConvLSTM unit, cell outputs Ct, hidden states Ht, and gates it, ft, gt, and
ot are 3D tensors similar to input Xt. To better understand these, we can imagine them as
vectors standing on a spatial grid. ConvLSTM determines the future state of each cell in
the grid by the inputs and past states of its local neighbors. This can easily be achieved
by using convolution operators in the state-to-state and input-to-state transitions. The key
equations of ConvLSTM unit are shown as follows:

gt = tanh(Wxg ∗ Xt + Whg ∗ Ht−1 + bg)

it = σ(Wxi ∗ Xt + Whi ∗ Ht−1 + Wci � Ct−1 + bi)

ft = σ(Wx f ∗ Xt + Wh f ∗ Ht−1 + Wc f � Ct−1 + b f )

Ct = ft � Ct−1 + it � gt

ot = σ(Wxo ∗ Xt + Who ∗ Ht−1 + Wco � Ct + bo)

Ht = ot � tanh(Ct)

(1)

where σ, ∗, and � denote the sigmoid activation function, the convolution operator, and
the Hadamard product, respectively. The use of the input gate it, forget gate ft, output gate
ot, and input-modulation gate gt controls information flow across the memory cell Ct.

3.2. Multimodal Fusion and Spatiotemporal Prediction

Most spatiotemporal prediction methods use a single-input scheme, and they cannot
directly input multiple data. In order to realize the multi-input scheme, the most convenient
method is to combine the spatiotemporal prediction method with the primary multimodal
fusion method, such as early fusion and late fusion [35]. Here, we choose ConvLSTM as
the primary network.

The early fusion method is the simplest way to extend ConvLSTM to the multi-input
scheme. It first fuses multiple data by the fusion convolutional layer and passes it to
ConvLSTM. From the temporal standpoint, one can view this as a type of early fusion. The
architecture of the dual-input EF-ConvLSTM is shown in Figure 2. Its structure is similar
to ConvLSTM and consists of an encoder and a decoder. The fusion convolutional layer is
added to the input port of the encoder.

The LF-ConvLSTM can be regarded as a multi-encoder ConvLSTM network, and the
architecture of the dual-input LF-ConvLSTM is shown in Figure 3. Each type of input data
has an encoder. The spatiotemporal feature of each type of data is extracted through the
encoder and stored in cell outputs and hidden states. Then, the cell outputs and hidden
states of the various kinds of data are respectively fused in the fusion module and used as
the input of the decoder.

Both the early fusion method and the late fusion method can realize the multi-input
scheme. Similar models have achieved significant effects, such as RN-Net and LightNet.
However, the two did not make full use of multi-source data. The early fusion method fuses
the spatiotemporal information flow of multiple data on the time scale. The late fusion
method fuses the spatiotemporal information flow of multiple data on the spatial scale.
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Figure 2. The dual-input early fusion ConvLSTM (EF-ConvLSTM) architecture. The two inputs are 3D tensors, defined as
Xt and Yt. EF-ConvLSTM forecasts the Xt+1 · · ·Xt+q in the future given the previous Xt−n · · ·Xt and Yt−n · · ·Yt including
the current data.

Figure 3. The dual-input late fusion ConvLSTM (LF-ConvLSTM) architecture. It contains two encoders, one decoder, and
the fusion module. The two inputs are 3D tensors, defined as Xt and Yt. LF-ConvLSTM forecasts the Xt+1 · · ·Xt+q in the
future given the previous Xt−n · · ·Xt and Yt−n · · ·Yt including the current data.
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3.3. MFSP-Net

As shown in Table 1, the time resolution and spatial resolution of the three types of
data in the dataset are different. To make full use of these multi-source data, we hope
that the model can input multi-source data with different spatiotemporal resolutions and
fuse them on time and space scales. For this purpose, MFSP-Net deeply fuses multi-
source data in each MFSP-LSTM unit, and its special network structure makes it adapt to
input data with different spatiotemporal resolutions. The MFSP-LSTM unit has a major
input, minor input, major output, and minor output. The data corresponding to the major
input and major output dominate the development of the spatiotemporal information
flow of this layer, while the data corresponding to the minor input and minor output
play an auxiliary role. Since the precipitation amount grid data reflect the most natural
precipitation development process, we take the features and status of the precipitation
amount grid data as the major input. The radar echo data and reanalysis data reflect the
rough precipitation development process and contain some incorrect information. We
use the features and status of radar echo data and reanalysis data as the minor input. In
addition, to better guide network training, we use the multi-task learning strategy. In order
to obtain three kinds of accurate nowcasting simultaneously, MFSP-Net needs to deeply
fuse three types of data while retaining their respective spatiotemporal information flows.
MFSP-Net is an RNN with an encoding–decoding structure, and its architecture is shown
in Figure 4. Below, we introduce the encoder and decoder of MFSP-Net separately.

Figure 4. The three-input three-output MFSP-Net architecture. The three types of data are radar echo data RE, precipitation
amount grid data PA, and reanalysis data RA. MFSP-Net forecasts the PAt+1 · · · PAt+q, RAt+1 · · · RAt+q and RET+1 · · · RET+p

in the future given the previous PAt−n · · · PAt, RAt−n · · · RAt and RET−m · · · RET including the current data.

Encoder: As the spatial resolutions of RE, PA, and RA are 5 km, 10 km, and 25 km,
respectively, it is impossible to fuse the three types of data in one layer. In the encoder of
MFSP-Net, each layer inputs one type of data and inputs the data in descending order of the
spatial resolution of the data. The RNN units of the first layer (Bottom-up) are ConvLSTM
units and input radar echo data. The RNN units of the second and third layers are dual-
input dual-output MFSP-LSTM units. The major input of the second layer is precipitation
amount grid data, and the minor input is the spatiotemporal features extracted from the
previous layer. The major input of the third layer is the major output of the previous
layer, and the minor input is the fusion feature of the reanalysis data and the minor output
of the previous layer. This network structure can enhance the network’s applicability to
the spatiotemporal resolution of data and enhance the scalability of the network input
scheme. In addition, the input data and the spatiotemporal features of the previous layer
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need to pass through a downsample unit before inputting the RNN unit to transform the
two into the same size as the next layer and obtain higher-level features. Since the time
resolutions of radar echo data, precipitation amount data, and reanalysis data are 12 min,
1 h, and 1 h, respectively, the time resolutions of the first and second layers are different.
Meanwhile, the radar echo data are instantaneous, and the precipitation amount grid data
are cumulative. Therefore, we correspond 1 frame of precipitation amount grid data to
5 frames of radar echo data in the cumulative period in the network. Drawing on the idea
of HPRNN [26], we added an integration layer between the first and second layers to unify
the time resolution.

Decoder: The decoder architecture is similar to the encoder, but their data flow
direction is opposite. The structural difference can be considered as three points: first, the
downsample unit is replaced by the upsample unit; second, the two types of input data of
the third layer MFSP-LSTM units are zero tensors. The minor output data of the third layer
are used as the minor input of the second layer and also used as the basis for the reanalysis
data forecast; third, the minor output of the second layer passes through the guiding layer
to obtain the spatiotemporal features of five frames of radar echo data.

We set special parameters for the upsample layer and downsample layer between
each layer. The specific parameters are shown in Figure 4. The kernel size of all RNN units’
convolution is 3, and the step size is 1. In addition, MFSP-Net also supports dual-input
schemes. When the input data are precipitation amount grid data and radar echo data, it
becomes PA-RE-MFSP-Net. PA-RE-MFSP-Net is still a three-layer structure, but the minor
input of the third layer of the encoder and the minor output of the third layer of the decoder
do not contain reanalysis data. When the input data are precipitation amount grid data
and reanalysis data, it becomes PA-RA-MFSP-Net. Its structure is like MFSP-Net without
the second layer. The input data of RE-RA-MFSP-Net are radar echo data and reanalysis
data. The RNN units of the first and second layers are ConvLSTM units, and the RNN
units of the third layer are MFSP-LSTM units. We use these dual-input schemes as part of
the ablation study to explore the respective roles of the three kinds of input data.

3.4. MFSP-LSTM

In order to deeply fuse multiple data while retaining their respective spatiotemporal
information flow, we propose a new dual-input dual-output RNN unit: MFSP-LSTM. The
detailed structure of MFSP-LSTM is shown in Figure 5. MFSP-LSTM retains the spatiotem-
poral transformation information flow of the major input data Xt and the minor input data
Yt, respectively, and fuses the two types of data from the hidden state level to achieve
spatiotemporal-scale fusion. Update equations of the MFSP-LSTM unit can be presented
as follows:

gx_t = tanh(Wxg ∗ Xt + Whg_x ∗ Ht−1 + bg_x)

ix_t = σ(Wxi ∗ Xt + Whi_x ∗ Ht−1 + bi_x)

fx_t = σ(Wx f ∗ Xt + Wh f _x ∗ Ht−1 + b f _x)

Ct = fx_t � Ct−1 + ix_t � gx_t

gy_t = tanh(Wyg ∗Yt + Whg_y ∗ Ht−1 + bg_y)

iy_t = σ(Wyi ∗Yt + Whi_y ∗ Ht−1 + bi_y)

fy_t = σ(Wy f ∗Yt + Wh f _y ∗ Ht−1 + b f _y)

N′t = fy_t � Nt−1 + iy_t � gy_t

ox_t = σ(Wxo ∗ Xt + Who ∗ Ht−1 + Wco ∗ Ct + Wno_x ∗ N′t + bo_x)

H′t = ox_t � tanh(W1×1 ∗ [Ct, N′t ])

oy_t = σ(Wyo ∗ yt + Wno_y ∗ N′t + bo_y)

N′′t = oy_t � tanh(N′t)

[Ht, Nt], Mt = SAM([H′t , N′′t ], Mt−1)

(2)
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The MFSP-LSTM unit contains the temporal memory Ct of the major input, the
temporal memory N′t of the minor input, the hidden state Ht of the major input, and the
hidden state Nt of the minor input, where t represents the time step. N′t , N′′t , and H′t are
intermediate variables and will not be saved or transmitted. We use the features of the
precipitation amount grid data or the major output of the previous layer as the major input
and the features of other data or the minor output of the previous layer as the minor input.
The current temporal memory Ct of the major input depends on the past state Ct−1 and is
controlled through a forget gate fx_t, an input gate ix_t, and a modulation gate gx_t. The
current temporal memory N′t of the minor input depends on the past state Nt−1 and is
controlled through a forget gate fy_t, an input gate i_yt, and a modulation gate gy_t. The
calculation of the hidden state of the major input includes the time memory of the major
input and the minor input to realize the fusion of the two input data. In order to make
the hidden state and time memory have the same dimensionality, we concatenate these
time memories together and then apply a 1 × 1 convolution layer for dimension reduction.
The hidden state of the minor input only depends on its time memory, which is conducive
to preserving the spatiotemporal transformation information of the minor input data. In
addition, to improve the MFSP-LSTM unit’s adaptability to long-distance dependence, we
followed Lin’s work [27] and added the SAM to the MFSP-LSTM unit. We expanded the
global spatiotemporal receptive field of Ht and Nt by the memory Mt.

Figure 5. The dual-input early fusion ConvLSTM (EF-ConvLSTM) architecture. The two inputs are
3D tensors, defined as Xt and Yt. EF-ConvLSTM forecasts the Xt+1 · · ·Xt+q in the future given the
previous Xt−n · · ·Xt and Yt−n · · ·Yt including the current data.

4. Experiment

In the experiment, our task can be defined as nowcasting the precipitation amount
data and the precipitation intensity data (radar echo data) of the next 4 h, based on
the precipitation amount grid data, reanalysis data, and the radar echo data of the past
4 h. In Section 4.1, we introduce the implementation details of the experiment. We
introduce the performance metric of precipitation amount nowcasting and precipitation
intensity nowcasting in Section 4.2. In Section 4.3, for precipitation amount nowcasting, we
compare MFSP-Net with the WRF model and deep learning models, including different
multimodal fusion methods and benchmark models. For precipitation intensity nowcasting,
we compare MFSP-Net with different benchmark models. In Section 4.4, we conduct
ablation studies to verify the effectiveness of the network structure and explore the role
of multi-source data. We visualize three representative examples for further analysis in
Section 4.5.
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4.1. Implementation Details

Our experimental platform used Ubuntu16.04 with 32 GB memory and two Nvidia
RTX 2080 GPUs. The proposed neural networks were implemented with Pytorch [36] and
trained end-to-end. All network parameters were initialized with a normal distribution.
All models were trained using the Adam optimizer [37] with a starting learning rate of
10−4. The training process was stopped after 60,000 iterations, and the batch size of each
iteration was set to 4. All data normalized to the range of [0, 1] were used as network input
data. Inspired by Tran’s work [38], we combined MAE, MSE, and SSIM as the Loss function
of the network to reduce image blurring. Since meteorological data are sparse, the result
is close to 1 when calculating SSIM. For this reason, we increased the weight of SSIM. In
addition, MFSP-Net makes predictions for three types of data. We calculated the Loss for
the three types of data and added weight to the Loss as part of the Multi-Loss function.
The value of precipitation amount data is small, which causes the Loss of precipitation
amount data to be much smaller than other data. For this reason, we increased the weight
of the Loss of precipitation amount data. The calculation formula of the Multi-Loss is as
follows:

Loss(Z, Ẑ) = a ∗MAE(Z, Ẑ) + b ∗MSE(Z, Ẑ) + c ∗ SSIM(Z, Ẑ)

Multi-Loss = A ∗ Loss(PA, P̂A) + B ∗ Loss(RE, R̂E) + C ∗ Loss(RA, R̂A)
(3)

where Z, PA, RE, and RA are the truth data, and Ẑ, P̂A, R̂E, and R̂A are the forecast data.
In the experiment, a, b, and c are set to 1, 1, and 2500, respectively. A, B, and C are set to 50,
1, and 1, respectively.

4.2. Performance Metric

The nowcasting result of deep learning methods in the experiment is regarded as
multi-frame sequence data. The precipitation amount nowcasting result contains four
frames of data, which are the cumulative precipitation data for every 1 h in the next 4 h.
The precipitation intensity nowcasting result contains 20 frames of radar echo data, and
the time resolution is 12 min. The nowcasting effect is evaluated by comparing these
results with truth radar echo data or precipitation amount data. Commonly used metrics
for precipitation nowcasting in the meteorological field include the Critical Success Index
(CSI), probability of detection (POD), and false alarm rate (FAR). We use the thresholds of
0.5 mm, 2 mm, and 5 mm to calculate these metrics for precipitation amount and use the
thresholds of 0.5 mm/h, 2 mm/h, and 5 mm/h to calculate these metrics for precipitation
intensity. The dBZ is the unit of radar echo data, which can be converted to mm/h by
the Z–R relationship. These threshold settings refer to the precipitation level, and the
corresponding relationship is shown in Table 3.

Table 3. Correspondence between threshold and precipitation level.

Precipitation Amount per Hour (mm) Precipitation Level

r < 0.5 No or hardly noticeable
0.5 ≤ r < 2.0 Light
2.0 ≤ r < 5.0 Light to moderate
5.0 ≤ r Moderate or greater

In addition, the nowcasting result in the experiment can be regarded as image data.
Therefore, we have introduced MSE in computer vision as part of the performance metric.
MSE calculates the L2 distance between the truth data and the forecast data. The calculation
formulas for the above four evaluation indicators are as follows:

MSE = [
w

∑
x=1

h

∑
y=1

(Ẑxy − Zxy)
2]/(w ∗ h) (4)
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CSI = NA/(NA + NB + NC) (5)

POD = NA/(NA + NC) (6)

FAR = NB/(NA + NB) (7)

where w and h are the width and height of the data. Ẑxy and Zxy are the values of the
forecast data Ẑ and truth data Z in the coordinates (x, y). NA, NB, NC, and ND represent
the number of true-positive, false-positive, false-negative, and true-negative grid points.

Finally, the performance metric of precipitation amount nowcasting is calculated based
on the precipitation amount grid data, including four metrics of the first frame within 1 h,
the first two frames within 2 h, and four frames within 4 h. The performance metric of
precipitation intensity nowcasting is calculated based on the radar echo data and includes
4 metrics of the first 5 frames within 1 h, the first 10 frames within 2 h, and 20 frames within
4 h.

4.3. Experimental Results and Analysis

The experiment was divided into two parts: precipitation amount nowcasting and
precipitation intensity nowcasting. In the experiment of precipitation amount nowcast-
ing, we researched different multimodal fusion methods and compared MFSP-Net with
the WRF model and the benchmark models. For precipitation intensity nowcasting, we
compared the MFSP-Net with the benchmark models.

4.3.1. Precipitation Amount Nowcasting

In the precipitation amount nowcasting, the multimodal fusion method includes
fusion on the spatial scale, fusion on the time scale, and simultaneous fusion on the time
scale and space scale, respectively corresponding to the three-input EF-ConvLSTM, the
three-input LF-ConvLSTM, and MFSP-Net. In addition, the three-input late fusion TrajGRU
can be regarded as the three-input RN-Net [9]. We use common spatiotemporal prediction
models as the benchmark models for precipitation amount nowcasting, including Con-
vLSTM, TrajGRU, and PredRNN. They are similar to the radar echo extrapolation, which
forecasts future development using past precipitation amount data.

In addition, to compare with the traditional method, the WRF model was run to obtain
the precipitation amount forecasts. Its spatial range is the same as the dataset, and its time
range covers the testing set of the dataset. The WRF model is integrated every 6 h and
forecasts the next 12 h with a time resolution of 1 h of precipitation amount. The deep
learning methods forecast the precipitation amount for the next 4 h every 1 h. To compare
the two types of methods, we used the comparison method proposed by Zhang et al. [9],
as shown in Figure 6. First, we extract 4 h of data every 1 h from the 12 h WRF model
precipitation amount forecast, with a total of 9 sets of data. Then, we compare each set of
data with the corresponding actual precipitation amount. However, the WRF model has a
spin-up period whose duration cannot be determined, and the forecast in this period is
usually not used. To avoid the spin-up period, the best evaluation results among the nine
sets of data are used as the WRF model evaluation result within 12 h. Meanwhile, we also
compared our precipitation amount nowcasting methods based on the deep learning of
these nine time periods with the corresponding actual precipitation amount. The average
of the nine evaluation results is used as the deep learning method evaluation result within
12 h. We compare all the 12 h WRF model forecasts integrated every 6 h in the testing set
with the deep learning methods forecasts through the above method. This comparison
method solves the problem of the different forecasting frequencies of the two methods and
avoids the spin-up period of the WRF model.



Atmosphere 2021, 12, 1596 12 of 20

Figure 6. Schematic diagram of comparison method between deep learning methods and the
WRF model.

The average values of precipitation amount nowcasting evaluation results within
1 h, 2 h, and 4 h are shown in the upper part of Tables 4–6, respectively. We compare the
evaluation results from three aspects: between the deep learning models and the WRF
model, between multimodal fusion methods and benchmark models, and between different
multimodal fusion methods. In the comparison, we use CSI as the main evidence.

Table 4. Average evaluation results of one frame of precipitation amount nowcasting in the first hour. For MSE and CSI,
the best performance is reported using red, and the second best is reported using blue. ”↑” means that the higher the score,
the better, while “↓” means that the lower the score, the better. “r ≥ γ” means the skill score at the γ mm precipitation
amount threshold in 1 h.

Method MSE/Frame ↓ r ≥ 0.5 mm
CSI ↑ POD ↑ FAR ↓

r ≥ 2 mm
CSI ↑ POD ↑ FAR ↓

r ≥ 5 mm
CSI ↑ POD ↑ FAR ↓

WRF 2.4569 0.1573 0.3615 0.7223 0.1005 0.2662 0.7557 0.0653 0.1483 0.6260
ConvLSTM 1.4878 0.4120 0.6648 0.4799 0.3234 0.4335 0.4398 0.2250 0.2699 0.4246

TrajGRU 1.5063 0.4249 0.6747 0.4655 0.3333 0.4538 0.4435 0.2358 0.2948 0.4588
PredRNN 1.5262 0.3872 0.6412 0.5056 0.3096 0.4051 0.4321 0.2088 0.2424 0.3985

EF-ConvLSTM 1.1037 0.5206 0.6553 0.2830 0.4483 0.5717 0.3249 0.3605 0.4633 0.3807
LF-ConvLSTM 1.0400 0.5267 0.6517 0.2669 0.4604 0.5878 0.3200 0.3816 0.4944 0.3739

LF-TrajGRU (RN-Net) 1.0668 0.5318 0.6840 0.2949 0.4602 0.5994 0.3352 0.3824 0.5124 0.3988
MFSP-Net 1.0904 0.5415 0.6685 0.2596 0.4753 0.6181 0.3270 0.3996 0.5439 0.3990

MFSP-Net (without SAM) 1.1307 0.5326 0.6594 0.2651 0.4597 0.5815 0.3129 0.3737 0.4836 0.3781
MFSP-Net (without Multi-Loss) 1.0711 0.5353 0.6657 0.2679 0.4637 0.5707 0.2879 0.3812 0.4746 0.3402

PA-RA-MFSP-Net 1.4590 0.4351 0.5556 0.3326 0.3406 0.4302 0.3794 0.2537 0.3134 0.4285
PA-RE-MFSP-Net 1.1446 0.5265 0.6798 0.2998 0.4615 0.6175 0.3537 0.3815 0.5277 0.4205

Table 5. Average evaluation results of two frames of precipitation amount nowcasting in the first two hours
.

Method MSE/Frame ↓ r ≥ 0.5 mm
CSI ↑ POD ↑ FAR ↓

r ≥ 2 mm
CSI ↑ POD ↑ FAR ↓

r ≥ 5 mm
CSI ↑ POD ↑ FAR ↓

WRF 2.8775 0.1567 0.3591 0.7405 0.0992 0.2634 0.7947 0.0636 0.1449 0.7403
ConvLSTM 1.6900 0.3560 0.6147 0.5447 0.2566 0.3368 0.4825 0.1689 0.1994 0.4758

TrajGRU 1.7172 0.3665 0.5939 0.5150 0.2636 0.3543 0.4975 0.1768 0.2182 0.5232
PredRNN 1.7064 0.3401 0.5808 0.5521 0.2500 0.2273 0.4770 0.1556 0.1789 0.4615

EF-ConvLSTM 1.4632 0.4267 0.5392 0.3367 0.3605 0.4633 0.3807 0.2340 0.2912 0.4757
LF-ConvLSTM 1.3740 0.4406 0.5590 0.3351 0.3608 0.4604 0.3858 0.2838 0.3617 0.4384

LF-TrajGRU (RN-Net) 1.3939 0.4467 0.5780 0.3438 0.3613 0.4638 0.3841 0.2838 0.3694 0.4471
MFSP-Net 1.4261 0.4598 0.5795 0.3185 0.3854 0.5049 0.3904 0.3070 0.4136 0.4650

MFSP-Net (without SAM) 1.4861 0.4478 0.5645 0.3250 0.3643 0.4668 0.3903 0.2751 0.3556 0.4684
MFSP-Net (without Multi-Loss) 1.4162 0.4467 0.5581 0.3159 0.3654 0.4496 0.3498 0.2817 0.3478 0.4154

PA-RA-MFSP-Net 1.7002 0.3641 0.4627 0.3732 0.2695 0.3372 0.4328 0.1882 0.2296 0.4963
PA-RE-MFSP-Net 1.4766 0.4481 0.5929 0.3606 0.3730 0.5035 0.4201 0.2918 0.3998 0.4901
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Table 6. Average evaluation results of four frames of precipitation amount nowcasting in the four hours.

Method MSE/Frame ↓ r ≥ 0.5 mm
CSI ↑ POD ↑ FAR ↓

r ≥ 2 mm
CSI ↑ POD ↑ FAR ↓

r ≥ 5 mm
CSI ↑ POD ↑ FAR ↓

WRF 3.5216 0.1542 0.3609 0.7690 0.0968 0.2625 0.8353 0.0616 0.1459 0.8236
ConvLSTM 1.8897 0.2860 0.5020 0.6083 0.1799 0.2294 0.5386 0.1076 0.1250 0.5552

TrajGRU 1.9453 0.2901 0.4684 0.5767 0.1863 0.2466 0.5819 0.1138 0.1391 0.6375
PredRNN 1.8929 0.2795 0.4761 0.6021 0.1800 0.2273 0.5382 0.0991 0.1127 0.5646

EF-ConvLSTM 1.8053 0.3120 0.3893 0.4038 0.2340 0.2912 0.4757 0.1641 0.2043 0.5659
LF-ConvLSTM 1.7260 0.3259 0.4106 0.4063 0.2471 0.3094 0.4629 0.1808 0.2255 0.5287

LF-TrajGRU (RN-Net) 1.7312 0.3289 0.4167 0.3958 0.2464 0.3072 0.4343 0.1793 0.2269 0.5232
MFSP-Net 1.7813 0.3503 0.4377 0.3770 0.2741 0.3530 0.4644 0.2000 0.2629 0.5564

MFSP-Net (without SAM) 1.8418 0.3411 0.4310 0.4008 0.2555 0.3261 0.4889 0.1768 0.2251 0.5758
MFSP-Net (without Multi-Loss) 1.7697 0.3298 0.4059 0.3718 0.2484 0.3005 0.4230 0.1720 0.2086 0.5133

PA-RA-MFSP-Net 1.9390 0.2783 0.3505 0.4369 0.1953 0.2429 0.5195 0.1254 0.1518 0.6035
PA-RE-MFSP-Net 1.8115 0.3444 0.4574 0.4365 0.2657 0.3538 0.5029 0.1906 0.2545 0.5780

As shown in the upper part of Tables 4–6, compared with the deep learning models,
all metrics of the WRF model are inferior. Two factors cause this result [9]. First, the WRF
model does not use the latest truth data but completely depends on WRF simulations. WRF
simulations usually have deviations in the time domain and geographical area. Second,
the parameterization scheme in the WRF model is manually designed by meteorological
experts, which is different from the law reflected in historical meteorological data. For this
reason, we need to develop precipitation nowcasting based on deep learning vigorously.

Compared with the multimodal fusion models, the precipitation amount nowcasting
effect of the benchmark models is poor. The precipitation amount grid data are sparse,
containing few meteorological spatiotemporal features, and cannot support its prediction.

Among multiple multimodal fusion methods, the early fusion method has the worst
nowcasting effect, and MFSP-Net has the best nowcasting effect. Compared with other
multimodal fusion methods, as time progresses, the improvement of MFSP-Net’s now-
casting effect increases. This shows that MFSP-Net can evolve the spatiotemporal fusion
features over a longer distance and accurately. MFSP-Net is better than other models in
heavy precipitation nowcasting, which shows that it can better fuse multi-source data and
use them to guide network training. In addition, MFSP-Net’s POD and FAR are higher
than other methods. This increases the range of correct forecasts while also increasing the
range of incorrect forecasts.

4.3.2. Precipitation Intensity Nowcasting

The average values of precipitation intensity nowcasting evaluation results within 1 h,
2 h, and 4 h are shown in the upper part of Tables 7–9, respectively. In the field of precipi-
tation intensity nowcasting, the radar echo extrapolation method has developed rapidly.
For this reason, we use five radar echo extrapolation methods as the benchmark models
for precipitation intensity nowcasting, including ConvLSTM, PredRNN, PredRNN++,
SA-ConvLSTM, and Motion-PredRNN.

The nowcasting effect of the benchmark models for precipitation intensity nowcasting
is far better than that for precipitation amount nowcasting. The radar echo data contain
abundant meteorological spatiotemporal features, which can support the extrapolation
process. Compared with the radar echo extrapolation method, MFSP-Net uses precipitation
amount grid data and reanalysis data for additional guidance. The precipitation grid
amount data reflect the most natural precipitation process and strongly correlate with
the high-value area in the radar echo data. The reanalyzed data reflect the atmospheric
development process, in which data such as temperature, wind direction, and relative
humidity are closely related to the precipitation development process. Under the guidance
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of these two types of data, the nowcasting effect of MFSP-Net on heavy precipitation is far
better than the benchmark models for precipitation intensity nowcasting.

Table 7. Average evaluation results of five frames of precipitation intensity nowcasting in the first hour. For MSE and
CSI, the best performance is reported using red, and the second best is reported using blue. “↑” means that the higher the
score, the better, while “↓” means that the lower the score, the better. “r ≥ γ” means the skill score at the γ mm/h rainfall
threshold.

Method MSE/Frame ↓ r ≥ 0.5 mm/h
CSI ↑ POD ↑ FAR ↓

r ≥ 2 mm/h
CSI ↑ POD ↑ FAR ↓

r ≥ 5 mm/h
CSI ↑ POD ↑ FAR↓

ConvLSTM 163.29 0.6081 0.7364 0.2249 0.4966 0.6108 0.2764 0.3936 0.4606 0.2742
PredRNN++ 162.04 0.6145 0.7473 0.2263 0.5028 0.6265 0.2824 0.4024 0.4799 0.2852

PredRNN 152.84 0.6289 0.7572 0.2148 0.5235 0.6474 0.2702 0.4239 0.5008 0.2683
SA-ConvLSTM 145.58 0.6334 0.7782 0.2288 0.5253 0.6627 0.2839 0.4283 0.5126 0.2768

Motion-PredRNN 150.72 0.6291 0.7416 0.1973 0.5246 0.6372 0.2563 0.4232 0.4936 0.2596
MFSP-Net 158.00 0.6279 0.7792 0.2380 0.5308 0.7014 0.3159 0.4605 0.5939 0.3308

RE-RA-MFSP-Net 163.92 0.6205 0.7613 0.2317 0.5091 0.6787 0.3310 0.4268 0.5526 0.3496
PA-RE-MFSP-Net 158.16 0.6241 0.7464 0.2102 0.5268 0.6745 0.2959 0.4460 0.5545 0.3085

MFSP-Net (without SAM) 159.45 0.6209 0.7443 0.2125 0.5206 0.6513 0.2798 0.4327 0.5245 0.2905
MFSP-Net (without Multi-Loss) 315.35 0.5857 0.8601 0.3538 0.4446 0.8765 0.5263 0.3742 0.8598 0.6022

Table 8. Average evaluation results of 10 frames of precipitation intensity nowcasting in the first two hours.

Method MSE/Frame ↓ r ≥ 0.5 mm/h
CSI ↑ POD ↑ FAR ↓

r ≥ 2 mm/h
CSI ↑ POD ↑ FAR ↓

r ≥ 5 mm/h
CSI ↑ POD ↑ FAR ↓

ConvLSTM 205.49 0.5435 0.6710 0.2650 0.4251 0.5224 0.3104 0.3164 0.3673 0.3105
PredRNN++ 203.65 0.5462 0.6693 0.2567 0.4232 0.5181 0.3012 0.3108 0.3621 0.3005

PredRNN 196.22 0.5580 0.6806 0.2499 0.4421 0.5419 0.2975 0.3335 0.3878 0.2949
SA-ConvLSTM 188.54 0.5672 0.7091 0.2660 0.4491 0.5604 0.3082 0.3388 0.3977 0.2994

Motion-PredRNN 194.16 0.5599 0.6754 0.2412 0.4468 0.5453 0.2960 0.3377 0.3913 0.2972
MFSP-Net 208.53 0.5640 0.7184 0.2812 0.4661 0.6237 0.3569 0.3897 0.5041 0.3751

RE-RA-MFSP-Net 216.19 0.5492 0.6793 0.2635 0.4387 0.5780 0.3564 0.3465 0.4386 0.3752
PA-RE-MFSP-Net 208.66 0.5597 0.6925 0.2613 0.4604 0.6004 0.3429 0.3737 0.4674 0.3580

MFSP-Net (without SAM) 208.28 0.5564 0.6832 0.2558 0.4528 0.5717 0.3207 0.3593 0.4364 0.3380
MFSP-Net (without Multi-Loss) 397.96 0.5300 0.8061 0.3960 0.3996 0.8223 0.5648 0.3309 0.8010 0.6414

Table 9. Average evaluation results of 20 frames of precipitation intensity nowcasting in the four hours.

Method MSE/Frame ↓ r ≥ 0.5 mm/h
CSI ↑ POD ↑ FAR↓

r ≥ 2 mm/h
CSI ↑ POD ↑ FAR ↓

r ≥ 5 mm/h
CSI ↑ POD ↑ FAR ↓

ConvLSTM 265.83 0.4545 0.5723 0.3254 0.3291 0.4012 0.3652 0.2247 0.2576 0.3716
PredRNN++ 262.74 0.4510 0.5560 0.3066 0.3145 0.3763 0.3357 0.2048 0.2335 0.3327

PredRNN 256.57 0.4575 0.5592 0.2955 0.3339 0.4015 0.3352 0.2319 0.2647 0.3362
SA-ConvLSTM 251.45 0.4701 0.5967 0.3244 0.3396 0.4167 0.3576 0.2309 0.2662 0.3547

Motion-PredRNN 253.65 0.4686 0.5780 0.3027 0.3485 0.4226 0.3473 0.2410 0.2752 0.3432
MFSP-Net 279.43 0.4731 0.6125 0.3366 0.3730 0.4957 0.4084 0.2934 0.3738 0.4332

RE-RA-MFSP-Net 291.23 0.4485 0.5558 0.3126 0.3386 0.4360 0.3987 0.2465 0.3029 0.4154
PA-RE-MFSP-Net 280.89 0.4705 0.6031 0.3332 0.3680 0.4833 0.4090 0.2820 0.3514 0.4316

MMFSP-Net (without SAM) 277.99 0.4679 0.5885 0.3184 0.3611 0.4580 0.3845 0.2717 0.3293 0.4111
MFSP-Net (without Multi-Loss) 492.47 0.4522 0.7077 0.4523 0.3393 0.7139 0.6121 0.2772 0.6834 0.6859
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4.4. Ablation Study

We conducted ablation studies on MFSP-Net, verified the effects of SAM and Multi-Loss,
and explored the impact of different input data on precipitation nowcasting. The MFSP-LSTM
unit in MFSP-Net-without-SAM removes the SAM. MFSP-Net-without-SAM can simulta-
neously complete precipitation amount nowcasting and precipitation intensity nowcasting.
MFSP-Net-without-Multi-Loss loses the ability to perform multi-task learning. It uses precip-
itation amount grid data as label data to achieve precipitation amount nowcasting and radar
echo data as label data to achieve precipitation intensity nowcasting. We designed three dual
input schemes for the three input data: PA-RE, PA-RA, and PE-RA. PA-RE-MFSP-Net can
complete two nowcastings simultaneously, PA-RA-MFSP-Net can only complete precipita-
tion amount nowcasting, and RE-RA-MFSP-Net can only complete precipitation intensity
nowcasting. The evaluation results of these ablation studies are shown in the bottom part of
Tables 4–9.

Comparing the evaluation results of MFSP-Net and MFSP-Net-without-SAM, it can
be found that SAM improves the nowcasting ability of the network in all periods, and the
improvement increases with the increase of the threshold. SAM helps the network to better
understand the long-distance dependence in the temporal domain and enables the network
to extract higher-level meteorological spatiotemporal features in the spatial domain.

Comparing the evaluation results of MFSP-Net and MFSP-Net-without-Multi-Loss,
it can be found that multi-task learning strategy has a comprehensive improvement on
the two nowcasting effects, especially in 2–4 h. For precipitation amount nowcasting,
MFSP-Net-without-Multi-Loss uses precipitation amount grid data as label data. As the
major input data of MFSP-LSTM, the spatiotemporal information flow of the precipitation
amount grid data has more of an interaction with the hidden state. Therefore, using the
precipitation amount grid data alone to train the network still resulted in an excellent
nowcast effect. For precipitation intensity nowcasting, MFSP-Net-without-Multi-Loss uses
radar echo data as label data. The radar echo data are the minor input data of MFSP-LSTM.
The spatiotemporal information flow interacts less with the hidden state, which cannot
guide the network training thoroughly. The FAR and POD in the precipitation intensity
nowcasting are abnormal, and the nowcasting effect is worse than that of the benchmark
model based on radar echo extrapolation.

Comparing MFSP-Net with different input schemes, it can be found that PA-RE-
MFSP-Net’s precipitation amount nowcasting effect is better than PA-RA-MFSP-Net, and
its precipitation intensity nowcasting effect is better than RE-RA-MFSP-Net. There are
some errors in the reanalyzed data. When the meteorological spatiotemporal features
are few, the network cannot correct these errors. The radar echo data are sufficient to
support its nowcasting. The precipitation amount grid data strongly correlate with the
high-value radar echo area, and their addition improves the nowcasting effect of heavy
precipitation. The reanalyzed data reflect the atmospheric development process and result
in less improvement than the radar echo data and precipitation amount grid data.

4.5. Visualization Results

Figure 7 visualizes two representative cases of precipitation amount nowcasting by
MFSP-Net, MFSP-Net-without-SAM, MFSP-Net-without-Multi-Loss, PA-RE-MFSP-Net,
PA-RA-MFSP-Net, RN-Net, EF-ConvLSTM, and the WRF model. Figure 8 visualizes a
representative case of precipitation intensity nowcasting by MFSP-Net, MFSP-Net-without-
SAM, MFSP-Net-without-Multi-Loss, PA-RE-MFSP-Net, RE-RA-MFSP-Net, and Motion-
PredRNN. Figure 8 and the right half of Figure 7 have the same nowcasting period. From
Figure 7, we observe that the nowcasting effects of all deep learning models are better
than WRF models. Comparing MFSP-Net with four networks of ablation study, the rules
are similar to the conclusions of the ablation study. From Figures 7 and 8, it can be found
that Multi-Loss strengthens the weak precipitation nowcasting ability of MFSP-Net, and
SAM reduces the FAR of MFSP-Net. Comparing different dual-input schemes, it can be
found that the reanalysis data played an important role. The data strengthen networks’
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heavy precipitation nowcasting ability and improve nowcasting accuracy in the middle
and later periods. In the precipitation intensity nowcasting, compared with the radar echo
extrapolation network Motion-PredRNN, MFSP-Net’s heavy precipitation nowcasting and
the middle and late nowcasting are more accurate.

Figure 7. Visualization of two representative precipitation amount nowcasting cases. From top to bottom are the four frames’
truth precipitation amount grid data of the next four hours and precipitation amount nowcasting conducted by MFSP-Net,
MFSP-Net-without-SAM, MFSP-Net-without-Multi-Loss, PA-RE-MFSP-Net, PA-RA-MFSP-Net, RN-Net, EF-ConvLSTM,
and WRF models. The black value and blue value in each nowcasting frame are the CSI with 2 mm and 5 mm as the
threshold for this frame.
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Figure 8. Visualization of one representative precipitation intensity nowcasting case. From left to right are the 10 frames’
truth radar echo data of the next four hours and precipitation intensity nowcasting conducted by MFSP-Net, MFSP-Net-
without-SAM, MFSP-Net-without-Multi-Loss, PA-RE-MFSP-Net, RE-RA-MFSP-Net, and Motion-PredRNN. The black
value and blue value in each nowcasting frame are the CSI with 2 mm/h and 5 mm/h as the threshold for this frame.
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5. Discussion

Currently, most of the weather nowcasting methods based on deep learning use the
single-input scheme. The multimodal fusion method using the few multi-input methods is
too simple to utilize the advantages of multi-source data fully. For this reason, we explore
the combination of spatiotemporal prediction and multimodal fusion in precipitation
nowcasting. The MFSP-Net proposed in this paper is a multi-input multi-output RNN
based on multi-task learning, simultaneously realizing precipitation amount nowcasting
and precipitation intensity nowcasting. In the experiment, the forecast effect of the WRF
model is the worst, the multi-input scheme is better than the single-input scheme, and
MFSP-Net is better than other multimodal fusion methods. Observing the experimental
results and visualization cases, we are able to present the following points:

1. Compared with other data, the reanalysis data contain higher-level meteorological
spatiotemporal features and errors. The higher-level spatiotemporal features enhance
the network’s heavy precipitation nowcasting and the middle and late nowcasting
effects. However, the disadvantages caused by errors need to be eliminated by using
a larger-scale network or adding other meteorological spatiotemporal features.

2. The precipitation amount grid data and radar echo data (precipitation intensity) are
complementary. The two respectively represent the cumulative value and instan-
taneous value of precipitation. The precipitation amount grid data are very sparse
and have weak continuity, but high accuracy. The radar echo data contain noise, but
their continuity is strong. In precipitation nowcasting, combining the two types of
data can improve the nowcasting effect. In the experiment, the forecasting effect of
PA-RE-MFSP-Net was found to be similar to that of MFSP-Net.

3. There are two difficulties in precipitation nowcasting. The first is the errors of the
data, especially the excessive noise of the radar echo data. A larger network can
increase its tolerance for data errors, but it requires a larger dataset to support it.
Therefore, we hope to use more accurate radar data or introduce satellite data in the
next step. Secondly, the loss function cannot accurately reflect the prediction effect of
the network. It can be observed in Tables 4–9 that there is no correct correspondence
between CSI and MSE. We hope that relevant research can be carried out in the next
step.

6. Conclusions

For precipitation nowcasting, to make full use of multi-source meteorological data, this
paper proposes a novel multi-input multi-output recurrent neural network model based on
multimodal fusion and spatiotemporal prediction, named MFSP-Net. It uses precipitation
grid data, radar echo data, and reanalysis data as input data and simultaneously realizes
0–4 h precipitation amount nowcasting and precipitation intensity nowcasting. MFSP-
Net can perform the spatiotemporal-scale fusion of the three types of input data while
retaining the spatiotemporal information flow of them. In the training phase, we use
the multi-task learning strategy, which improves the performance of two nowcastings
simultaneously. We carry out experiments and evaluations on the dataset of Southeast
China. In the experiment, MFSP-Net comprehensively enhances the performance of the
precipitation amount nowcasting. For the precipitation intensity nowcasting, MFSP-Net
has obvious advantages in the heavy precipitation nowcasting and the middle and late
stages of the nowcasting.

In order to further improve the performance of precipitation nowcasting, we will
extend our current work to three aspects. Firstly, we will add meteorological satellite data
as input data to provide additional meteorological spatiotemporal features for nowcasting.
Secondly, in view of the mismatch between the loss value and the evaluation result that
often occurs in training, we hope to design a new loss function that is more suitable for
precipitation nowcasting. Finally, we hope to combine the visual transformer in the future
model design to realize the global interaction of meteorological features.
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