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Abstract: Understanding the spatial and temporal variations of evapotranspiration (ET) is vital for
water resources planning and management and drought monitoring. The development of a satellite
remote sensing technique is described to provide insight into the estimation of ET at a regional scale.
In this study, the Surface Energy Balance Algorithm for Land (SEBAL) was used to calculate the
actual ET on a daily scale from Landsat-8 data and daily ground-based meteorological data in the
upper reaches of Huaihe River on 20 November 2013, 16 April 2015 and 23 March 2018. In order to
evaluate the performance of the SEBAL model, the daily SEBAL ET (ETSEBAL) was compared against
the daily reference ET (ET0) from four theoretical methods: the Penman-Monteith (P-M), Irmak-Allen
(I-A), the Turc, and Jensen-Haise (J-H) method, the ETMOD16 product from the MODerate Resolution
Imaging Spectrometer (MOD16) and the ETVIC from Variable Infiltration Capacity Model (VIC). A
linear regression equation and statistical indices were used to model performance evaluation. The
results showed that the daily ETSEBAL correlated very well with the ET0, ETMOD16, and ETVIC, and
bias between the ETSEBAL with them was less than 1.5%. In general, the SEBAL model could provide
good estimations in daily ET over the study region. In addition, the spatial-temporal distribution of
ETSEBAL was explored. The variation of ETSEBAL was significant in seasons with high values during
the growth period of vegetation in March and April and low values in November. Spatially, the daily
ETSEBAL values in the mountain area were much higher than those in the plain areas over the study
region. The variability of ETSEBAL in this study area was positively correlated with elevation and
negatively correlated with surface reflectance, which implies that elevation and surface reflectance
are the important factors for predicting ET in this study area.

Keywords: evapotranspiration; Huaihe River Basin; SEBAL model; spatial distribution

1. Introduction

Surface evapotranspiration (ET) as a crucial part of energy transfer, has an important
impact on the growth and development of plant roots [1,2]. ET in this case becomes
an important implication for drought monitoring and assessment for large areas and,
particularly, irrigated agricultural areas [3]. Global warming leads to changes in the
hydrological cycle, which lead to the rise in frequency of drought and floods [4]. The Huaihe
River Basin (HRB) is an area affected severely by drought, and is very important crop-
producing area of China. The reliable and consistent estimation of spatial and temporal
distribution of ET over this region is of great importance in managing water resources
for crops.

Since direct measurement of ET is time consuming, costly and difficult, traditionally,
ET was estimated indirectly from climatic variables such as solar radiation, air temperature,
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wind speed, and relative humidity at meteorological stations [5,6]. A number of methods
are available for ET estimation. The Penman-Monteith (P-M) equation [7] as reported by
Allen has been widely used to estimate grass ET under different climatic conditions and
also adopted as the standard method for definition and computation of ET [8]. Using the
P-M equation, Djaman et al. [9] estimated the grass-reference ET in Sahelian conditions
and indicated that its performance was not good when only temperature data is available.
Sensitivity of P-M method in estimating ET with climatic variables for different climate
regions in India was examined by Debnath [10], and results showed that the sensitivity of
ET to the climate variables had considerable spatial and temporal variation. This method
requires a full climate dataset that is not always available at all weather stations, especially
in most of the developing countries. In recent years, the water balance method has been
widely used for estimation of basin-scale ET. For example, using the water balance method,
Liu et al. [11] calculated the reference annual ET for 35 global river basins to evaluate
the performance of nine products in ET estimation. Xue et al. [12] estimated ET with
the water balance method for the upper Yellow River and Yangtze River basins on the
Tibetan Plateau. The Turc equation is another one of the simplest empirical equations used
to calculate reference ET under humid conditions [13]. However, this method generally
underestimates ET values at windy humid locations while overestimates ET at windless
humid locations. Other methods such as the Priestley-Taylor method, Irmak-Allen method,
and Jensen-Haise method (J-H) have been widely used in previous studies to estimate the
ET over different regions in the world [14–16]. However, due to the difficulties in gathering
all of the necessary climate variables, and the sparse network of point observations can
present serious limitations for these methods.

In addition, ET has high spatial heterogeneity and temporal variability due to the
wide spatial variability of its factors, such as precipitation, solar radiation, air temperature,
hydraulic characteristics of soils, elevation, surface temperature, and vegetation types [17].
Groundwater evaporation and soil evaporation are the main sources of ET [18]. Shah
et al. [19] proposed that nearly all ET was from the surface within 0.5 m. ET is the main
mechanism of groundwater consumption [20], and an exponential relationship is more
reasonable than a linear one [21]. ET is strongly correlated with soil moisture in areas with
poor vegetation coverage [22] and is sensitive to temperature, atmospheric humidity, solar
radiation and wind speed, and their seasonal variations [23]. Based on this, it is necessary
to clarify the characteristics of the natural environment that affect ET, and to quantify
the correlation between impact factors and ET to provide guarantees for agricultural
production and food security.

Accurate information on the spatial and temporal variability of ET plays a crucial
role in integrated water resources planning, development and management, especially
in agriculture areas. To address the limitation of ET estimation from ground-based ob-
servations, a number of global ET products have been derived in recent years, including
remote sensing-based products. An alternative approach is to estimate ET on local, re-
gional and global-scales by combining surface parameters derived from remote sensing
data with surface meteorological variables and vegetation characteristics [24]. Different
remote sensing sensors on different platforms including Landsat, the Moderate Resolution
Imaging Spectroradiometer, the Advanced Very High-Resolution Radiometer, the Visible
Infrared Imaging Radiometer Suite, and the Advanced Spaceborne Thermal Emission and
Reflection Radiometer can provide multispectral data with various temporal and spatial
resolutions to estimate ET over large areas [25]. A number of models have been proposed
for estimating ET by using remotely sensed data, e.g., the Surface Energy Balance Algo-
rithm for Land Model (SEBAL) [25,26], Mapping Evapotranspiration at High Resolution
with Internalized Calibration (METRIC) [27], the Simplified Surface Energy Balance Index
(SSEBI) [28], the Surface Energy Balance System Model (SEBSM) [29,30], and the Surface
Energy Balance Algorithm for Land-Improved (SEBALI) [31,32]. The use of remote sensing
to estimate ET has been tested successfully in different climate regions of the world. For
example, Wagle et al. [33] indicated that SSEBI, SEBAL and SEBS performed reasonably
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well for estimating daily ET over a high biomass sorghum field during the 2012 and 2013
growing seasons. Xue et al. [34] found the daily RS-based ET for crops in the Central Valley
of California from METRIC, SEBS and SEBAL models were within acceptable levels of
uncertainty and agreed well with surface renewal estimates. Comparing the ET derived
from the remote sensing-based ET estimation models against conventional ET estimation
techniques, review studies by Karimi and Bastiaanssen [35] indicated that annual and
seasonal remote sensing-based ET estimates had an acceptable mean absolute percentage
error ranging from 1% to 20%, with an average of 6%. SEBALI, an enhanced version of
SEBAL, was used to estimate ET for different climatic regions in different countries, and
results showed it can provide good ET estimations [31,32]. Multi-year remote sensing-
based global actual ET datasets have been produced by combining different algorithms
with recent advancements in satellite remote sensing technologies [36]. Examples of such
datasets include the Moderate Resolution Imaging Spectrometer (MODIS) MOD16, and
this product has been widely used in ET assessment at different scales [37,38]. Many land
surface hydrological models are also used to estimate ET, i.e., the Soil and Water Assess-
ment Tool (SWAT) and Variable Infiltration Capacity (VIC). Jiang et al. [39] demonstrated
the success of using the VIC to simulate ET in the Loess Plateau.

SEBAL is a physically based ET estimation model developed by Bastiaanssen [26]
that estimates ET across different ecosystems as a term of the instantaneous surface energy
balance using remote sensing data and local meteorological data. Moreover, it has fewer
requirements for concurrent ground-level observations [40]. In this study, the SEBAL model
was applied to estimate the spatial and temporal variation of ET in the upper reaches of
the Huaihe River Basin. Three Landsat-8 images were used for this purpose, as well as
meteorological data. Moreover, four theoretical methods, the Penman-Monteith (P-M),
Irmak-Allen (I-A), Turc, and Jensen-Haise methods (J-H) were also used to validate the
results of the SEBAL model. In addition, we explored the impacts of the underlying surface
and atmospheric environment on spatial distribution of ETSEBAL. The findings provide a
scientific basis for rational development and utilization efficiency of water resources in the
study region.

2. Materials and Methods
2.1. Study Area

The Huaihe River is an important geographical dividing line in China and a transition
belt between southern and northern parts (Figure 1) [41]. The north region of the Huaihe
River is located in a warm-temperate zone, and the south is located in a north subtropical
zone [42,43], The various soil types are dominated by alfisols, anthrosols, lakes and reser-
voirs, with primary soil and semi-hydromorphic soil. Hydrothermal conditions play an
essential role in the growth of crops, and the overall environment is suitable for the crops
to grow on. The field near the Huaihe River Basin (HRB) is fertile mainly yielding wheat,
maize, and potatoes, and is one of China’s grain production areas [44]. The study area in
the upper reaches of the HRB is approximately 3.1 × 104 km2, surrounded by numerous
rivers and tortuous topography.

2.2. Data Source

Data were derived from the National Meteorological Science Data Center (http://data.
cma.cn/data/cdcdetail/dataCode/A.0012.0001.html, accessed on 1 July 2020), including
daily temperature, precipitation, and wind speed. Geographic data including DEM, and soil
types were extracted from the Geospatial Data Cloud Platform of the Chinese Academy of
Sciences (http://www.gscloud.cn, accessed on 5 March 2020) and the Food and Agriculture
Organization of the United Nations, FAO (http://www.fao.org/home/zh/, accessed on
29 June 2020). Landsat-8 satellite remote sensing data (Table 1) were downloaded from the
Geospatial Data Cloud (http://www.gscloud.cn, accessed on 30 June 2020) for operation
of SEBAL. The results of the atmospheric scattering correction were tested before the
calculation. Two remote sensing images were mosaiced together to generate the final image

http://data.cma.cn/data/cdcdetail/dataCode/A.0012.0001.html
http://data.cma.cn/data/cdcdetail/dataCode/A.0012.0001.html
http://www.gscloud.cn
http://www.fao.org/home/zh/
http://www.gscloud.cn
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for the study area and the percentage of cloud cover area for each remote sensing image on
a given day was calculated (Table 1).
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Table 1. Data information of Landsat-8.

Date Ordinal Numbers Orbit Number Line Number Cloud Cover (%)

20 November 2013 324d
123 37 2.23
123 38 0.13

16 April 2015 106d
123 37 3.14
123 38 1.31

23 March 2018 83d
123 37 1.14
123 38 0.54

A remote-sensing ET product from the MODerate Resolution Imaging Spectrometer
(MOD16) downloaded from Google Earth Engine (https://developers.google.com/earth-
engine/datasets/catalog/MODIS_006_MOD16, accessed on 19 November 2021) was also
used in this study. MOD16 is a global terrestrial ET from earth land surface that represents
all evaporation from the soil and wet surfaces, as well as the transpiration from vegetation.
The MOD16 ET (ETMOD16) datasets were estimated using Mu et al. [37] with an improved
ET algorithm over the previous Mu et al. [45] paper. The algorithm used for the ETMOD16
is based on the Penman-Monteith(P-M) equation [46,47]. ET simulated from Variable
Infiltration Capacity (ETVIC) for eight stations used in this study was calculated by Luo,
and the details of the calculation of the ETVIC can be found in Luo’s thesis [48].

2.3. Method
2.3.1. Calculation and Calibration of Each Component in the SEBAL Model

Using a Surface Energy Balance Algorithm for Land (SEBAL) algorithm to estimate the
ET has obtained high accuracy in many case studies, and is currently the most reasonable
and accurate method of estimating surface ET [49,50]. Zwart et al. [51] proposed SEBAL
based on an equation of surface energy balance as follows:

Rn = H + G + λET (1)

where H is sensible heat flux, λ is the coefficient of latent heat in water vaporization, Rn is
the net radiation, G means the soil heat flux, and λET is the latent heat flux. Remote sensing
data obtained were recorded instantaneously, so the time format of ET is instantaneous.

https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD16
https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD16
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Daily ET in 24 h was calculated by the equation (F = Rn − G) because the ratio of ET
was constant.

Parameter Adjustment of Surface Net Radiation (Rn)

Equations for surface net radiation are as follows:

Rn = (1− a)Rs ↓ +RL ↓ −RL ↑ −(1− e)RL ↓ (2)

Rs =
GSC × cos(θ)× tsw

dr2 (3)

RL ↓= εaσT4
a (4)

RL ↑= esT4
s (5)

εa = 1.08(−lnτsw)
0.265 (6)

Ta = 16.0110 + 0.9261Tair (7)

where α is the surface reflectance, Rs ↓ is the downward solar radiation, RL ↓ is the down-
ward long-wave radiation, RL ↑ is the upward long-wave radiation, GSC is the solar con-
stant (1367 W/m2), ε is land surface emissivity (W/m2), s is the value of Stefan-Boltzmann
constant which is approximately 5.67 × 10−8 W/m2/K4, and Ta is the temperature (K)
of kinetics on the object surface. In the equation, the effect of elevation on temperature
should be considered in the process of retrieving the surface temperature. The temperature
declines 0.6 ◦C for each 100 m rise in elevation, with the relation TS = TS1 − 0.6 DEM. The
weight coefficient (Cλ) of bands was used to calculate surface reflectance (Table 2).

Table 2. Weight coefficients of Landsat 8 bands.

Band 1 2 3 4 5 7

Weight coefficient 0.2934 0.2736 0.2326 0.1551 0.0325 0.0119

Parameter Adjustment of Soil Heat Flux (G)

While calculating the soil heat flux to simulate the water and heat fluxes, NDVI was
used to analyse the bands and extract the basin in study area.

G =
Ts − 273.15

a
[0.0032× a

c11
+ 0.0062× (

a
c11

)
2
]× (1− 0.978NDVI4)× Rn (8)

where c11 is the effect of satellite crossing time on soil heat flux. If the satellite passes
overhead at 12:00, the value of c11 should be 0.9. The values of c11 are 1.0 and 1.1 respectively
when the satellite crossing time is in the range of 12:00–14:00 and 14:00–16:00.

Sensible Heat Flux

Sensible heat flux is derived by:

H =
rair × Cpair × (Tz1 − Tz2)

rah
(9)

where rair is air density (k/m3), Cpair is the specific heat of air (1004 J/kg/K), TZ1 is the
temperature at height Z1 (when Z1 = 0.01 m, it is equivalent to the roughness of bare
land), TZ2 is the temperature at Z2 height (when Z2 = 2 m, this is the reference level of
meteorological data) and rah is the aerodynamic resistances. (s/m).
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Calculation of Daily Evapotranspiration (ET24)

Instantaneous evapotranspiration (ETinst) and latent heat flux (λET) in study region
were calculated by Equations (1)–(9).

λET = Rn − H − G (10)

ETinst =
Rn − H − G

λ
(11)

ET24 =
86400×Λinst(Rn24 − G24)

λ
(12)

where Rn24 is the net radiation in 24 h, G24 is total soil heat flux in one day, λ is the latent
heat in water vaporization, and Λinst is the ratio of evapotranspiration.

2.3.2. Calculation Method for Reference Evapotranspiration ET
FAO-56 Penman-Monteith Method

The FAO-56 Penman-Monteith approach (P-M) is recommended as the standard
method for correctly predicting reference evapotranspiration (ET0) [8], and is expressed in
Equation (13) below:

ET0 = Kc
0.408∆(Rn − G) 900

T+273 u2(es − ea)

∆ + (1 + 0.34u2)
(13)

where Kc represents the value for the crop coefficient, es is the saturation vapor pressure
(kPa), ea is the actual vapor pressure (kPa), ∆ is the slope vapor pressure curve, γ is the
psychrometric constant (kPa/◦C), and u2 is the wind speed at 2 m height.

Irmak-Allen Method

The Irmak-Allen approach (I-A) was deduced by the data from humid district in
Eastern America.

ET0 = K (1 + 0.591Rn + 0.047T) (14)

where Rn is the net solar radiation, T is the mean temperature (◦C), and the empirical
constant of K is 0.489 [52]. The adjusting for the value of K depends on the situation, and
was adjusted to 0.2589 in October.

Turc Method

The Turc formula for daily ET calculation is given by Equation (15):

ET0 = K
[23.88×

(
0.25 + 0.5 n

N
)

Ra + 50]× T
(T × 15)

(15)

where n is the actual duration (h) of sunshine in a day, N is the astronomic possible
sunshine duration (h), T is the mean daily air temperature (◦C), the empirical constant of K
is 0.013 [53]. The adjusting for the value of K depends on the different months (Table 3).

Table 3. Adjustment table of evapotranspiration in different months calculated by Turc method.

Month January March April November

K 0.2589 0.0207 0.0025 0.0017

Jensen-Haise Method

The Jensen-Haise model (J-H) is used in computing ET0 by sampling and observing
the soil, which is based on the Equation (16):

ET0 = K(0.0225T − 0.075)× 0.408×
(

0.25 + 0.5
n
N

)
Ra (16)
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All the variables in the Jensen-Haise method are the same as in the Turc method.
The empirical constant of K is 0.87 [54]. The adjusting for the value of K depends on the
different months (Table 4).

Table 4. Adjustment table of evapotranspiration in different months calculated by the Jensen-
Haise method.

Month January March April October November

K 0.830 1.987 1.709 1.187 0.837

Considering the effect of climate in different months, the empirical constant of K in
I-A method, Turc method and J-H method used the approach by Qin et al. [55] to build an
equation of daily linear regression. The positive multiples of K had to be found to adjust
values of K in equations by each month.

2.3.3. Partial Correlation Analysis

A partial correlation coefficient is usually used to quantify the strength and linear
direction of the relationship between two variables when conditioning on one or several
other variables known as control variables of covariates [56]. A univariate analysis was
most likely not appropriate as the variables could be strongly linked to each other [57].
Therefore, a partial correlation analysis was used in this study to investigate the correlation
between ETSEBAL and one of the four environment variables after removing the effects of
the other three variables.

In this study, ENVI (The Environment for Visualizing Images, EVIS, USA), MATLAB
(Matrix & Laboratory, MathWorks, Natick, MA, USA), ArcGIS (ESRI, West Redlands, CA,
USA), and SPSS (Statistical Product and Service Solutions, IBM, Palo Alto, San Francisco,
CA, USA) software were used. MATLAB was used to construct SEBAL. ArcGIS software
and ENVI software were used to process remote senses data. MATLAB and the SPSS
software were used for numerical calculation and analysis.

3. Results
3.1. Comparative Analysis of Evapotranspiration Estimation

Daily evapotranspiration values obtained using the SEBAL model (ETSEBAL), VIC
model (ETVIC), four theoretical (P-M, I-A, Turc, and J-H) methods (ET0) and remote sensing
ET (ETMOD16) for eight stations on 20 November 2013 (mm/d) over the study region are
shown in Table 5, and comparisons for ETSEBAL are made with ET0, ETVIC and ETMOD16
(Table 6). The correlations among ET0, ETVIC and ETMOD16 against the SEBAL model
estimates were analyzed using the linear regression equation (Figure 2), where the x axis
represents daily ETSEBAL estimated by the SEBAL model the y axis represents the daily
ET0, ETVIC and ETMOD16. The coefficient of determination (R2) has been widely used to
evaluate the goodness of fit of evapotranspiration equations [5]. Intercepts (b) and slopes
(a) for the least squared regression analysis were calculated and reported. Moreover, in
order to obtain a quantitative evaluation, additional statistical measures, mean bias error
(MBE) and root mean square error (RMSE), between ETSEBAL and each four ET0, ETVIC and
ETMOD16 values, were calculated (Table 6). MBE describes the bias and the RMSE expresses
the average difference. MBE and RMSE values are preferably close to 0.
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Table 5. Daily evapotranspiration values from the SEBAL model, VIC model, four theoretical
methods and remote sensing ET for eight stations on 20 November 2013 (mm/d).

ID Station SEBAL I-A Turc J-H P-M MOD16 VIC

57292 Pingyu 0.8960 0.9358 0.8955 0.8939 0.8954 0.8631 0.9185
57293 Xincai 0.8995 0.9003 0.8954 0.8938 0.8978 0.8016 1.0917
57295 Zhengyang 0.8272 0.8242 0.7626 0.7612 0.8251 0.9765 0.8173
57296 Xi xian 0.8565 0.8721 0.8505 0.8490 0.8573 0.8217 0.8625
57297 Xinyang 0.8687 0.8682 0.8633 0.8618 0.8754 0.7415 0.8705
57298 Luoshan 0.8228 0.8077 0.8279 0.8264 0.8189 0.7568 0.7625
57299 Guangshan 0.8702 0.8922 0.8775 0.8759 0.8738 0.6975 0.8753
58207 Huangchuan 0.8106 0.8113 0.8193 0.8179 0.8094 0.7125 0.8274

Table 6. Summary statistics of daily ETSEBAL estimated from the SEBAL model against ET0,
ETMOD16, ETVIC.

The Calculation Methods or
Source of ET R2 RMSE

(mm/d)
MBE

(mm/d)
Slope

(a)
Intercept

(b)

I-A 0.912 0.0178 −0.0075 1.315 −0.262
Turc 0.732 0.0235 0.0074 1.418 −0.134
J-H 0.732 0.0239 0.0089 1.146 −0.134
P-M 0.991 0.0032 −0.0002 1.036 −0.031

MOD16 0.816 0.1085 −0.0818 0.922 0.0689
VIC 0.850 0.0721 0.0013 1.3896 −0.3247

As demonstrated in Figure 2 and Table 6, the daily ETSEBAL from the SEBAL model
correlated very well with ET0, ETVIC and ETMOD16. According to the regression equation,
there were high determination correlation values (R2) of 0.991 and 0.912 between daily
ETSEBAL and ET0 computed from P-M and I-A methods, respectively, while the R2 value
between ETSEBAL and ET0 computed from Turc and J-H methods was relatively lower at
about 0.732. The R2 between ETSEBAL and ETVIC (ETMOD16) was 0.816 (0.850), and well
correlated as can be seen by slopes close to 1 with low value of intercepts. The slopes
(intercepts) were 1.315 (−0.262), 1.418 (−0.134), 1.146 (−0.134) and 1.036 (−0.031) for I-A,
Turc, J-H and P-M methods, respectively. The slopes (intercepts) were 0.922 (0.059) and
1.389 (−0.325) for ETMOD16 and ETVIC, respectively. In addition, MBE and RMSE were
close to 0. The error in daily ET estimation by SEBAL was less than 1.5% compared to
the four theoretical methods. In general, we can see the SEBAL model provided good
estimations in the daily evapotranspiration over the study region.

3.2. Spatio-Temporal Distribution of Daily Surface Evapotranspiration

Understanding the spatial and temporal variations of evapotranspiration is critical
for regional hydrology, agricultural water requirements, irrigation planning and water
resources management over the study region [58]; thus, the spatio-temporal distribution of
ETSEBAL in the study area was analyzed (Figure 3). It can be seen that the values of ETSEBAL
over the study region had distinctive seasonal variations. The values of ETSEBAL for the
study region were less in winter and higher in spring. The ETSEBAL for the entire region on
average was less in November, at 0.84 mm/d, with a spatial range of 0.45 to 1.33 mm/d
(Figure 3c,f), higher in March at 1.62 mm/d with a range of 1.28 to 3.03mm/d (Figure 3a,d),
and very higher in April at 2.11 mm/d with a range of 0.87 to 3.78 mm/d (Figure 3c,f). The
ETSEBAL was great during the growth period of the vegetation. The increase in temperature
from November to April may make a contribution to the increase in evapotranspiration
from winter (November) to spring (March, April). In terms of spatial patterns, the highest
ETSEBAL values were located in the far western and southwestern mountain area, whereas
the ETSEBAL values in middle and north of the study region, which are mostly composed of
plains, were relatively low. Evapotranspiration exhibited large spatial variability at global
and regional scales [59–61], which was affected by multiple factors such as underlying
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surfaces and the atmospheric environment [62,63]. The possible influencing factors on the
observed characteristics of ETSEBAL over study region are examined in the Section 3.3.
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3.3. Influencing Factors of Evapotranspiration

To identify the possible factors that influence daily ETSEBAL over the study region,
especially in spatial heterogeneity, a superposition analysis was performed based on ET
data on March 23, 2018, and raster data of groundwater depths, soil types, elevation,
surface temperature, extra-atmospheric reflectance and surface reflectance. The spatial
distribution of the ETSEBAL and the groundwater depths is shown in Figure 4. Results
show that ETSEBAL was less for the shallowest groundwater depth at 1–3 m, high for the
groundwater depth at 3–5 m and higher for the bedrock mountain area. Previous studies
had different results in this regard. For example, Huo et al. [19] revealed that evaporation
decreased as the water table fell by performing a lysimeter experiment incorporating a
1-year-long bromide tracer test, until it was down to the extinction depth of groundwater.
Luo and Sophocleous [64] found that ET decreased with increasing depth to the water table
through the HYDRUS-1D model in arid and semi-arid regions. In addition, Liu et al. [65]
indicated that groundwater depth from 4 to 12 m had little effect on total evaporation in a
subtropical scrub forest. Studies have shown that ET was also affected by meteorological
factors and underlying surface factors [59–61]. The observed characteristics of the ETSEBAL
maybe correlated with some of these influencing factors rather than groundwater depth in
the study region.
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Soil properties directly affect ET through changes in sensible heat flux and soil heat
flux [49,50]. The spatial distribution of soil types is shown in Figure 5. Five types of
soils, including alfisols, semi-hydromorphic soil, anthrosols, primitive and lakes and
reservoirs, are recognized in study area. The most common soil types over this region
are alfisols, semi-hydromorphic soil and anthrosols, which occupy approximately 42%,
25% and 26% of the study region, respectively. Only 6% and 1% of the study area is
occupied by primary soil and lakes and reservoirs (Figure 5 and Table 7). The statistical
characteristics of ETSEBAL values are shown in Table 7, and the results reveal that there was
no significant difference among these soil types. The mean and median of ETSEBAL value
of lakes and reservoirs was 1.459 mm/d and 1.395 mm/d, respectively. The mean (median)
of ETSEBAL value was 1.618 mm/d (1.622 mm/d) for alfisols, 1.614 mm/d (1.623 mm/d)
for anthrosols and 1.610 mm/d (1.619 mm/d) for semi-hydromorphic soil. The alfisols and
semi-hydromorphic soil is mainly concentrated in northwest and northeast of the study
region, respectively and anthrosols gathers in the middle of the study region. The mean
and median of ETSEBAL value was 1.624 mm/d and 1.626 mm/d for primary soil, which is
mostly located at the far western and southwestern mountain area. In general, ETSEBAL
value was less for lakes and reservoirs, high for alfisols, anthrosols and semi-hydromorphic
soil and higher for primary soil.
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Table 7. Area proportion, mean ETSEBAL, and median ETSEBAL of soil types in the study region.

Area Proportion, Mean
ET, and Median ET Alfisols Anthrosols Lakes and Reservoirs Primary Soil Semi-Hydromorphic Soil

Area proportion (%) 42 25 1 6 26
Mean ETSEBAL(mm/d) 1.618 1.614 1.459 1.624 1.610

Median ETSEBAL(mm/d) 1.622 1.623 1.395 1.626 1.619

The relationships between daily ETSEBAL and environment variables, including ele-
vation, surface temperature, extra-atmospheric reflectance and surface reflectance, were
also investigated. Partial correlation analysis was used to quantify the correlation between
ETSEBAL with one of the environment variables, e.g., elevation, when controlling the other
three variables (e.g., surface temperature, extra-atmospheric reflectance and surface re-
flectance), and the results are shown in Table 8. The partial correlation analysis revealed
that elevation, surface temperature, extra-atmospheric reflectance were positively corre-
lated with ETSEBAL, which is consistent with the results of previous research [65,66], while
surface reflectance was negatively correlated with ETSEBAL. However, the positive and
negative correlations were not statistically significant. The partial correlation between
ETSEBAL with elevation was about 0.248, showing that the trend of increasing ETSEBAL with
increasing altitude was moderate. There was a slight increase in ETSEBAL with increasing
surface temperature and extra-atmospheric reflectance, with a partial correlation of about
0.041 and 0.117, respectively, whereas partial correlation coefficient between surface re-
flectance and ETSEBAL was −0.534, meaning that an increase in surface reflectance led to a
large decrease in ETSEBAL. In general, we can see that the daily ETSEBAL over study region
was positively correlated with elevation and negatively correlated with surface reflectance.

Table 8. Partial correlation coefficient between ETSEBAL and elevation, surface temperature, extra-
atmospheric reflectance, surface reflectance in the study region.

Influencing Factors Coefficient p-Value

Elevation 0.248 >0.05
Surface temperature 0.041 >0.05

Extra-atmospheric reflectance 0.117 >0.05
Surface reflectance −0.534 >0.05

4. Discussion

In this study, the SEBAL model was applied to estimate the characteristics of ET
in the upper reaches of the Huaihe River Basin, which is in a subtropical zone. Some
previous studies have also estimated the ET in a subtropical climate area. For example,
Rahimikhoob [67] used artificial neural networks to estimate crop evapotranspiration in
Iran and found that the neural network provided quite good agreement with the ET ob-
tained using the Penman–Monteith method, with an R2 of 0.95 and a RMSE of 0.41 mm/d.
Xu and Singh [68] evaluated the performance of three complementary relationship evap-
otranspiration models on ET estimations in different climatic regions by a water balance
approach and found that they were all closely correlated with the water balance calcu-
lations with high R2 values (0.85 in all cases) in the Baixi catchment in Eastern China.
Different equations or models were used to estimate ET, and different reference ETs are
chosen as standards for comparison and calibration in the current studies [69], so it is hard
to compare the accuracy of ET estimations in our study to other studies directly, but the
accuracy of the SEBAL in ET estimation in this study was considered satisfactory with
R2 > 0.73 and small errors. A number of studies have evaluated the performance of the
SEBAL model in estimating the ET under different climate conditions, and results indicate
that SEBAL models have shown reasonable accuracy for predicting ET in different parts
of the world. For example, Cheng et al. [70] used flux tower observational data to assess
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the performance of the SEBAL ET and found SEBAL underestimated ET in China, with an
MBE of −0.15 mm/d.

The SEBAL model was also used to estimate crop evapotranspiration in a maize field
in Italy and it was found that the ET map from SEBAL largely agreed with the measured
yield map, with relative errors of 0.3% among the irrigation management zones and of
1% for the whole field [71]. Teixeira et al. [72] used field measurements to assess the
performance of the SEBAL model for estimating ET in the semi-arid region of a river basin
in Brazil, and results showed that the relation between the SEBAL and field measurements
of daily ET presented a R2 of 0.91 and a RMSE of 0.38 mm/d. The SEBAL model ET were
compared with the Bowen ratio energy balance system-measured fluxes in south-central
Nebraska climatic conditions, and results showed that SEBAL can be a viable tool for
generating evapotranspiration maps [73]. In general, the SEBAL model can provide a good
estimation of ET.

However, a bias of SEBAL in ET estimation also exits. This may be due to the following
reasons. One drawback of SEBAL is that it relies on the presence of extreme instantaneous
surface temperature, which requires subjective specifications of representative hot (dry)
and cold (wet) pixels in the imagery [40,74]. The selection of hot and cold pixels can have a
significant impact on SEBAL ET estimation. Second, it always predicts accurate ET over flat
surfaces, while biases and errors are relatively high when it is applied over mountainous
areas [69]. Thus, according to the digital elevation model and the lapse rate, adjustments
need to be made to surface temperature. Third, instead of the actual evaporative fraction,
the daily integrated ET from the SEBAL model was converted from the instantaneous
evaporative fraction at the moment of satellite overpass, and the underlying assumption is
that the evaporative fraction tends to be constant during the entire day. Fourth, SEBAL
is usually used to estimate the ET for the cloud-free days across different ecosystems.
Liu et al. [74] indicated that even a thin layer of cloud can considerably decrease thermal
band readings and cause large errors in calculation of sensible heat fluxes. Future work is
required to overcome the above-mentioned issues to improve the performance of SEBAL
mode in ET estimation.

The spatial heterogeneity of ET is considered to be the result of the effects of soil
heat flux, net radiation and sensible heat flux in response to the changing underlying
surface, climate, and atmospheric environment [59–61]. Obviously, the factors affecting
ET are different in different climate regions. Shi et al. [75] pointed out that in arid and
semi-arid regions, surface temperature, soil moisture content, and thickness of dry sand
layers, are considered to affect ET by constructing isothermal and non-isothermal models.
The value of ET in a delta with vigorous vegetation is strongly influenced by groundwater.
Due to changes in the depth of groundwater, vegetation changes the absorption capacity
of roots through the migration of water in the aeration zone [76]. In China, previous
studies have shown that a decrease of wind speed in western and northern China is
the main reason for the change in ET, the decrease of sunshine duration in subtropical
and tropical areas in southern China is the dominant main factor affecting the decrease
of annual potential evapotranspiration, and the increase of maximum temperature in
cold and temperate regions in northern China is the key factor driving the variation
of potential evapotranspiration [77].Based on the regional characteristics of the study
region, the underlying surface environment, including elevation, groundwater and soil
types, as well as the atmospheric environment, we conducted factor analysis of ET spatial
heterogeneity. However, it was still difficult to identify the contribution of single factors to
evapotranspiration change. Distinguishing dominating features that affect ET variation in
a region with complex terrain and land use types is a critical step.

5. Conclusions

According to the Landsat-8 data and daily meteorological data from eight stations,
the SEBAL model was employed to estimate the daily ETSEBAL in the upper reaches of
the HRB. The daily ET estimated from the SEBAL model (ETSEBAL) was compared against
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the daily reference ET0 from four (P-M, I-A, Turc, and J-H) methods, ETVIC and ETMOD16.
Linear regression and statistical indices of quantitative approaches were used to evaluate
the performance of the SEBAL model in ET estimation, and results show that the SEBAL
model can provide good estimations in daily evapotranspiration over the study area. The
SEBAL model is an important tool for spatial and temporal ET estimation on a regional
scale, which is deemed critical for water resources planning and management.

Considering time scale, ETSEBAL was relatively high during the growth period of
the vegetation in March and April, while the ETSEBAL in November was quite low. On
the spatial scale, the daily ETSEBAL values in the far western and southwestern mountain
area were much higher than those in the plains areas located in the middle and north of
study area.

The influence of factors on ETSEBAL was also explored. The ETSEBAL value was
relatively high for primary soil located in the mountain area. The daily ETSEBAL over the
study area was positively correlated with elevation and negatively correlated with surface
reflectance, implying that the variability of ETSEBAL in this study area was affected by
elevation and surface reflectance. To make the finding of this study more practical to water
resources management, quantitative assessment of the influence of different factors on ET
should be studied in the future.
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