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Abstract: Inland shipping is pivotal to the comprehensive transport system of China. However, ship
emission has become a major air polluter in inland river regions, and relevant emission inventories are
urgently needed. Currently, the Automatic identification System based (AIS-based)emission model is
widely used in calculating the ocean-going ship emission inventory. However, due to the lack of AIS
data in the river area, the inland ship emission inventory mainly uses the fuel consumption method.
With the continuous improvement of AIS data quality in the river area, the AIS-based emission
model can be adopted in the development of inland ship emission inventory. However, there are few
studies on the evaluation of the accuracy of the inland ship emissions using the AIS-based emission
model. This study makes a comparison between test data and model-calculated data to evaluate
the accuracy of the AIS-based emission models. Inland ship activities are divided into being at
berth, maneuvering (port departure and port arrival), and on cruise modes in an AIS-based emission
model. The model-calculated CO2, HC, and NOx emission rates can cover those onboard emission
test data, but the values from the model are much lower. The total average ratios of test data to
model-calculated data for CO2, CO, HC, and NOx are 2.66, 19.12, 2.46, and 3.16 when engine loads
are below 60%. In upstream cruise mode, average emission rates of CO2, CO, HC, and NOx from the
real-world test are 1.91–6.48, 8.78–27.83, 3.05–8.96, and 4.06–5.96 times higher than those from the
AIS-based model, respectively. However, those are only 1.08–1.51, 6.74–9.67, 2.03–3.75, and 1.65–2.75
times higher than those from the AIS-based model in downstream cruise mode.

Keywords: inland ship emission; AIS-based emission model; real-world test; PEMS

1. Introduction

The prosperity of maritime trade is a major force driving China’s economic boom.
Inland shipping has become an important part of China’s integrated transportation system
as the inland waterway regulation progresses. The freight capacity of the Yangtze River’s
trunk line surpassed 2.5 billion tons in 2017, an 8.2% increase from the same period last
year, ranking the top among the world’s inland waterways. The cargo throughput of
sizeable ports has increased from 1.86 billion tons to 2.44 billion tons, with that of river-sea
transport amounting to 1.41 billion tons and taking up over half of the total [1]. During
the same period, the cargo throughput of ports in the Jiangsu section of the Yangtze River
has reached 1.71 billion tons with a 9.0% increase year on year, and its growth rate is 4.4%
higher than the same period of the last year. Accounting for 68.4% of the annual cargo
throughput of the Yangtze River’s trunk line [2], ports in the Jiangsu section of the Yangtze
River is pivotal in cargo transportation along the Yangtze River.

Though being considered as one of the relative green and environmentally friendly
ways of transportation, shipping exhausts a huge number of pollutants into the atmosphere,
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including SO2, NOx, PM, CO, and HC [3–10], as marine engines are typically high-power,
using heavy oil, which has low oil quality and high sulfur concentration. According to
the statistics, national ship emission consisted of 0.238 million tons of CO, 0.076 million
tons of HC, 1.004 million tons of SO2, 0.145 million tons of PM, and 1.429 million tons
of NOx in 2014 [11]. The CO2 emission of ships is also nonnegligible [12]. According to
Liu‘ study [13], the fraction of CO2 emitted by shipping in Asia grew from 4% to 7% in
2002–2005 to 16% in 2013. In China, NOx and PM emissions from shipping were 34% and
29% of those emitted by motor vehicles, respectively, which means that ships have been
one of the most contributor of air pollution in inland river regions. Moreover, the study
found that PM2.5, PM10, DPM (diesel particulate matter), SO2, and NOx accounted for a
significant share of the pollution in urban areas. The main reason is that the interaction
of pollutants with the terrestrial weather and climate system forms secondary pollutants,
such as fine particulate matter and ozone formation. Those pollutants are then transported
to the inland regions by sea-land winds and further react, resulting in considerable climate
change effects. Furthermore, ship emission areas highly overlap those densely populated
areas, and those ships are offshore or nearshore most of the time. Pollutants are given
out and disseminated by the wind, affecting the air quality and public health in the ports’
downwind area [13–21].

Emission inventory is an important tool for shipping pollution prevention and control.
The research of Fu [22] and other researchers on air quality monitoring and the evaluation
system for major events in China demonstrated that the emission inventory for dynamic
control of air pollutants could provide the most fundamental and dynamic source ledger
data for heavy pollution early warning and major event pollution control, as well as prevent
air pollution and control fine and precise particles. Jalkanen [16,23] initially utilized the AIS-
based STEAM (Ship Traffic Emission Assessment Model) model to calculate the emission
of ships in Baltic Sea nations, and then upgraded and further applied the STEAM model,
which included the calculation of PM and CO, and the analysis of shipping load and fuel. In
addition, it was used to evaluate the influence of policies in the emission control region on
air quality in European countries. Goldsworthy [24] used path regeneration to retrieve AIS
trajectories of ships missing in coastal transit, and efficiently approximated ship emissions
in locations without AIS data. Zeng [25] utilized the emission factor technique based on
shipping activity to compute the ship emission inventory of entering and exiting Xiamen
Port in 2018 and evaluated the ecological efficiency of the port based on environmental
and social indicators and external cost evaluation tools. According to the analysis, the
total SOx, NOx, HC, CO, PM2.5, PM2.0, and CO2e (carbon dioxide equivalent) emissions
from ships at Xiamen Port in 2018 were 3222, 11,977, 490, 1118, 411, 542, and 710,374 t,
respectively. Container ships were the most polluting shipping vessel, and the main engine
pollutes the most. Lv [26] used AIS data to compile the emission inventory of Qingdao
port shipping in 2016 and studied their regional emission features, and emission features
of different shipping types, under different operating situations. Ships inside the baseline
and 12 nautical miles beyond the baseline emitted 1.56, 2.34, 0.21, 0.18, 0.009, and 0.17
million tons of SO2, NOx, PM10, PM2.5, HC, and CO, respectively. The emissions from ships
were mostly found along trunkline routes, ports, and anchorages. Yang [27] developed a
gridded ship emission inventory of Shanghai Port in 2003 with a resolution of 1 km × 1 km
based on ship engine power, significantly enhancing ship emission inventory accuracy and
assessing the spatial distribution features of ship emissions. Kurtenbach [28] investigated
the inland water transport emissions of NOx, CO2, and PM under real-world conditions
on the river Rhine, Germany, in 2013. Specific meteorological parameters, such as relative
humidity, temperature, and wind speed, were recorded and the number and types of ships
passing the test ships were also counted. Pillot [29] set up reliable functions to derive
simply pollutant emissions from engine speed for CO2, NOx, PM, and CO pollutant and
for each vessel at various engine cruising speeds, which was helpful for establishing inland
ship emission models.
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Currently, ship emission inventory in China concentrates on ocean-going ships, un-
derestimating inland river ships. The majority of studies on the air pollution emissions of
inland river ships are using the fuel consumption method [6,30–32], which has a certain
level of uncertainty. As AIS data quality of inland river vessels improves, using AIS data-
based emission inventory for inland river vessels will be a major trend [33–35]. However,
there are few studies on the accuracy of inland river vessels emission inventory using this
method.

In this study, we measured real-world emissions of CO2, CO, HC, and NOx from
nine inland ships by using a portable emission measurement system. In the meantime,
an AIS-based emission model was applied to predict the emissions of those tested inland
ships. Then, we evaluated the accuracy of AIS-based emission model by the comparison of
emission rates from test data and model-calculated data. We also analyzed the influence
of water flow direction on model-calculated results. Our study can provide an important
reference for the future implementation of an AIS data-based inland river vessel emission
inventory.

2. Research and Method
2.1. Experimental Section
2.1.1. Test Instruments

A test system combined with a SEMTECH-DS gaseous pollutant analyzer (SENSORS,
INC., Saline, MI, USA) and an EFM2 tail gas mass flowmeter (SENSORS, INC., Saline,
MI, USA) was employed in this study. SEMTECH-DS gas modules can measure gaseous
pollutants from mobile sources. Supplementary Figure S1 depicts schematic diagram of
the device. NDIR (Non-Dispersive Infrared Detector) was used to detect CO (Carbon
monoxide) and CO2 (Carbon dioxide). THC (Hydrocarbon) data were collected by FID
(Flame Ion Detector). The contents of NO (Nitric oxide) and NO2 (Nitrogen dioxide) were
measured using the NDUV (Non-Dispersive Ultraviolet Detector). SEMTECH-DS should
be warmed up for roughly an hour before working. To assure the accuracy of measurement
results, pure N2 was used for zero adjustment after the warm-up, followed by accuracy and
precision calibration using standard gas. The location (longitude, latitude, and altitude)
and speed of test ships were recorded by GPS (Global Positioning System) integrated in
SEMTECH-DS. In addition, mass flow rates were measured by SEMTECH EFM2 based on
pitot tube technology. Table 1 lists the performance parameters of SEMTECH-DS.

Table 1. Performance parameters of SEMTECH-DS.

Pollutant Measuring Range Resolution Measurement Accuracy

CO2 0~20% 0.01% ±3%

CO 0~8% 10 ppm ±50 ppm or ±3%

THC
0~100 ppm 0.1 ppm ±5 ppm or ±2%
0~1000 ppm 1 ppm ±5 ppm or ±2%

0~10,000 ppm 1 ppm ±25 ppm or ±2%

NO 0~2500 ppm 1 ppm ±15 ppm or ±3%

NO2 0~500 ppm 1 ppm ±10 ppm or ±3%

For data transmission and collection, all test instruments in this study will be con-
nected to a laptop computer. In addition to the above instrument, the entire test system
contains a generator and a 12 V battery. The precise instruments information is listed in
Table 2.
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Table 2. Models and specifications of the other instruments.

Instrument Manufacturer Model

Generator YAMAHA 6800 E
Battery FENGFAN —

2.1.2. Study Area

There are two tested area in our test, including the Yangtze River and Pearl River,
which were shown in Supplementary Figure S2. On the Yangtze River, the ship emissions
from normally operating ships in the section of the Yangtze River trunk stream from
Nanjing to Yangzhou in Jiangsu province were measured. On the Pearl River, ship emission
tests were carried out from the Nanshan port (Guangzhou). Tested ships left the port and
sailed northwards and then turned back to the Nanshan port.

2.1.3. Test Ships

A total of nine cargo ships were tested in this study, and the specific information of the
tested ships is shown in Table 3. No. 1–No. 6 inland ships were tested from the Zhenjiang
port to the Danyang port on the Grand Canal. No. 7–No. 9 inland ships were tested around
the Nansha port on the Pearl River. Therefore, emissions during upstream and downstream
voyages were tested on No. 7–No. 9 inland ships. The departure and arrival time of the
test ships were also shown in Table 3. The tests of inland ships on the Yangtze River lasted
for 85–100 min approximately, and those on the Pearl River lasted for around 60–120 min.
The marine oil used in all tested inland ships generally consists of diesel fuels, which came
from oil tanker ships near the port.

Table 3. Basic information of the test ships.

ID Ship Type Built Year

Engine Rated
Power

(kw)/Rated
Speed (RPM)

Maximum
Speed
(km/h)

Ship Gross
Weight (ton) Test Route Departure

Time
Arrival
Time

1 Cargo ship 2001 88.3/500 17 270 Zhenjiang to Danyang 10:44 12:20
2 Cargo ship 2010 136/850 18 380 Zhenjiang to Danyang 5:23 7:02
3 Cargo ship 2009 300/1400 18 320 Zhenjiang to Danyang 18:26 19:51
4 Cargo ship 2008 260/1400 18 420 Zhenjiang to Danyang 4:50 7:41 a

5 Cargo ship 2010 145/850 18 540 Zhenjiang to Danyang 17:59 19:29
6 Cargo ship 2004 136/850 18 560 Zhenjiang to Danyang 10:09 11:44
7 Cargo ship 2004 136/850 20 380 Nansha port 12:39 14:38
8 Cargo ship 2007 184/1000 18 350 Nansha port 11:53 13:00
9 Cargo ship 2007 184/1000 20 350 Nansha port 14:30 15:30

a Ship No. 4 was refueled before port arrival.

2.1.4. Test Operating Mode

The operating modes are generally classified into four types: port arrival, berthing,
Port departure, and cruise. The test conditions are described in Table 4. In berth mode,
an inverter is allocated to convert a battery pack of 12 V into 220 V alternating current to
power the ship [36]. Hence, the engine emissions in berth mode are not taken into account.

Table 4. Test operating mode of ships.

Operating Mode Description

Port arrival From the slowing down of cruising speed until berthing
Cruise The process of sailing a ship at a constant speed

Port departure From idle state to sailing at cruising speed
Berth Adopting engines to power daily life at berth
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2.2. AIS-Based Emission Model
2.2.1. Emission Calculation

In this study, inland ship emissions were calculated by using Equation (1), shown
below:

E = PMCR × LF × EF × LLA × T (1)

where E is the engine emission, g; PMCR is the maximum continuous rated power of
the main engine, kW; LF is the engine load, EF depicts the base emission factors of the
propulsion engine using a certain sulfur content fuel, as described in the Supplementary
Table S3, g/kWh; LLA is the low load adjustment for emission factor when the LF is lower
than 20% (seen Supplementary Table S2); and T is the operation duration time on the vessel
trip, in seconds. LF is calculated using Equation (2) as follows:

LF =

(
Vactual
Vmax

)3
(2)

where Vactual is the actual speed, km/h, and Vmax is the design max speed, km/h.
In this study, PMCR and Vmax can be obtained from ship registration certificate (see

Table 3). Vactual can be read from the GPS of the portable emission measurement system.
For the operation duration time, we calculated the pollutant emissions per second.

2.2.2. Emission Factor

In the AIS-based emission model, emission factors of the main engine are presented in
Table 5. For inland ships, marine engines generally used diesel oil, with the sulfur content
below 0.15%. From Table 3, we can see that the marine engines of tested inland ships
are medium-speed diesel engines, because the rated engine speed are 850–1400 RPM (see
Table S1). As all tested inland ships were built in 2000–2010, their emission factors could be
categorized under Tier 1.

Table 5. Emission factors for the main engine, g/kWh.

Engine Type Fuel Type Tier Model Year NOx CO HC CO2

SSD a

MDO/MGO
(0.15% Sulfur

content)

Tier 0 c ≤1999 17.0 0.54 0.6 607
MSD b ≤1999 13.2 0.54 0.5 670
SSD a

Tier 1
2000–2010 16.0 0.54 0.6 607

MSD b 2000–2010 12.2 0.54 0.5 670
SSD a

Tier 2
2011–2015 14.4 0.54 0.6 607

MSD b 2011–2015 10.5 0.54 0.5 670
a Slow-speed diesel engine. b Medium-speed diesel engine. c All ships constructed prior to 1 January, 2000 which did not have an IMO Tier
requirement at the time of construction.

2.2.3. Low Load Adjustment

When marine engine loads are below 20%, emission factors tend to increase as the
load decreases [13]. A possible reason is that diesel engines are less efficient at low engine
loads and fuel consumption tends to increase as the load decreases. Table S2 presents the
emission factor adjustment factors at low loads.

3. Results and Discussion
3.1. Ship Activities Mode Selection

Figure 1 shows the operating modes of tested ship No. 1 based on two classification
methods. Figure 1a shows the ship operating modes based on the AIS-based emission
models. As shown, ship activities are broken down into four operation modes, including
being “at berth”, “at anchorage”, “maneuvering”, and “at sea”, which are defined by ship
speed and engine load (see Table S3). Figure 1b shows the ship operating modes according
to the recent inland ship emission studies [13,37]. In those emission tests, ship operating
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modes are generally divided into cruise and maneuvering (port departure and port arrival)
modes based on ship speed. According to the previous studies [37,38], ship operating
modes are primarily used to figure out the engine load of auxiliary engines and boilers.
Marine auxiliary engines are primarily used to power the ship, while boilers are used
for heating purposes. However, numerous inland ship emission studies indicate that few
inland ships are installed with auxiliary engines and boilers. Because ship owners usually
use the main engine to generate power and storage batteries or small-size generators to
supply electricity for daily life when the main engine is off. Therefore, the classification of
operating modes has less reflection on inland ship emissions. In fact, inland ship operators
often dock their ships in the port and tie up with other ships rather than anchor on the
water. It is more reasonable to divide the inland ship activities into at berth, maneuvering
(port departure and port arrival), and cruise modes.

Figure 1. Operating modes of tested ship No. 1 based on two classification methods. (a) The operating modes classified by
activity model, which are “at berth” (Blue), “at anchorage” (Orange), “maneuvering” (Gray), and “at sea” (Gold).; (b) The
operating modes classified by recent inland ship emission studies, which are “Port departure” (Purple), “Cruise” (Red), and
“Port arrival” (Green).

3.2. Characteristic of Instantaneous Emission Rate from a Real-World Test and the AIS-Based
Emission Model

Figure 2 shows the comparison of instantaneous emission rates of tested ship No. 2
from real-world emission tests and those from the AIS-based emission model data. In
cruise mode, we conducted a special emission test (cycle II) to compare the actual test data
with model-calculated data. In this cycle, ships continuously accelerate and decelerate in
the safe cruise speed range. It is observed that the profile of CO2, HC, and NOx emission
rates from model-calculated data can match well with onboard emission test data on the
whole cycle, especially for cycle II and III. This means that the AIS-based emission model
can better simulate the variation trend of the tested results to a great extent. However, the
volumes of emission rates of CO2, HC, and NOx from the AIS-based emission model are
much lower than those from emission tests. For CO, frequent large fluctuations from test
data occurred in cycle I, cycle II, and cycle IV, but did not appear in the model-calculated
results. It is speculated that while in maneuvering mode, fast-changing engine speeds
cause incomplete combustion, which accelerates the CO emission rate. Therefore, more CO
emission peaks appeared on cycle I, cycle II, and cycle IV. However, due to its inertia, the
ship speed cannot change as fast as the engine speed, which means that a variation of the
ship speed cannot follow the instantaneous variation of the engine speed well. Hence, the
model-calculated CO emission rates do not show large peaks in those cycles.
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Figure 2. Instantaneous vessel speed and emission rates of tested ship No. 2 from onboard emission test data and calculated
data from the AIS-based emission mode. Cycle I is the port departure mode; cycle II is the special cruise test mode which
continuously accelerates and decelerates on the safe vessel cruise speed range; cycle III is the normal cruise mode; cycle IV
is the port arrival mode. (a) The instantaneous vessel speed conditions of the whole cycle; (b), (c), (d), (e) The comparison of
measured data and calculated data of CO2, CO, HC, and NOx, respectively.

3.3. Comparison of Emissions from Real-World Tests and the AIS-Based Emission Models under
Different Engine Loads

To analyze the differences between test data and model-calculated data, the ratios of
test data to model-calculated data are applied in our works. If the ratio is greater than 1, the
test data will be higher than model-calculated data. Figure 3 presents the average ratios of
all tested ship emissions under different engine loads. Due to the maritime safety and cost
concern, the maximum engine loads of tested inland ships are 42–60%. As for CO2, CO,
and NOx, the ratios of tested data to calculated data tend to decrease as the load increases.
The maximum ratios occur when the engine load is 2%, and then as the load increases, the
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ratios dramatically decrease. When the engine load is above 5%, corresponding ratios are
stable despite a few fluctuations. The average ratios of CO2, CO, and NOx are 9.58, 26.41,
and 4.60 when engine loads are below 5%, and 2.03, 18.46, and 3.03 when engine loads
are above 5%, respectively. It is noticeable that in the AIS-based emission model, the low
load adjustment factors are used to correct emission data when engine loads are below
20%. However, our results indicate that the model-calculated data could not cover the test
data well when the engine load was below 5% for those three pollutants. For HC, the ratios
fluctuate at the range of 1.10–3.65, while no large peaks appear on low engine loads. This
is because on the AIS-based model, the adjustment factors for HC are larger than those for
CO2, CO, and NOx when engine loads are below 5% (see Table S2).

Figure 3. Ratios of the test data to calculated data of (a) CO2, (b) CO, (c) HC, and (d) NOx under different engine loads
from typical inland ships. The shadings denote the 95% confidence intervals of the mean value.

It can also be seen that the test data are higher than the model-calculated data for CO2
and pollutants. The average ratios of CO2, CO, HC, and NOx are 2.66, 19.12, 2.46, and
3.16, respectively, which indicates that model-calculated data are relatively close to the test
data, except for CO. The probable reason causing higher CO ratios is the faster changing of
engine speeds and lower changing of vessel speeds, as mentioned in Section 3.2.

We also calculated the total emissions per mode applying the AIS-based model, and
the results were compared to the corresponding measured emissions. Figure 4 shows the
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ratios of the tested emissions to the corresponding calculated emission of three operating
modes. It is clear that the ratios of CO2, CO, and NOx in port departure mode are 8.81,1.79,
and 3.15 times higher than those in cruise mode, and 4.24, 1.23, and 3.56 times higher than
those in port arrival mode, which means that the differences between measured emissions
and model estimated emissions are significantly higher in port departure mode than those
in cruise and port arrival modes. One reason is that the engine loads change rapidly in port
departure mode, while the estimated engine loads from AIS-based model cannot reflect
well the actual engine performance due to the slow variation of vessel speeds. However,
in port arrival mode, actual engine loads slowly decrease to decelerate the vessel speeds.
Therefore, the estimated engine loads can better follow the actual engine load. Another
reason is that the estimated engine loads in the AIS-based model are less than 1% within
a certain period of time in port departure mode. However, we have to use the low load
adjustment factors of 2% engine load (seen Supplementary Table S2), which results in the
lower estimated emissions.

Figure 4. Ratios of the total measured emissions to estimated emission from the AIS model in each
mode. Error bars show the 95% confidence intervals of the mean values.

3.4. Analysis of the Emission Rates from the AIS-Based Model under Different Water Flow
Directions

During the real voyage, the water flow direction and rate have a great effect on vessel
speed and engine performance. For inland ships, the sailing direction can be divided
into upstream and downstream. In the tests, we asked the navigators to operate marine
engines in the same output powers on the upstream and downstream voyages. Therefore,
the emission rates of pollutants are generally the same in the upstream and downstream
cruise modes for each individual vessel. In our study, the vessel speed and marine engine
emission from three ships (No. 7–No. 9) were tested in Pearl River. Figure 5 shows
the tested ship speed and average emission rates of pollutants for the upstream and the
downstream voyages. As seen in Figure 5a, vessel speeds for the upstream voyage are
generally lower than for the downstream voyage, because ships have to sail against the
current. The average vessel speed of the tested ships in the downstream cruise mode
is 14.2 km/h, while this is 10.6 km/h in the upstream cruise mode. Due to the same
engine power output, fuel consumption is close in the upstream and the downstream
cruise mode, resulting in similar CO2 emissions. In this test, measured CO2 emission rates
in the downstream cruise mode are only 0.96–1.07 times higher than those of the upstream
cruise mode. For CO, HC, and NOx, the average emission rates of tested ships for the
downstream voyage are only 1.06, 1.00, and 1.01 times higher, respectively, than those
for the upstream voyage. However, the estimated CO2 and pollutants emission rates of
upstream and downstream ships varied greatly. From Equation (2), we can see that the
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estimated engine loads are mainly determined by vessel speed. However, the inland ship
speed is often affected by the river speed [39,40]. Through the AIS system, the speed of
the ship over ground can be obtained, but the influence of the external environment on
the ship speed has also been calculated. This leads to an obvious overestimation of engine
loads during downstream sailing and corresponding underestimation during upstream
operations, resulting in the significant variation of emission rates.

Figure 5. Comparisons of (a) vessel speed and average emission rates of (b) CO2, (c) CO, (d) HC, and
(e) NOx for upstream and downstream voyages during cruise mode.

It can also be seen that the model-calculated data are lower than the test data. In
the upstream cruise mode, average emission rates of CO2, CO, HC, and NOx from the
real-world test are 1.91–6.48, 8.78–27.83, 3.05–8.96, and 4.06–5.96 times higher than those
from the AIS-based model, respectively. However, in the downstream cruise mode, the
average emission rates of CO2, CO, HC, and NOx from the real-world test are 1.08–1.51,
6.74–9.67, 2.03–3.75, and 1.65–2.75 times higher than those from the AIS-based model,
respectively. It is obvious that the difference between model-calculated data and test data
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for the downstream voyage is smaller than those for the upstream voyage. A potential
reason is that the vessel speed for the downstream voyage is higher than for the upstream
voyage. As seen from Equation (2), the engine load is higher with an increasing vessel
speed. As the test emission rates on the upstream and the downstream voyage are similar,
the model-calculated emission rates of CO2 and pollutants on the downstream voyage are
close to the test emission rates. To better predict the inland ship emissions, water flow
correcting factors should be applied on Equation (1) of the AIS-based emission model.
More inland ship emission tests should be carried out to provide the accurate water flow
correcting factors in future.

4. Conclusions

In this study, real-world emissions from inland ships were tested by using portable
emission measurement system. The AIS-based emission models were also applied to
calculate the emissions of tested inland ships. A comparison was made between test data
and model-calculated data to evaluate the accuracy of the AIS-based emission models.
To better reflect the inland ships performance, we divide the inland ship activities into
berth, maneuvering (port departure and port arrival), and cruise modes in the AIS-based
emission model. The profile of CO2, HC, and NOx emission rates from model-calculated
data can match well with on-board emission test data, but the values of CO2 and pollutants
from the model are much lower than those from emission tests. The ratios of test data to
model-calculated data for CO2, CO, and NOx tend to decrease as the load increases. The
average ratios of CO2, CO, and NOx are 9.58, 26.41, and 4.60 when engine loads are below
5%, and 2.03, 18.46, and 3.03 when engine load are above 5%, respectively. The ratios of HC
are 1.10–3.65, while no large peaks appear on low engine loads. The total average ratios of
CO2, HC, and NOx are 2.66, 2.46, and 3.16 under engine loads of 1–60%, indicating that
model-calculated data are relatively close to the test data. In upstream cruise mode, the
average emission rates of CO2, CO, HC, and NOx from the real-world test are 1.91–6.48,
8.78–27.83, 3.05–8.96, and 4.06–5.96 times higher than those from the AIS-based model,
respectively. However, in downstream cruise mode, the average emission rates of CO2,
CO, HC, and NOx from the real-world test are 1.08–1.51, 6.74–9.67, 2.03–3.75, and 1.65–2.75
times higher than those from the AIS-based model, respectively. This result indicates that
the differences between model-calculated data and test data for the downstream voyage
are smaller than those for the upstream voyage.
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for main engines at low loads; Table S3: Descriptions of vessel activity mode; Figure S1: Schematic
diagram of the SEMTECH-DS gaseous pollutant analyzer; Figure S2: The study area and test routing
of inland ships on (a) the Yangtze River and (b) the Pearl River.
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