
atmosphere

Article

Partitioning of NH3-NH4
+ in the Southeastern U.S.

Bin Cheng 1, Lingjuan Wang-Li 2,* , Nicholas Meskhidze 3, John Classen 2 and Peter Bloomfield 4

����������
�������

Citation: Cheng, B.; Wang-Li, L.;

Meskhidze, N.; Classen, J.;

Bloomfield, P. Partitioning of

NH3-NH4
+ in the Southeastern U.S.

Atmosphere 2021, 12, 1681. https://

doi.org/10.3390/atmos12121681

Academic Editors: Theodora Nah,

Shaojie Song and Zongbo Shi

Received: 3 November 2021

Accepted: 13 December 2021

Published: 15 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Oak Ridge Institute for Science and Education (ORISE), Postdoctoral Research Participant at U.S. EPA,
Research Triangle Park, Oak Ridge, NC 27709, USA; chengbin0228@gmail.com

2 Department of Biological and Agricultural Engineering, North Carolina State University,
Raleigh, NC 27695, USA; classen@ncsu.edu

3 Department of Marine Earth and Atmospheric Science, North Carolina State University,
Raleigh, NC 27695, USA; nicholas_meskhidze@ncsu.edu

4 Department of Statistics, North Carolina State University, Raleigh, NC 27695, USA;
PeterBloomfield@bellsouth.net

* Correspondence: lwang5@ncsu.edu

Abstract: The formation of inorganic fine particulate matter (i.e., iPM2.5) is controlled by the thermo-
dynamic equilibrium partitioning of NH3-NH4

+. To develop effective control strategies of PM2.5,
we aim to understand the impacts of changes in different precursor gases on iPM2.5 concentrations
and partitioning of NH3-NH4

+. To understand partitioning of NH3-NH4
+ in the southeastern U.S.,

responses of iPM2.5 to precursor gases in four seasons were investigated using field measurements
of iPM2.5, precursor gases, and meteorological conditions. The ISORROPIA II model was used to
examine the effects of changes in total ammonia (gas + aerosol), total sulfuric acid (aerosol), and
total nitric acid (gas + aerosol) on iPM2.5 concentrations and partitioning of NH3-NH4

+. The results
indicate that reduction in total H2SO4 is more effective than reduction in total HNO3 and total NH3

to reduce iPM2.5 especially under NH3-rich condition. The reduction in total H2SO4 may change
partitioning of NH3-NH4

+ towards gas-phase and may also lead to an increase in NO3
− under

NH3-rich conditions, which does not necessarily lead to full neutralization of acidic gases (pH < 7).
Thus, future reduction in iPM2.5 may necessitate the coordinated reduction in both H2SO4 and
HNO3 in the southeastern U.S. It is also found that the response of iPM2.5 to the change in total
H2SO4 is more sensitive in summer than winter due to the dominance of SO4

2− salts in iPM2.5 and
the high temperature in summer. The NH3 emissions from Animal Feeding Operations (AFOs)
at an agricultural rural site (YRK) had great impacts on partitioning of NH3-NH4

+. The Multiple
Linear Regression (MLR) model revealed a strong positive correlation between cation-NH4

+ and
anions-SO4

2− and NO3
−. This research provides an insight into iPM2.5 formation mechanism for the

advancement of PM2.5 control and regulation in the southeastern U.S.

Keywords: inorganic PM2.5; precursor gas; thermodynamic equilibrium modeling

1. Introduction

Particulate matter (PM) with aerodynamic diameter less than or equal to 2.5 µm (i.e.,
PM2.5) causes adverse impacts on the environment and human health [1–5]. In general,
PM2.5 consists of inorganic ions, organic carbon (OC), elemental carbon (EC), various
elements, and unclassified components [6–10]. Particulate matter can be classified as
primary and secondary aerosol based on formation processes. Primary PM2.5 is directly
emitted from emission sources while secondary PM2.5 is mainly formed through various
chemical reactions and atmospheric processes [11–13]. The formation of the secondary
inorganic PM2.5 (iPM2.5) is largely controlled by the chemical reactions between various
precursor gases [14]. Ammonia (NH3) neutralizes acidic species (e.g., nitric acid (HNO3),
sulfuric acid (H2SO4), and hydrochloric acid (HCl)) to form ammonium (NH4

+) salts,
and this dynamic process is called gas-particle partitioning of NH3-NH4

+ [15]. In the
atmosphere, secondary iPM2.5 mainly includes ammonium nitrate (NH4NO3), ammonium

Atmosphere 2021, 12, 1681. https://doi.org/10.3390/atmos12121681 https://www.mdpi.com/journal/atmosphere

https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com
https://orcid.org/0000-0002-9907-9729
https://orcid.org/0000-0001-7006-8375
https://doi.org/10.3390/atmos12121681
https://doi.org/10.3390/atmos12121681
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/atmos12121681
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/article/10.3390/atmos12121681?type=check_update&version=1


Atmosphere 2021, 12, 1681 2 of 15

sulfate ((NH4)2SO4), and ammonium chloride (NH4Cl) and may account for a large portion
of total PM2.5 [16–21]. Depending upon the availability of NH3, H2SO4 may be partially
or fully neutralized to form bisulfate (HSO4

2−) or sulfate (SO4
2−) salts and NH3 may

also react with HNO3 to form NH4NO3. As a semi-volatile compound, the formation of
NH4NO3 is also impacted by the ambient condition such as temperature (T) and relative
humidity (RH); low T and high RH tend to favor the formation of NH4NO3 [22–24].

Studies on the formation of the iPM2.5 as impacted by the changes in the concen-
trations of precursor gases have been carried out through modeling approaches [25–27].
ISORROPIA II is a commonly used thermodynamic equilibrium model to simulate the
dynamics of phase changes (e.g., gas, liquid, and solid) and interaction of different chemical
species including NH4

+, nitrate (NO3
−), SO4

2−, chloride (Cl−), potassium (K+), calcium
(Ca2+), magnesium (Mg2+), and sodium (Na+) in ambient air [26,28]. This model simulates
the gas-particle partitioning phenomenon and impacts of T and RH on such partition-
ing [29–32]. The relationship of iPM2.5 and its precursor gases at an agricultural site located
in eastern North Carolina (NC) was studied using field measurements and ISORROPIA
model simulation [33]. The research examined the impacts of the 50% reduction in total
NH3 (gas + aerosol), total HNO3 (gas + aerosol), and total H2SO4 (aerosol) concentrations
on the changes in iPM2.5 concentrations in winter and summer. It was found that the 50%
reduction in total NH3 concentration may not lead to a significant reduction in iPM2.5
concentration. This may suggest that NH3 emissions from Animal Feeding Operations
(AFOs) at agricultural sites led to elevated atmospheric NH3 concentration and NH3-rich
conditions dominated; thus, the change in iPM2.5 concentration was not sensitive to the
change in NH3 concentrations. To understand the formation of iPM2.5 as impacted by AFOs
NH3 emissions, the response of iPM2.5 to NH3 concentrations near an egg production farm
in the southeastern U.S. was studied [34]. The NH3 concentrations and iPM2.5 chemical
compositions measured at in-house and ambient locations were used as inputs in ISOR-
ROPIA II model to simulate the responses of iPM2.5 to the concentrations of precursor gases,
T, and RH. It was confirmed that the most significant reduction in iPM2.5 could be achieved
by the reduction in total H2SO4 instead of total NH3. It was also suggested that in NH3-rich
areas, NH3 was in excess to neutralize the acidic gases and the formation of the iPM2.5 was
limited by the availability of acidic gases [34]. The changes in the partitioning of NH3-NH4

+

caused by the changes in precursor gases may vary under different ambient conditions in
response to the unique atmospheric chemical conditions and local meteorology; thus, more
efforts are needed to investigate the partitioning of NH3-NH4

+ [35–37].
The effects of changes in total H2SO4 (aerosol), total NH3 (gas + aerosol), and total

HNO3 (gas + aerosol) on iPM2.5 concentrations have been studied in the southeastern
U.S. from 1998 to 2004 under the Southeastern Aerosol Research and Characterization
(SEARCH) network. It was reported that the formation of NO3

− was limited by the
availability of NH3 in 1998–1999 [38]. Another study also indicated that the combination of
the reductions in total H2SO4 and total HNO3 was more effective to decrease iPM2.5 mass
concentration in 1998–2001 [39]. Reduction in total H2SO4 was more effective in decreasing
iPM2.5 concentrations in 2004 [40]. Formation of iPM2.5 was limited by the availability
of NH3 in rural-forest and coastal areas of the southeastern U.S. in 2004 [41]. While the
above research provides fundamental understanding of secondary iPM2.5 formation, the
implementations of new regulations [42–44] led to the temporal changes in precursor
gases emissions in the southeastern U.S.; thus, the responses of iPM2.5 concentrations and
partitioning of NH3-NH4

+ to the changes in total H2SO4, total NH3, and total HNO3 may
also change over time [45]. The objective of this research is to investigate the partitioning of
NH3-NH4

+ in urban and rural areas of the southeastern U.S. under different meteorological
conditions using the latest field measurements of iPM2.5 and precursor gases. The research
findings may provide further insights to develop effective PM2.5 control strategies.
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2. Materials and Methods
2.1. Data Acquisition and Processing

This research utilized the 24 h particle-phase measurements and 1 h average gas-
phase measurements from the SEARCH network [46] (Figure 1). For 24 h measurements,
the chemical compositions of PM2.5 were measured using filter-based Federal Reference
Method (FRM), and 1 h average measurements were converted from 1 min or 5 min contin-
uous measurements (Table S1); the detailed information about measurement techniques
and detection limits can be found in SEARCH network literature [46]. The NH3 gas con-
centration measurements were available at five sites named YRK, JST, CTR, BHM, and
OLF in 2012–2016; thus, the responses of the partitioning of NH3-NH4

+ to the changes in
precursor gases were investigated at these five sites. The dataset includes some NH3 values
that are either negative or below the detection limit. The negative values were excluded
from data analysis, while the values below the detection limit were replaced with half of
the detection limit [47,48].
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2.2. Investigation of the Partitioning of NH3-NH4
+

The partitioning of NH3-NH4
+ was investigated using ISORROPIA II [27]. The model

performance evaluation was performed in another study; thus, it will not be further
elaborated on. In this research, 10% to 90% reductions in total NH3, total H2SO4, and
total HNO3 at the five sites in four seasons were used to investigate the responses of
iPM2.5 (NH4

+ + NO3
− + SO4

2−) to the changes in precursor gases in 2012–2016, spring
and fall results are the transition case scenarios between summer and winter; thus, only
summer and winter results are reported and discussed here. Moreover, only the gas-particle
partitioning processes are considered, other processes such as emissions, dispersion, and
dry and wet depositions are thus not included in this research.

The concentrations of iPM2.5 and NH4
+ under different total NH3, total H2SO4, and

total HNO3 concentrations in four seasons were simulated using 24 h average data at the
five sites. The gas-phase NH3 molar fraction (NH3/NHx) in Equation (1) [49,50] was used
to study the effects of changes in precursor gases on the partitioning of NH3-NH4

+.

NH3/NHx = [NH3]/([NH3] + [NH4
+]) (1)

Gas ratio (GR) in Equation (2) [25,51] was calculated to study the effects of changes in
precursor gases concentrations on the atmospheric chemical conditions, diurnal variation
of iPM2.5 and partitioning of NH3-NH4

+.

GR = ([TA] − 2 × [TS])/[TN] (2)

where [TA] is the sum of molar concentrations of NH3 and ammonium (NH4
+) (in the unit

of µmol m−3); [TS] is the sum of molar concentrations of SO4
2−, bisulfate (HSO4

−), and
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H2SO4 (in the unit of µmol m−3); and [TN] is the sum of molar concentrations of HNO3
and nitrate (NO3

−) (in the unit of µmol m−3).
The pH [52] was calculated to study the acidity of the inorganic aerosol.

pH = − log10
1000γH+H+

air
W

(3)

where γH
+ is the hydronium ion activity coefficient, which is set as unity; Hair

+ (µg m−3)
is the hydronium ion concentration in volume of air; and W (µg m−3) is particle water
concentration associated with inorganic aerosol. Both Hair

+ and W are from ISORROPIA II
model output.

2.3. ISORROPIA II Model

The performance of ISORROPIA II for predicting inorganic aerosols in the southeast-
ern U.S. was investigated in another research [53] and the ISORROPIA II model predicted
the concentrations of various compositions of iPM2.5 well.

For this study, the iPM2.5 was assumed to be internally mixed, and the thermodynamic
equilibrium was also assumed to be established instantaneously [29]. The ISORROPIA II
allows the user to specify the problem type (forward or reverse) and thermodynamic state
(stable or metastable). In this study, ISORROPIA II is set as forward type, which requires
the concentrations of total NH3 (gas + aerosol), total HNO3 (gas + aerosol), and total H2SO4
(aerosol) as the model input. The metastable thermodynamic state was selected in this
research [15,32].

2.4. Multiple Linear Regression Model

The multiple linear regression (MLR) model was constructed to examine the response
of NH4

+ to various factors. Step-wise model selection method based on the Bayesian
information criterion (BIC) was used to select the best fitting model from Equation (4):

NH4
+ = β0 + βi × xi + interaction terms + quadratic terms + εi (4)

where xi are iPM2.5 chemical components and gaseous pollutants including SO4
2−, NO3

−,
Ca2+, Mg2+, K+, Na+, Cl−, NH3, and HNO3, ambient T, and RH. Interaction terms include
up to two factors. All the gas- and particle-phase pollutants were converted in the unit of
µg m−3, T was in ◦C, RH was in %. The 24 h average Cl−, K+, Na+, Mg2+, Ca2+, NH4

+,
SO4

2−, and NO3
− data and 1 h average T, RH, NH3, and HNO3 data were available at the

BHM site (2011–2016), CTR site (2012–2016), JST site (2010–2016), YRK site (2008–2016),
OLF site (2013–2016), and OAK site (2010). The MLR model was built in two periods:
2008–2011 and 2012–2016. The best fitting MLR models vary in space and time and are
only used to aid in the investigation of partitioning of NH3-NH4

+.

3. Results and Discussion
3.1. Statistical Characterization of the Field Measurement Data

The statistical summaries of iPM2.5 precursor gases, nonvolatile cations (NVCs), T
and RH at six sites in two periods (2008–2011 and 2012–2016) are shown in Tables S2–S10.
Tables S2–S10 reveal the seasonal variations of different precursor gases such as H2SO4,
HNO3, HCl, NH3, and NVCs such as Na+, K+, Mg2+, and Ca2+ as well as T and RH at the
six sites of the SEARCH network. In general, T and RH were both lowest in winter and
highest in summer (see the Supplementary Materials). The concentration of total H2SO4
was higher in summer than the other seasons at the six sites. The concentrations of total
NH3 and total HNO3 did not exhibit a distinct seasonal pattern, which may be caused by
spatial variation of emissions sources at the six sites of the southeastern U.S.

The concentrations of iPM2.5 chemical compositions and precursor gases were also
measured in different locations of the world. The aerosol composition measurements
and source apportionment studies in a coastal city of eastern China during 2018–2019
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indicated that inorganic aerosols accounted for a large portion of PM2.5 mass concentration
and local steel plant emissions were dominated by NH4)2SO4 and ammonium bisulfate
(NH4HSO4); in addition, the iPM2.5 concentrations at the coastal city of China were much
higher than that measured in the southeastern U.S. [54]. The inorganic composition of
PM2.5 and precursor gases were measured at Seoul and Deokjeok Island of South Korea in
2014, where the haze aerosols mainly consisted of inorganics (e.g., NH4

+ salts); ISORROPIA
II model simulations implicated that the addition of SO4

2− into the aerosols during the
transport process increased the mass concentrations of NH4NO3, and another finding is
that the concentrations of total NH3, total HNO3, and total H2SO4 were also higher than
the measurement values in the southeastern U.S. during the same period of time [55].
Moreover, a newly developed method was used in Brno, Czech in 2018, to simultaneously
measure the concentrations of gaseous NH3 and aerosol NH4

+ with a time resolution
of 1 s; the measurement results indicated a seasonal variation for NH3 and NH4

+ with
higher NH3 concentrations in summer, and higher NH4

+ concentrations in winter; the
ratio of NH3/NH4

+ indicated the dominance of NH3 and NH4
+ in summer and winter,

respectively [56]. The difference in local to regional emissions sources contributed to the
spatial and temporal variations of iPM2.5 and partitioning of NH3-NH4

+ across the world.

3.2. Seasonal Simulation of Partitioning of NH3-NH4
+

The responses of iPM2.5, NH4
+, and NH3/NHx to the changes in total NH3 and total

HNO3 in 2012–2016 are presented in Figure 2 and Figures S1–S4.
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As can be seen in Figures 2 and S1–S4, the formation of iPM2.5 and the partitioning
of NH3-NH4

+ were sensitive to the changes in total NH3 concentration when total NH3
concentration was reduced at least 20% or when total HNO3 concentration was not reduced
in 2012–2016. Although the YRK, JST, BHM, and OLF sites were all under NH3-rich
condition, the pH analysis indicated that inorganic aerosols were still acidic (Table S11)
instead of full neutralization. The reduction in total NH3 concentration could decrease
the gas-phase NH3 concentration but could not decrease the formation of iPM2.5. When
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changes in total NH3 and total HNO3 in winter than in the other seasons. The semi-volatile
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As can be seen in Figures 3 and S5–S8, the formation of iPM2.5 was very sensitive to the
change in total H2SO4 concentration in summer and winter. The reduction in total H2SO4
can effectively decrease the concentration of iPM2.5, and more NH3 stayed in the gas-phase
in this process. The responses of NH4

+ to the change in total H2SO4 may exhibit two
different regions. The less reduction in total NH3 and the more reduction in total H2SO4
were achieved, the more sensitive the NH4

+ responded to the change in total H2SO4. This
can be explained that when NH3 was not adequate to react with both HNO3 and H2SO4,
the reduction in H2SO4 may free some NH3 associated with SO4

2−, and the available NH3
can react with HNO3 to form NH4NO3, which lead to the decrease in SO4
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increase in NO3

− salts. Thus, NH4
+ concentration may remain at approximately the same

level. Furthermore, when greater than 80% reduction in total H2SO4 was achieved, the
reduction in total H2SO4 may lead to the increase in iPM2.5 at the JST (Figure S5), CTR
(Figure S6), and OLF (Figure S8) sites in winter.

The formation of iPM2.5 was more sensitive to the change in total H2SO4 in summer
than in winter. This can be explained by the dominance of SO4

2− salts in iPM2.5 in summer.
The more intense summer solar radiation enhanced the transformation of SO2 to SO4

2− [24].
Moreover, as the high T in summer did not facilitate the formation of NH4NO3, the decrease
in SO4

2− salts caused by the reduction in total H2SO4 will not be offset by the increase in
the NO3

− salts.

3.3. Diurnal Simulation of the Partitioning of NH3-NH4
+

In addition to the investigation of the partitioning of NH3-NH4
+ in four seasons, the

partitioning of NH3-NH4
+ was also studied in different time of the day at the five sites in
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2012–2016, the results of YRK site are shown in Figures 4–6, the results at the other sites are
shown in Figures S9–S20.
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Figures 4–6 indicate that the reduction in total NH3 and total HNO3 may not be
effective in reducing the concentration of iPM2.5 unless more than a 60% reduction can
be achieved. The reduction in total NH3 and total HNO3 can only lead to a decrease in
NH4NO3, while the SO4

2− concentration remained at approximately the same level. The
reduction in total NH3 concentration reduced both NH3/NHx and GR, and more NH3
partitioned towards particle-phase. The reduction in total HNO3 led to the increase in
both NH3/NHx and GR, and more NH3 remained in the gas-phase. Overall, Figures 4–6
illustrate that the reductions in total NH3 and total HNO3 are ineffective for controlling
iPM2.5 concentration.

Figure 6 shows that the reduction in total H2SO4 was more effective in reducing the
concentrations of iPM2.5; however, the reduction in total H2SO4 may lead to the increase in
NO3

− concentration, especially at the CTR and OLF sites (Figures S14 and S20) (e.g., at
12:00 p.m., 80% total H2SO4 reduction at the CTR site (1.50→0.30 µg m−3) resulted in the de-
crease in iPM2.5 (2.11→0.66 µg m−3) and increase in NO3

− (0.03→0.16 µg m−3)). The YRK,
JST, and BHM sites were all in NH3-rich area, and the reduction in total H2SO4 may free
some NH3 associated with H2SO4, however, the increase in gas-phase NH3 was not able to
transform more HNO3 into particle-phase at NH3-rich sites (Figure 6, Figures S11 and S17).
While at the CTR and OLF sites (Figures S14 and S20), the increase in gas-phase NH3 may
change the partitioning of HNO3-NO3

− toward particle-phase when the NH3 is not in
excess to neutralize both HNO3 and H2SO4. The reduction in total H2SO4 can also increase
both NH3/NHx and GR, which indicates that more NH3 stayed in the gas-phase rather
than in the particle-phase in this process.

Reduction in total H2SO4 concentration may lead to a significant reduction in iPM2.5;
thus, it was more effective than reducing total HNO3 and total NH3 concentrations to
reduce iPM2.5 concentration. However, the reduction in total H2SO4 concentration may
also increase the concentration NO3

− at the CTR and OLF sites (Figures S14 and S20). Thus,
the future reduction in iPM2.5 may necessitate the coordinated reduction in both H2SO4
and HNO3 in the southeastern U.S.
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The YRK site was located in a rural area impacted by the NH3 emissions from AFOs,
while BHM and JST sites were located in the area impacted by industrial emission sources.
The CTR site was located in a forest area and the OLF site was located in a suburban area.
The spatial variation of the responses of the partitioning of NH3-NH4

+ to the reductions
in precursor gases implicated the important impact of AFOs NH3 emissions. At the
agricultural rural site—YRK site, the NH3 emissions from AFOs led to elevated NH3
concentration, which was in excess to neutralize acidic gases, and the formation of NH4NO3
was not affected by the reduction in total H2SO4 [36].

3.4. Multiple Linear Regression Model

The effects of the various predictor variables (e.g., SO4
2−, NO3

−, NH3, etc.) on the
response variable (NH4

+) were estimated using regression analysis. The MLR models for
the responses of NH4

+ to various factors in two periods (2008–2011 and 2012–2016) at the
six sites were shown in Tables 1, 2 and S12–S18.

Table 1. The summary of final MLR model coefficients at the YRK site from 2008 to 2011.

Predictors Coefficients SE t Value Pr > |t|

Intercept (β0) 0.08 0.033 2.39 0.018
SO4

2− (β1) 0.33 0.009 37.11 <2 × 10−16

NO3
− (β2) 0.25 0.018 13.64 <2 × 10−16

(SO4
2−-3.27)2 (β3) −0.008 0.001 −5.74 4.5 × 10−8

Mg2+ (β4) −3.83 1.45 −2.65 0.0089
Residual standard error: 0.1672 on 161 degrees of freedom. Multiple R-squared: 0.94. Adjusted R-squared: 0.94.
F-statistic: 636.3 on 4 and 161 DF, p-value: <2.2 × 10−16.

Table 2. The summary of final MLR model coefficients at the YRK site from 2012 to 2016.

Predictors Coefficients SE t value Pr > |t|

Intercept (β0) 0.028 0.027 1.03 0.31
SO4

2− (β1) 0.38 0.013 29.58 <2 × 10−16

NO3
− (β2) 0.067 0.032 2.12 0.036

(NO3
−-0.41)2 (β3) 0.155 0.028 5.62 1.23 × 10−7

Na+ (β4) −0.54 0.132 −4.1 7.48 × 10−5

T (β5) −0.0025 0.00149 −1.67 0.097
(Na+-0.04)2 (β6) 0.71 0.29 2.43 0.0166

HNO3 (β7) −0.045 0.027 −1.66 0.0995
K+ (β8) 0.87 0.38 2.31 0.0226

SO4
2−:T (β9) −0.0029 0.000684 −4.24 4.39 × 10−5

T:HNO3 (β10) 0.0045 0.0014 3.25 0.00149
Residual standard error: 0.05419 on 122 degrees of freedom. Multiple R-squared: 0.97. Adjusted R-squared: 0.97.
F-statistic: 443.7 on 10 and 122 DF, p-value: <2.2 × 10−16.

In the linear regression analysis, the interaction terms may cause serious multi-
collinearity problem, which will provide redundant information [58]; thus, the model
diagnostics may exclude the interaction terms when the variance inflation factor (VIF) for
interaction term is greater than 10. The selection of predictor variables varied at different
sites in different periods.

Both SO4
2− and NO3

− were included in the regression models at the six sites in
two periods. The iPM2.5 mainly consisted of NH4

+ salts, most of the NH4
+ cations were

associated with SO4
2− and NO3

− anions. The coefficients for both SO4
2− and NO3

− were
positive, which indicated the positive correlation between cation-NH4

+ and anions-SO4
2−

and NO3
−. The positive regression coefficients (0.29–0.38) for SO4

2− were greater than the
coefficients for all the other predictor variables. The dominance of particle-phase SO4

2−

salts led to the significant relationship between NH4
+ and SO4

2−; the changes in SO4
2−

can cause corresponding changes in NH4
+. Some centered quadratic terms were included

in the model as well, the quadratic terms indicated that the direction of the relationship
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between NH4
+ and SO4

2−, NO3
− may change as SO4

2− and NO3
− concentrations changed.

The complex relationship between NH4
+ and SO4

2−, NO3
− may be caused by reactions

between NH3 and H2SO4, HNO3, the dynamic changes in particle-phase SO4
2−; NO3

−

may also change the dynamic reactions of NH3 and various acidic gases (e.g., the free NH3
from the reduction in SO4

2− may react with HNO3 to form NH4NO3).
As for the gas-phase NH3, the BIC step-wise model selection method did not include

NH3 in the MLR model at the JST site in 2010–2011, at the YRK site in 2008–2011 and
2012–2016, and at the BHM site in 2012–2016. The exclusion of NH3 indicated that NH3 may
not limit the formation of NH4

+ salts at these three sites. Specifically, NH3 was excluded
from the regression model from 2008 to 2016 at the YRK site. The NH3 emissions from
AFOs contributed to the abundant NH3 gas at the YRK site; thus, the NH3-rich conditions
dominated. While for the CTR site (Table S16) in 2012–2016, OAK site (Table S17) in 2010,
and OLF site (Table S18) in 2013–2016, the NH3 was included in the regression model and
the coefficients were positive. Especially, at the OAK site, coefficient of NH3 was 0.16,
which was higher than the other sites. The positive coefficients suggested that the higher
NH3 led to increased formation of NH4

+ salts at these sites.
As for the gas-phase HNO3, it was included in the regression model at the YRK site in

2012–2016, and at the BHM site in 2011, and the regression coefficients for HNO3 in these
two models were negative. The semi-volatile characteristic of NH4NO3 may explain the
negative coefficient. Under ambient conditions, such as high T and low RH, the NH4NO3
may decompose into gas-phase NH3 and HNO3, the increase in gas-phase HNO3 leads
to a decrease in NH4

+. The interaction term—T:HNO3 at the YRK site, may indicate the
dependence of the formation of NH4NO3 on ambient conditions.

As for ambient meteorological conditions—T and RH, only T was included in the
regression models at the JST site in 2012–2016 (Table S13), at the YRK site in 2012–2016
(Table 2), at the BHM site in 2011 (Table S14) and 2012–2016 (Table S15), and at the OAK site
in 2010 (Table S17). The RH was excluded from all the regression models. The coefficients
for T were all negative, which indicated that the increase in T led to the decrease in NH4

+,
but the coefficients for T were smaller compared to the coefficients for the other predictor
variables. The smaller coefficient for T may indicate the relatively weak impact of T on
the NH4

+.
As for the NVCs and Cl−, although the concentrations were lower compared with

the other gas- and particle-phase species, one of Mg2+, Na+, or Cl− was included in the
regression models, this indicated that the NVCs and Cl− were important factors affecting
the NH4

+ concentration. The coefficients for Mg2+ may exhibit some large values (e.g.,
−6.69 and −3.83), which indicated that there is a strong negative correlation between
Mg2+ and NH4

+. However, ISORROPIA II model simulation implicated that the low
concentration of Mg2+ may not lead to a significant change in NH4

+ concentration, which
is against MLR model results.

4. Conclusions

In this research, the effects of changes in precursor gases on the formation of iPM2.5 as
well as the partitioning of NH3-NH4

+ were investigated using ISORROPIA II modeling
approach with inputs of field measurements of gas-phase and particle-phase pollutants
and meteorological data in the SEARCH network. The results indicated that the reduction
in total H2SO4 was more effective to decrease the formation of iPM2.5, especially under
NH3-rich conditions. In addition, the reduction in total H2SO4 may change the partitioning
of NH3-NH4

+ towards gas-phase. Moreover, the reduction in total H2SO4 may lead to
an increase in NO3

− when NH3 was not in excess to neutralize the acidic gases. Thus,
the future reduction in iPM2.5 may necessitate the coordinated reduction in both H2SO4
and HNO3 in the southeastern U.S. It was also discovered that the response of iPM2.5 to
the change in total H2SO4 was more sensitive in summer than winter. The dominance of
SO4

2− salts in iPM2.5 and high T in summer did not facilitate the formation of NH4NO3,
the decrease in SO4

2− salts caused by the reduction in total H2SO4 will not be offset by the
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increase in the NO3
− salts. The significant NH3 emissions from AFOs in the agricultural

rural area had great impact on the partitioning of NH3-NH4
+, and the NH3 emissions from

the AFOs led to the elevated NH3 concentration, which was in excess to neutralize acidic
gases. The formation of NH4NO3 was not affected by the reduction in total H2SO4 in an
agricultural rural area. The BIC stepwise model selection determined the MLR model to
predict NH4

+ at six sites, there was a strong positive correlation between cation-NH4
+

and anions-SO4
2− and NO3

−. The NH3 was excluded from the regression model at the
YRK site due to the abundant NH3 emitted from AFOs, and the NVCs and Cl− were the
significant impact factors affecting NH4

+ concentrations.
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