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Figure S1. Diurnal box-whisker plots of relative humidity (a,b), and temperature (c,d) for the winter and summer periods,
respectively. Boxes are the 25th, 50th and 75th percentiles, whiskers are the 10th and 90th percentiles, while dot markers
are average values.
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S1. PMF Overview
51.1 Theory

Source apportionment of the obtained mass spectra makes use of a bi-linear model,
representing the obtained OA mass spectra matrix X, in which data in each column j are
measured intensities for a given m/z, and data in each row i represent a single mass spec-
trum obtained at a given time. The bi-linear model analyses the matrix X to the linear
combination of two static matrices G and F:

X=GF+E

where E is the model residual matrix. In this case PMF was applied [1], meaning that the
resulting matrices are required to include non-negative values only, which makes sense
when dealing with concentrations in the atmosphere. The number (p) of columns in G, or
for that matter, the number of rows in F, represent the predefined number of factors, while
each column in G represents the time-series of a factor and each row in F is the factor’s
profile, effectively the factor’s mass spectrum.
A least squares algorithm is implemented, which minimizes the quantity Q:
m n e 2
r53e

==\
where ejj are the model residuals and oij are the corresponding measurement uncertainties
of the model input matrix X of size m x n. When assessing model performance, the rela-
tive change in the normalized Q over its expected value Qe is monitored, where:

Qexp=n'm_p'(m+n)

Given that model solutions exhibit rotational ambiguity [2], the ME-2 solver, as im-
plemented in the SoFi software package [3] provides tools to address the issue. Introduc-
ing a priori information, e.g. predefined factor profiles, or predefined factor time-series,
significantly reduces this rotational ambiguity [4]. In this study we are using the a-value
approach to introduce these a priori information, thus constraining the resulting matrices
F and/or G. The a-value is a measure of the extent to which the resulting profile or time
series is allowed to vary from the ones introduced as parts of the constrained matrices G
or F:

i solution = Yi ta-g;
fj,solution = f] ta- f]

where g and fare a column of G or a row of F respectively. The a-value can vary between
0 and 1 representing a fully constrained and a fully unconstrained result respectively.

51.2 Applied Strategy

For both seasons, PMF was initialized with no factor profile constrains, exploring
solutions ranging from 3 to 8 factors. For the winter dataset, the 3-factor unconstrained
PMF revealed 2 primary factors— one associated with fossil fuel combustion, the other
with biomass burning — and a secondary OA factor (Figure Sla). The OOA factor showed
significant diurnal variability peaking in the evening, thus exhibiting important influence
from RWB emissions. While the BBOA factor had high correlations with BCeb (12 above
0.8), the HOA factor’s correlation to BCit was rather low with 12 values around 0.3. The
later led to the exploration of the 4-factor solution. The 4-factor solution revealed another
HOA-like factor, with limited variability between seeds and runs, consistently exhibiting
highly similar relative intensity patterns in the mass spectra, with pronounced contribu-
tions to m/z 41 and 43 and lower peaks at the rest of the alkane and alkene related frag-
ments (e.g. 55, 57 etc.) as illustrated in the spectrum of factor four in Figure S2. This factor
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appeared as slightly more oxidized, with higher contributions at m/z 44 implying atmos-
pheric processing and was also present in runs within the 5 and 6 factor solutions.
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Figure S2. Factor profiles of wintertime unconstrained PMF solutions for (a) 3, (b) 4, and (c) 5 factors
respectively.

Inspecting factors 3 and 4 in Figures S2c and S2b, respectively, the factor’s small dif-
ference in intensities between the m/z 55 and 57 ions, points away from a cooking source,
a conclusion further corroborated by plotting the measured fs5 over fs7 scatter plot [5] .
When coloring the data points according to the time of day there is no evident shift of data
points towards the COA PMF and “cooking source” lines during typical meal hours (Fig-
ure S3). This observation, also present in summertime data, lead to the adjustment of the
implemented PMF strategy, thus not applying any COA factor constrains in subsequent
analysis.
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Figure S3. Scatter plot of fss vs fs7 for wintertime data in Piraeus according to Mohr et al. [5]. Data
points are color coded according to time of day. Red and black lines correspond to linear fits of fss
and f57 extracted from HOA COA factors as well as spectra from cooking and traffic emission studies
grouped accordingly.

Furthermore, in winter, while exploring the unconstrained runs and moving to more
than 5 factors, factor splitting behavior started to emerge, while the stability of the solu-
tions was hindered with large variability observed for resulting profiles between different
seed runs.

As a next step, constrains were introduced to the primary OA factors by implement-
ing the a-value approach [6]. Initially, only the HOA traffic-related factor was constrained
using the factor profile acquired by Crippa et al. during wintertime in Paris [7]. The a-
values applied ranged from 0.02 to 0.2. The applied constrain improved substantially the
observed correlation of the HOA traffic-related factor to BCs, bringing r? values close to
0.5 while all 4 and 5 factor runs incorporated the second HOA-like factor, which retained
its distinct profile among different seed runs. It should be mentioned here that the 3-factor
solution, while constraining the HOA traffic factor, other than exhibiting larger Q/Qexp
values, showed a clear structure in the diurnal variation of both the Q value as well as the
residuals of key variables (e.g. m/z 44 or m/z 60) indicating an inferior performance of the
PMF model (Figure S4a and S4b). When exploring the diurnal variability of residuals for
the summer dataset, a similar behavior was observed (Fig. S4c and 54d). Consequently,
we placed the focus on solutions with at least 4 factors for both measuring periods.
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Figure S4. Diurnal variability of the PMF model residuals and the value Q for the variable m/z 44 in the case of (a) a 3-
factor solution and (b) a 4-factor solution when constraining an HOA factor for wintertime and in the case of 3- factor (c)
and 4-factor (d) solution for summertime respectively.
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In winter, given the fact that when constraining the HOA factor only, the resulting
unconstrained BBOA factor was lacking stability among different seeds runs, we intro-
duced constrains using the BBOA factor profile derived in Ng et al. [8]. The a-values used,
ranged from 0.2 to 0.6. Different combinations of a-values for the HOA and BBOA factors
were tested and the resulting HOA and BBOA time-series were assessed in terms of their
correlation with BC« and BCrb, respectively. Exploring 4-factor solutions with both BBOA
and HOA constrained, while the second HOA-like factor persisted, appearing in most of
the examined seed runs, the remaining factor, largely resembling an OOA factor in terms
of mass spectra, seemed to be highly affected by primary sources, exhibiting large peaks
during evening hours and tracking the BBOA factor’s nighttime variability related to res-
idential heating. In order to tackle this behavior, 5-factor solutions were consequently ex-
plored. While keeping the two aforementioned constrains, in the majority of the 5-factor
runs, together with than the second HOA-like factor and a highly oxygenated OOA factor,
a seemingly less oxygenated factor was revealed, with considerable contributions at the
m/z 60 fragment. Most of the nighttime elevated concentrations were attributed to this less
oxidized OOA factor. Other than the Q/Qexp values, behavior of the residual diurnal cy-
cles improved, while the 3 unconstrained factors of the 5-factor solution showed low var-
iability among different seed runs, supporting the choice of the 5-factor solution in winter.
Eventually, the selected final wintertime 5-factor solution includes two HOA factors
(HOA-1 & HOA-2) a BBOA, a less oxidized and a more oxidized (LO-OOA and a MO-
OO0OA) factor.

In summer, after constraining the traffic-related HOA factor with the same anchor
profile and going through the 4-factor solutions, a HOA-like factor similar to the one
found in the winter dataset (Fig S4), could be observed in the majority of the different seed
runs. This HOA-like factor was characterized by limited stability, mostly in terms of the
m/z 44 contribution to its profile, which for some of the runs was as high as the respective
contributions of m/z 43 and 41. When m/z 44 contributions were rather low, the factor
showed similarities with the HOA-2 factor obtained for wintertime (r2~0.8). In order to
extract this HOA-like factor more effectively, we used the wintertime HOA-2 factor pro-
file as an anchor, applying rather loose a-values (0.1 — 0.3). No BBOA-resembling factor
could be identified for the summer season, since no substantial contribution from the m/z
60 and m/z 73 fragments was observed. In fact, an average feo value of 0.27% was recorded
for the summer data, in contrast to the 0.7% average foo measured in winter. Therefore, a
4-factor solution was chosen, incorporating two HOA factors, a less oxidized and a more
oxidized OOA factor
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Figure S5. PMF run constraining an HOA factor (a-value=0.1) for the summertime period. A second
HOA like factor with major contributions at m/z 41 and 43, can be spotted in position 4.
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Concentration (ug m)

S0,7 ACSM (ug m)

Concentration {pg m”)

NO, ACSM (ug m”)

Table S1. Brief overview of the constrains and model performance for the selected PMF solutions
in the two measurement periods.

Winter Summer
Number of Factors 5 4
Modeled vs. Measured OA 2 0.99 0.99
Modeled vs. Measured OA Slope 0.99 1.03
HOA-1 Anchor Profile Crippa et al., 2013 Crippa et al., 2013
HOA-1 a-value 0.02 0.1
HOA-2 Anchor Profile - This Study
HOA-2 a-value - 0.2
BBOA Anchor Profile Ng et al,, 2011 -
BBOA a-value 0.6 -
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Figure S6. Comparison of 24 h averaged concentrations determined with the on-line instruments and from filter-based
analyses, for major fine aerosol species in Piraeus, for the two campaigns combined. Daily averaged time-series for both
seasons are also included. (a) SO+*~ PM2sfilters, (b) OC PMzs filters, (¢) NOs PMzsfilters, (d) EC PM2sfilters.
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mertime (b) measurements.
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Figure S8. Correlation plot for major species, source factors, BC constituents, NOx and SOz during the winter period for
daytime (a) and nighttime data (b).
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daytime (a) and nighttime data (b).
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Figure S10. Bivariate polar wind plots for the effects of wind direction and wind speed (radial axis in m s') to concentra-
tions of OA (a), BCw (b), BCtt (c), sulfate (d) as measured at P1 and NOx (e) and SOz (f) as measured at PEI-1, during the

winter period.
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Figure S11. Annular wind plots for the effects of wind direction per hour of the day (radial axis, increments by 4 hr) to
concentrations of OA (a), BCwb (b), BCt (c), sulfate (d) as measured at P1 and NOx (e) and SO: (f) as measured at PEI-1,

during the winter period.
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Figure S12. Potential Source Contribution Function calculations for sulfate during winter (a) and summer (b) as well as
MO-OOA for winter (c) and summer (d), respectively.
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Figure S13. Bivariate polar wind plots for the effects of wind direction and wind speed (radial axis in m s) to concentra-
tions of OA (a), BCt(b), sulfate (c) as measured at P1 and SOz (d), CO (e), NOx (f) as measured at PEI-1, during the summer

period.
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Figure S14. Annular wind plots for the effects of wind direction per hour of the day (radial axis, increments by 4 hr) to
concentrations of OA (a), BCt (b), sulfate (c) as measured at P1 and SOz (d), CO (e), NOx (f) as measured at PEI-1, during

the summer period.



Atmosphere 2021, 12, 1686 15 of 20

7152 — HOA-1 — BCff o

8 % } 3 M}J 02

T 0- 3 ; E 0
2 254 ﬂ
'e) ]
2 - e : .M-.ﬂ'\ JM"M MLA..M NW\.J

&25] —BBOA —BOBD| :

@ ]

B ] ‘

0_ .

S 504 10-00A — NO; — Gf =
Q >
9 0- “&M*H*AAMJ, ; . |

Sjo ] MOOOASOS NS 10

12
v 8 w
<
g 4 5
0
o]
<
I ML iy
T g:v-flrj ‘mw\)\“ M\M‘Mw IV b
< 8- B
olg LO-O0A — NO, | 5 >
O ;| O
i 4 v — 1 <,
3 gm«wme MM&L \&uﬂwmks e
& 10 — MO-00A — $0,° =10, 4,
& 57 b NN INE uﬂa—sE S
2 e A b A Oy 4 WQ”NV }f v
0- T | T T T T “: — 0
13/6 17/6 21/6 25/6 29/6 3/7 7/7
Date

(b)
Figure S15. Time series of the PMF factors, along with key ACSM and aethalometer measurements for winter (a) and
summer (b) campaigns.



Atmosphere 2021, 12, 1686 16 of 20

| I i 1

HOA-1 Piraeus (winter) 0991 0992

HOA-1 Piraeus (summer) 1 0989
HOA Athens Cold period 0989 1

HOA Athens Warm period 0.975 0.992

HOA Ng et al., 2011 0979 0.9 982 0. : 0.95

HOA Florou et al., 2017 Athens
HOA Kostenidou et al., 2015 Athens
HOA Florou et al., 2017 Patras
HOAGilardonietal2016Bologna
HOA Lanz et al., 2009 Zurich

HOA Crippa et al., 2013 Paris

HOA Aijala et al., 2017 Hyytiala
Crippa et al., 2014

0.9

0.85

(@)

BBOA Piraeus

BBOA Stavroulas et al., 2019
BBOA Ng et al., 2011

BBOA Florou et al., 2017 Athens
BBOA Florou et al., 2017 Patras
BBOA Gilardoni et al., 2016
BBOA Bougiatioti et al., 2014
BBOA Lanz et al., 2009 Zurich
BBOA Crippa et al., 2013 Paris
BBOA Crippa et al., 2014
BBOA Kostenidou et al., 2013

Figure S16. Correlation plots for the primary factor mass spectra HOA (a) and BBOA (b) obtained at Piraeus vs. a selection
of published mass spectra in Greece and elsewhere [8-14].
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Figure S17. Correlation plots for the secondary factor mass spectra MO-OOA and LV-OOA (a), LO-OOA and SV-OOA
(b) obtained at Piraeus vs. a selection of published mass spectra in Greece and elsewhere [8-15].
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Figure S18. Bivariate polar plots for conditional probabilities of threshold exceedance (75th percentile), for fractional con-
tributions of OA component in Piraeus, during the winter period. (a) HOA-1, (b) HOA-2, (c) BBOA, (d) LO-OOA, (e) MO-
OOA.
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Figure S19. Bivariate polar plots for conditional probabilities of threshold exceedance (75th percentile), for fractional contributions
of OA component in Piraeus, during the summer period. Displaying the 50th — 95th percentile range for (a) HOA-1, (b) HOA-2, (c)
LO-O0A, (d) MO-OOA.

Table S2. Abbreviation Table.

Abbreviation Meaning
AAE Absorption Angstrém Exponent
ACSM Aerosol Chemical Speciation Monitor
BB Biomass Burning
BBOA Biomass Burning Organic Aerosol
BC Black Carbon
BCrb Biomass Burning BC
BCr Fossil Fuel Combustion BC
COA Cooking Organic Aerosol
CPF Conditional Probability Function
EC Elemental Carbon
FP Factor Profile
GAA Greater Area of Athens
HDV Heavy-Duty Vehicles
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HOA Hydrocarbon-like Organic Aerosol
LO-OOA Less Oxidized Oxygenated Organic Aerosol
LV-OOA Low-Volatility Oxygenated organic Aerosol

MAAP Multi-Angle Absorption Photometer
MO-OOA More Oxidized Oxygenated Organic Aerosol
OA Organic Aerosol
ocC Organic Carbon

PMF Positive Matrix Factorization

POA Primary Organic Aerosol

PSCF Potential Source Contribution Function

RWB Residential Wood Burning

SOA Secondary Organic Aerosol
SV-O0A Semi-Volatile Oxygenated Organic Aerosol

WHO World Health Organization

ABCu “Urban” Enhancement of BC (BCet0nm,p1 — BCe37nm,p2)
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