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Abstract: Mexico approved amendments to its constitution in December 2013 that initiated transfor-
mational changes to its energy sector. This study developed a 2016 bottom-up emissions inventory for
volatile organic compounds (VOCs), nitrogen oxides (NOx), sulfur dioxide (SO2), carbon monoxide
(CO), and fine particulate matter (PM2.5) from upstream and midstream sector sources, including on-
shore and offshore well sites, gas flaring, natural gas processing facilities, and natural gas compressor
stations, throughout Mexican basins. Crude oil storage tanks at onshore oil well sites and venting
and fugitive sources at offshore oil production sites were the primary sources of VOC emissions. Key
contributions to NOx, CO, and PM2.5 emissions were from internal combustion engines at offshore
oil well sites and midstream operations. SO2 emissions were associated with onshore and offshore
gas flaring and boilers and process heaters at natural gas processing facilities. Application of the
inventory with the Comprehensive Air Quality Model with Extensions (CAMx) indicated that oil
and gas production operations could contribute to ozone and PM2.5 concentrations in Mexican and
U.S. states under favorable transport patterns. This study provides a foundation for assessing the
implications of Mexico’s future energy policies on emissions and domestic and cross-border air
quality and public health.

Keywords: Mexico; energy reform; oil; natural gas; emissions inventory; energy systems; ozone

1. Introduction

Mexico has been among the world’s major exporters of crude oil, which has been
crucial to its economy. Oil production peaked in 2004 with the supergiant Cantarell field
in the southern Gulf of Mexico but has declined by 50% since then [1] due to constraints
in investment resources and technical expertise required to fully exploit its hydrocarbon
resources [2]. Energy reform was part of the Pacto por México that required amendments
to the Mexican Constitution approved in December 2013 with secondary implementing
legislation in 2014 [2–4]. A significant outcome was the allowance for private and foreign
investment and participation under different contract modalities for oil and gas exploration
and extraction, which had previously been restricted to the state-owned oil company
Petróleos Mexicanos (Pemex), Mexico City, Mexico [2–4]. Between 2015 and 2018, Mexico
awarded more than 100 contracts to companies within Mexico and 19 other countries
for exploration and extraction of its onshore, shallow water, and deepwater hydrocarbon
resources [5], which remain the property of the nation [4]. Following a transition in
presidential administrations in December 2018, national priorities have emphasized energy
sovereignty and increasing oil production and refining capacity with the prioritization and
strengthening of Pemex [6,7].
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Mexico and other oil producing nations are challenged with navigating a complex en-
ergy landscape with global transitions toward renewable energy sources and decarboniza-
tion expected in the coming years [8]. Mexico unconditionally committed to reducing
greenhouse gas emissions by 22% and black carbon emissions by 51% by 2030 relative to
the baseline business-as-usual scenario as part of its Nationally Determined Contributions
from the Paris Agreement in 2015 under the United Nations Framework Convention on
Climate Change (UNFCCC) [9]. In 2018, Mexico issued federal guidelines for the preven-
tion and control of methane emissions from its hydrocarbons sector [10]. In November
2021, Mexico, and leading oil and gas producing nations such as the United States, Saudi
Arabia, Canada, Brazil, Iraq, and Nigeria, joined the Global Methane Pledge commitment
to reduce methane emissions by at least 30 percent from 2020 levels by 2030 [11].

These developments have implications for Mexico’s emissions profiles and air quality.
In addition to greenhouse gas emissions, oil and gas production is a source of volatile
organic compounds (VOCs), nitrogen oxides (NOx), sulfur dioxide (SO2), carbon monoxide
(CO), and particulate matter (PM), and can contribute to the formation of tropospheric
ozone [12–16]. These criteria pollutants and precursors present human health and eco-
logical risks [17–22]. A growing body of studies have focused on the spatial proximity of
populations to upstream oil and gas development and adverse birth, cardiovascular, res-
piratory, hematological, and immunological health outcomes [23–33]. Strategies aimed at
reducing greenhouse gas emissions have the potential to achieve co-reductions in common
emission sources of other pollutants such as VOCs [12].

This study developed a bottom-up emissions inventory for VOCs, NOx, SO2, CO, and
fine particulate matter (PM2.5) from upstream and midstream sector sources, including
onshore and offshore well sites, gas flaring, natural gas processing facilities, and natural
gas compressor stations for the 2016 base year across Mexican basins as a foundation for
assessing future national policies and oil and gas production activity. We found previous
bottom-up emissions estimates of these pollutants in Mexico within the public domain to be
limited and to differ in spatial coverage, emission sources, and temporal resolution [34–38].
Earlier inventories have also represented time periods with different oil and gas production
volumes in Mexico. The 2016 base year coincided with the National Collaborative Emissions
Modeling Platform developed by the U.S. Environmental Protection Agency (EPA) and
U.S. states [39]. The inventory was applied with the Comprehensive Air Quality Model
with Extensions (CAMx) to examine contributions of onshore and offshore oil and gas
producing regions in Mexico to ozone and PM2.5 concentrations in Mexican states and U.S.
border regions.

2. Methods
2.1. Upstream Emissions

Figure 1 shows the locations of 10,458 wells active during 2016 by basin [40]. Annual
oil and gas production volumes were 788,738 thousand barrels (Mbbl) and 2,127,142 million
cubic feet (MMcf) [40]. Offshore production in the shallow waters (<500 ft) of the Sureste
Basin, which include the Ku-Maloob-Zaap (KMZ), Cantarell, Abkatún-Pol-Chuc, and
Litoral de Tabasco fields, accounted for nearly 80% of total national oil production and 54%
of natural gas production [40]. Onshore oil production is located in the Sureste and Tampico-
Misantla basins. Most non-associated gas production occurs in the Burgos, Veracruz, and
Sureste basins [41], and accounted for 22% of domestic production in 2016 [42].

Bottom-up emissions estimates were developed using activity metrics and per unit
activity-based emission factors for the upstream and midstream sector sources addressed
in this study. For onshore basins in Mexico, locations and activity metrics, including
active well counts, oil and gas production volumes, and spud counts, were obtained from
Mexico’s National Hydrocarbons Commission (CNH) [40]. Activity metrics were mapped
to U.S. source classification codes (SCCs) associated with onshore oil and gas operations
(Table S1). An oil well was classified as having a gas–oil production ratio (GOR) <6000 cf/b
and conversely for a natural gas well [43]. Because well site equipment configurations
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across Mexican basins were not readily available, activity metrics for Mexico were applied
with emission factors developed for onshore basins in Texas that had similar operations
and hydrocarbon resources. Texas-based emission control assumptions were removed as a
conservative estimate. The Sabinas and Burgos basins share a common border with the
Western Gulf Basin, and primarily include legacy vertical wells producing natural gas
with no condensate production. Emission factors for these Mexican basins (Table S2) were
based on emission estimates in the U.S. Environmental Protection Agency (EPA) National
Emissions Inventory (2014NEIv2) [44] normalized by oil and gas production from the EPA
Oil and Gas Emission Estimation Tool [45] for the Western Gulf Basin. Emission factors
for the Tampico-Misantla, Veracruz, and Sureste basins (Table S3), which include legacy
vertical wells producing both oil and natural gas, were based on the Palo Duro Basin using
a similar approach.

Figure 1. Upstream and midstream oil and gas sector emission sources in Mexico during 2016 including well sites by
basin, flares, natural gas processing plants, and natural gas compressor stations along pipelines within Mexico’s Integrated
National Natural Gas Transportation and Storage System (SISTRANGAS).

Offshore wells in Mexico produced oil and gas during 2016, with the exception of less
than 1% in the Tampico-Misantla Basin, which produced only natural gas. Activity from
offshore shallow water platforms was based on oil and/or gas production volumes from
the CNH. Emission factors were developed using emissions [46] and production data for
shallow water leases with gas or oil and gas production under the jurisdiction of the U.S.
Bureau of Ocean Energy Management [47] in 2014 (Table S4). The analysis included only
those leases with a GOR between 0 to 130 Mcf/bbl for consistency with the range reported
by the CNH for offshore oil production wells in the Sureste Basin during 2016.

Shah et al. [48] identified flaring locations and flared gas volume from Visible Infrared
Imaging Radiometer Suite (VIIRS) Nightfire (VNF) detections that were applied with emis-
sion factors from the EPA’s AP-42 compilation [49] and Oil and Gas Emission Estimation
Tool [45] to estimate emissions in 2012. VNF detections with black body temperatures
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> 1400 K during May 2016 [50] showed good spatial agreement with the locations of flaring
activity in the Sureste Basin identified by Shah et al. [48]. Projection factors were developed
from CNH onshore and offshore gas production volumes [40] to estimate emissions in 2016.

2.2. Midstream Emissions

Pemex [42] identified eleven natural gas processing facilities (Figure 1) in operation
during 2016. Eight were included in the 2008 Mexico National Emissions Inventory [51],
and emissions were projected based on the ratio of 2016 and 2008 natural gas intake
volumes from Pemex [42]. Locations of the remaining three facilities were identified from
the North American Cooperation on Energy Information (NACEI) [52]. Emissions were
estimated using linear regressions between facility-wide emissions and 2016 petrochemical
production from the eight INEM facilities reported by Pemex [42].

Figure 1 shows 22 central compressor stations in operation along SISTRANGAS
pipelines [53]. Mexico’s Ministry of Energy [54] and Eduardo [55] reported installed
horsepower for 18 of the 22 compressor stations. The average installed horsepower across
the 18 compressors was assumed for the four that lacked information. In the absence of
station-specific engine type data, AP-42 [49] emission factors for uncontrolled 4-stroke rich
burn engines were applied with installed horsepower to estimate emissions for each of the
22 compressor stations.

2.3. Air Quality Modeling Configuration

This study adapted a CAMx air quality modeling platform from the Texas Commission
on Environmental Quality [56], which was based on the 2016v1 National Collaborative
Emissions Modeling Platform [39]. CAMx is an open-source Eulerian photochemical grid
modeling system for gas and particulate air pollution that has been applied across a range
of spatial and temporal scales to support air quality research and regulatory assessments
throughout the world [57]. The 36 km × 36 km horizontal domain included most of
Canada, the continental United States, and almost all of Mexico (Figure S1). Simulations
were conducted for the 15 December 2015–1 January 2017 time period. The modeling
configuration is described further by McDonald-Buller et al. [58]. Point source emissions
for Mexico’s upstream and midstream oil and gas sectors (NAICS categories 211110, 325110,
221210) and electricity sector (NAICS 221110) were replaced with our estimates; all other
emissions remained identical. CAMx simulations examined the contributions of midstream
sources and different geographic regions with upstream oil and gas operations to maximum
daily 8 h average (MDA8) ozone concentrations and 24 h average PM2.5 concentrations
across Mexican states and U.S. border regions using an emissions zero-out approach.

3. Results and Discussion
3.1. Base Year Emissions Profiles

Annual emission estimates from onshore and offshore well sites, flaring, natural gas
processing facilities, and natural gas compressor stations for 2016 are shown in Figure 2.
Total NOx, CO, VOC, SO2, and PM2.5 emissions from these sources across Mexican basins
were approximately 355,000, 427,000, 869,000, 141,000 and 5100 tons, respectively. Figure 3
shows the disaggregated contributions of emissions from offshore oil well and onshore oil
and gas well sites and natural gas processing facilities by SCC-based categories in order
to assess contributions to the annual totals shown in Figure 2. Emissions from flaring
and natural gas compressor stations were each represented by a single SCC category, as
described above.
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Figure 2. Annual estimates of NOx, CO, VOC, SO2, and PM2.5 emissions (tons) from onshore and offshore oil and gas well
sites, flaring, natural gas processing plants, and natural gas compressor stations in 2016.

Offshore and onshore well site operations accounted for 69%–78% of the total an-
nual NOx, CO, and PM2.5 emissions, as shown in Figure 2, with the largest contributions
from offshore oil production coming from the Sureste Basin (Figure S2). Natural gas and
diesel-fired internal combustion engines at offshore oil well production sites (Figure 3a)
contributed 55%–65% of total NOx, CO, and PM2.5 emissions. Natural gas-fired compres-
sor engines at onshore gas well sites (Figure 3b), primarily in the Burgos and Sureste
basins, accounted for 11% of total NOx emissions. Gas-fired internal combustion engines
at compressor stations contributed 15% of total NOx and 21% of total CO emissions. Ap-
proximately 22% of total PM2.5 emissions were attributed to natural gas-fired boilers and
turbines (Figure 3c) at natural gas processing facilities.

Onshore and offshore well site operations in the Sureste and Tampico-Misantla basins
(Figure S2) were the primary sources of VOC emissions. Crude oil storage tanks from
onshore oil well site operations (Figure 3d) accounted for 63% of total VOC emissions.
Collectively, well casing vents and fugitive sources from offshore oil production (Figure 3a)
in the Sureste Basin accounted for 28% of total VOC emissions.

Gas flaring and natural gas-fired boilers and process heaters at natural gas processing
facilities contributed 52% and 47%, respectively, of total SO2 emissions, as shown in
Figure 2. Almost all SO2 emissions from natural gas processing were concentrated in the
onshore region of the Sureste Basin, which includes the Nuevo Pemex, Ciudad Pemex, and
Cactus facilities in the states of Tabasco and Chiapas. SO2 emissions from flaring occurred
offshore (59%) and onshore (24%) in the Sureste Basin and onshore in the Tampico-Misantla
Basin (15%), as shown in Figure S2.
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Figure 3. Cont.
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Figure 3. Contributions from (a) offshore oil wells, (b) onshore gas wells, (c) natural gas processing facilities, and
(d) onshore oil wells by SCC-based source categories to NOx, CO, SO2, VOC, and PM2.5 emissions in 2016.
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3.2. Intercomparison of Emission Source Contributions

Key sources of criteria pollutant and precursor emissions identified by previous
studies are similar to those found in our study, although these studies spanned time
periods with different oil and gas production volumes and likely operational practices
in Mexico. Most of these studies had a geographic focus on operations in the Bay of
Campeche (Sureste Basin), in particular those in the northeastern region associated with
the Cantarell and KMZ fields. Several bottom-up studies were conducted circa 1999–2006.
Villaseñor et al. [34] attributed 63–79% of SOx, CO, and nonmethane hydrocarbons (NMHC)
emissions to Cantarell platforms, with the offshore Cayo de Arcas terminal and Dos Bocas
terminal in Tabasco identified as the largest sources of NOx. Schifter et al. [35] found flaring
and combustion sources, including process heaters, boilers, and diesel engines, to be the
primary sources of NOx, SOx, CO, HC, and PM emissions. Mendoza-Domínguez and
Graniel-Peralta [36] identified seasonal differences in extraction and operational processes
and meteorological conditions that contributed to low flare combustion efficiencies. Bottom-
up emissions estimates associated with the Nuevo Pemex, Cuidad Pemex, Cactus, and
La Venta natural gas processing facilities were developed by Bauer et al. [37]. Among
the dominant contributions to emissions were sulfur recovery units as sources of SO2,
compression stations as sources of CO and NOx, boilers and power generation as sources
of NOx, and oil batteries and compression stations as sources of total hydrocarbons.

Our examination indicated that the magnitude and spatial distribution of SO2 and
NOx emissions of Mexico’s offshore oil and gas operations in the Sureste Basin were not rep-
resented in the more recent Emissions Database for Global Atmospheric Research (EDGAR)
version 5.0 bottom-up inventory [59–62]. Missing emissions or large underrepresentation of
these emissions is an important, persistent gap that has also been noted by Zhang et al. [63]
in the EDGAR version 4.3.1 inventory.

We compared our bottom-up emission estimates with those in the 2016v1 National
Collaborative Emissions Modeling Platform, which represented an interpolation of 2014
and 2018 projections of the 2008 INEM [39]. Upstream oil and gas well sites in the 2016v1
platform shown in Figure S3 were sparse relative to those identified in our study. Na-
tionwide VOC, CO, and NOx emissions in the 2016v1 platform from upstream sources
were lower than our estimates (Table S5). In contrast, emissions of SO2 in the 2016v1
inventory were greater, with 96% of the nationwide upstream sector total attributed to a
single offshore location in the Sureste Basin possibly intended to represent the Cantarell
and/or KMZ complexes. Compressor stations along SISTRANGAS pipelines, as well
as three natural gas processing facilities, La Congrejera, Parajitos, and Morelo, were not
included in the 2016v1 platform.

A recent bottom-up study by ICF [64] identified vented emissions (e.g., offshore
venting, stranded gas venting, venting from oil tanks and condensate tanks), fugitives,
and flaring as sources of methane emissions from Mexico’s oil and natural gas indus-
try and significant opportunities for abatement. Top-down approaches have applied
airborne- or satellite-based measurements to examine emission trends in the Sureste Basin.
Fioletev et al. [65] attributed changes in an offshore SO2 hotspot between 2005–2007 and
2008–2010 to rising production of heavier crude oil in the KMZ fields as Cantarell declined.
A secondary SO2 onshore hotspot was attributed to the Nuevo Pemex gas processing center.
Zhang et al. [63] found annual SO2 and NO2 emission rates between 2005–2017 over the
KMZ and Cantarell offshore production cluster peaked in 2008 and have declined since
due to expanded capacity for associated gas utilization, which reflects policy interventions
to reduce flaring. Zavala-Ariaza et al. [66] suggested that associated gas from offshore
production is being transported and flared at onshore midstream facilities. Inaccurate
assumptions regarding flaring efficiencies in the Mexican national greenhouse gas inven-
tory contributed to overestimation of methane emissions offshore but underestimation of
emissions from Nuevo Pemex.
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3.3. Improving Contemporary Inventories

Current country-specific data are an ongoing need for refining bottom-up emissions
inventories for Mexico. Activity metrics and locations of oil and gas sector emission sources
were available through the mining of data from Mexico’s federal agencies and cooperative
international initiatives, but emission factors in this and prior studies have been drawn
from U.S. resources, including the EPA and BOEM. In assessments of earlier bottom-up
inventories, Muriel-García et al. [38] noted the needs for emission measurements and the
homogenization of emission factors. Zavala-Ariaza et al. [66] suggested the main driver
for inaccuracies in the Mexican greenhouse gas inventory to be the use of emission factors
that are not specific to Mexico.

Uncertainties identified in this study included oil and gas well site process and equip-
ment configurations, temporal variations in emissions, and emission control technologies
and strategies across Mexican basins.

Mexico has been among the world’s top countries for gas flaring [67,68]. Flare combus-
tion efficiencies and smoke formation are influenced by factors such as the heating values
and chemical compositions of flared gases, as well as operating practices (e.g., air or steam
assisting) [69–73], and these should be more fully characterized in Mexico. CNH issued
guidelines for the avoidance or reduction of natural gas flaring and venting in 2008 that
led to investments in gas treatment and handling and reinjection capacity by Pemex [68].
Guidelines issued in 2016 focused on implementing methods for measuring associated
gas flaring and maximizing gas utilization and conservation by operators [67,68]. Federal
guidelines targeting methane emissions in 2018 included specifications for the efficiency of
destruction equipment [10].

Although the U.S. BOEM inventory [47] included non-platform emissions (e.g., mo-
bile vessels, helicopters, pipelaying operations), we did not extrapolate for Mexico. Non-
platform emissions are dependent on spatial domain and travel patterns, which were not
expected to be consistent between the U.S. and Mexico. All offshore activity in Mexico dur-
ing 2016 occurred in shallow waters. It was not feasible to isolate non-platform emissions
in the BOEM inventory associated with shallow water platforms. Information collection
using an approach similar to the Gulfwide Offshore Activities Data System (GOADS) by
BOEM would facilitate development or refinement of these emissions in Mexico.

4. Air Quality Impacts and Implications of Future Development

CAMx predictions provided a perspective on the contributions of upstream and
midstream sector emission sources to air quality across the Mexican states and U.S. border
regions shown in Figure 4. Percentile differences in MDA8 ozone and 24 h average PM2.5
concentrations by region from zeroing all upstream and midstream emissions relative to
the 2016 base case are shown in Figure 5. Spatial patterns in the differences in MDA8 ozone
and 24 h PM2.5 concentrations were found to be similar.

Emissions from offshore well sites in the Sureste Basin were the primary influences on
MDA8 ozone and PM2.5 concentrations among the source types and regions considered in
this study. Figure 6 and Figure S4 indicate that these emissions potentially contribute to
air quality throughout other areas of Mexico, as well as in U.S. states such as Texas under
favorable transport patterns. Impacts on average occur in states along or near Mexico’s
eastern coastline, including Tabasco, Oaxaca, Chiapas, Veracruz, and Tamaulipas.

The HYSPLIT forward trajectories initiated offshore within the Sureste Basin, as shown
in Figure 7, illustrate how seasonal differences in transport patterns contributed to the
spatial footprint of MDA8 ozone and PM2.5 impacts in downwind areas during 2016 as
predominantly southeasterly wind flow patterns in the spring shifted to northeasterly by
the fall.
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Figure 4. Mexican states and U.S. border regions included in the assessment of air quality impacts.

Figure 5. Annual differences in 24 h average PM2.5 (left) and MDA8 ozone (right) concentrations by region when upstream
and midstream emission sources were zeroed relative to the base case in 2016. Boxes show the median and interquartile
range (25th and 75th percentiles). Left and right whiskers extend to the 5th and 95th percentiles, respectively.
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Mexico conducted nine bidding cycles between 2015–2018 for the onshore, shallow
water and deepwater blocks shown in Figure 8, which attracted domestic and international
private sector investment [5]. Following a transition in presidential administrations, a mora-
torium was placed on future rounds, accompanied by a renewed focus on Pemex. Projects
awarded under previous rounds have continued. The CNH reported production from
33 contracts during September 2021 (137.8 Mbpd of oil; 213.3 MMcfpd of natural gas) [5].
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Although uncertainty for the future direction of private sector participation has increased,
Figure 8 provides an indication of key geographic locations where future oil and gas pro-
duction could expand depending on investment and technical resources. For example, the
Zama oil field discovery (Round 1.1, Block 7) announced in July 2017 represented one of
the largest shallow water discoveries in the world over the last 20 years (approximately
670–1010 MMboe [74]). Mexico has so far not pursued substantial development of its
unconventional resources, although it has become increasingly reliant on U.S. pipeline
imports of natural gas for its electricity sector. The Burgos Basin has promising technically
recoverable shale gas resources [4] that could be poised for development, similar to the
Eagle Ford Shale in Texas, if current policies change.

Figure 8. Awarded exploration and extraction blocks by bid round between 2015–2018.
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5. Conclusions

This study developed a 2016 bottom-up emissions inventory for VOCs, NOx, SO2,
CO, and PM2.5 from onshore and offshore well sites, gas flaring, natural gas processing
facilities, and natural gas compressor stations throughout Mexican basins. Crude oil
storage tanks at onshore oil well sites (63%) and venting and fugitive sources at offshore
oil production sites (28%) were the primary sources of VOC emissions. Natural gas and
diesel-fired internal combustion engines at offshore oil well sites accounted for 55%–65%
of NOx, CO, and PM2.5 emissions. Midstream operations represented 15%–21% of NOx
and CO emissions. Onshore and offshore gas flaring (52%) and natural gas-fired boilers
and process heaters at natural gas processing facilities (47%) accounted for almost all SO2
emissions. Identification of process and equipment configurations, temporal variations in
emissions, super-emitting sources, and emission control implementation and effectiveness
are ongoing needs for Mexico.

CAMx simulations identified geographic areas within Mexico and U.S. border states
where emissions from oil and gas operations could contribute to MDA8 ozone and 24 h
average PM2.5 concentrations. Among the source types and regions considered in this
study, offshore oil well site operations in the Sureste Basin were the primary influence on air
quality along the eastern coastline and other areas of Mexico and in Texas under favorable
transport patterns. Exploration and development of Mexico’s hydrocarbon resources could
lead to changes in emissions profiles and air quality in the coming years.

Mexico has recently expressed its commitment to reducing greenhouse gas emissions
but also to increasing oil production and refining capacity. Development of a photochemi-
cal modeling platform with high spatial granularity coupled with intensive surface and
airborne measurements across Mexican basins would facilitate an improved understanding
of the impacts of Mexico’s future energy sector transitions. Top-down approaches that rou-
tinely use satellite retrievals can be used to track emissions and air quality trends in Mexico
and U.S. border regions. Continued refinement of bottom-up emission inventories and
coordinated atmospheric modeling can support the design of optimum emission control
strategies for existing and future operations.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/atmos12121696/s1, Figure S1: CAMx 36 km × 36 km horizontal modeling domain., Figure S2:
Contributions to NOx, CO, SO2, VOC, and PM2.5 emissions from onshore and offshore well sites,
natural gas processing facilities, and flaring by basin, Figure S3: Locations of active 2016 oil and/or
gas wells by basin and flaring in this study and oil and gas sector emission sources identified in the
2016v1 National Collaborative Emissions Modeling Platform, Figure S4: Predicted annual average
and maximum differences in 24 h PM2.5 concentrations by grid cell when emissions from offshore
well sites in the Sureste Basin were zeroed relative to the 2016 base case, Figure S5: Predicted annual
average differences and maximum differences in MDA8 ozone concentrations by grid cell when
emissions from onshore well site operations in the Sureste, Tampico-Misantla, Veracruz, and Burgos
and Sabinas basins and from midstream sources were zeroed relative to the 2016 base case. Table S1:
Oil and gas activity metrics mapped to EPA emission source classification codes; Table S2: Emission
factors for onshore oil and gas production well sites in the Sabinas and Burgos basins., Table S3:
Emission factors for onshore oil and gas production well sites in the Sureste, Tampico-Misantla, and
Veracruz basins, Table S4: Emissions per unit of production (lb/Mbbl/yr) from offshore oil and gas
well sites, Table S5: Annual emissions of CO, NOx, PM2.5, SO2, and VOC from this study and the
2016v1 inventory for oil and gas exploration and extraction, natural gas processing facilities, and
natural gas compressor stations.
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