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Abstract: A weather radar is a frequently used device in remote sensing to identify meteorological
phenomena using electromagnetic waves. It can observe atmospheric conditions in a wide area with
a remarkably high spatiotemporal resolution, and its observation results are useful to meteorological
research and services. Recent research on data analysis using radar data has concentrated on applying
machine learning techniques to solve complicated problems, including quality control, quantitative
precipitation estimation, and convective storm prediction. Convective storms, which consist of
heavy rains and winds, are closely related to real-life and cause significant loss of life and property.
This paper proposes a novel approach utilizing the given convective storms’ temporal properties
based on machine learning models to predict future locations. The experimental results showed
that the machine learning-based prediction models are capable of nowcasting future locations of
convective storms with a slight difference.

Keywords: convective storm nowcasting; future location prediction; temporal properties; machine
learning; radar data analysis

1. Introduction

Convective storms are hazardous meteorological events that are accompanied by
heavy precipitation, lightning, and strong winds. They influence various fields ranging
from stopping human activities to losses of life and property. Consequently, it has been
considered one of the primary goals in meteorological fields to make a short-term forecast-
ing (or nowcasting) model. Despite the various approaches that have been introduced and
widely used in practice over the years, nowcasting convective storms remains a challeng-
ing problem due to the complexity of the atmospheric conditions and relevant dynamical
processes [1]. Although many devices and methods, including satellite, Doppler radar,
and numerical weather prediction (NWP), are available to obtain useful meteorological
information, the Doppler radar is the most preferred selection because it provides three-
dimensional structures of the convective storms with a high spatiotemporal resolution by
using rapid volumetric scanning with broad coverage [2]. These exceptional properties of
the Doppler radar allow monitoring and analyzing properties of convective storms. Tradi-
tional radar-based nowcasting approaches consist of two broad categories: cross-correlation
and centroid-based methods.

The cross-correlation based nowcasting method uses two-dimensional radar reflectiv-
ity data. It partitions the data into features and identifies the vector field that maximizes the
correlation between identified features along consecutive time. A representative example
of this type of method is TREC (Tracking Radar Echo by Correlation) [3,4]. The advantage
of this method is that it can derive more precise speed and direction information. On the
other hand, it is incapable of identifying and tracking individual convective storms, which
cannot extract each convective storm’s quantitative characteristics. The centroid-based
nowcasting method analyzes a series of radar reflectivity data obtained along time to
identify convective storms and find their past trajectories. After that, it extrapolates the
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identified convective storms’ motion using a linear trend model to predict where they
will be in the future. The advantages of this method are that it tracks individual convec-
tive storms effectively and provide their temporal properties. Indicative examples of this
method are TITAN (Thunderstorm identification, tracking, analysis, and nowcasting) [5],
SCIT (Storm Cell Identification and Tracking) [6], and TRACE3D [7].

Among those methods, TITAN has significantly influenced its post-researches by
providing the following assumptions to predict future locations of convective storms:
A storm tends to move along a straight line; A storm growth or decay follows a linear
trend; Unexpected departures from the above behavior occur. Although those assumptions
make the given problem straightforward, they make the forecasting model vulnerable to
predicting the convective storms’ complicated movements. Recent research has been aware
of these facts and suggested ways to improve the situation by applying machine learning,
which can solve complex and nonlinear problems [8]. For example, Rossi et al. [9] uses the
Kalman filter for probabilistic nowcasting to overcome the limited ability of deterministic
approaches. Also, Han et al. [10] applies the support vector machine to predict one of the
contiguous boxes containing a centroid of a convective storm in the future. Furthermore,
Xingjian et al. [11] and Han et al. [12] utilize deep learning methods, which show superior
performances in various practical fields, in a different context. Xingjian et al. [11] adopts a
Convolutional LSTM to switch the nowcasting problem to a sequence-to-sequence problem,
while Han et al. [12] utilizes a convolutional neural network to solve a problem caused by
the manual construction of spatiotemporal features.

This paper proposes a novel approach using machine learning-based models to predict
a convective storm’s future location. In other words, the proposed approach forecasts
future centroid coordinates of the given convective storm using temporal properties from
its trajectory. First, we derive distances and contained angles from vectors through centroid
coordinates that lie nearby over time and have similar characteristics: they represent the
given convective storms’ movement between sampling time. We selected several machine
learning-based models as an autoregressive model [13] using the computed distances and
contained angles. Furthermore, it is difficult to derive a sufficient number of time-varying
characteristics when few convective storms in the given trajectory. Three distances and
two contained angles can be derived, for instance, when the given convective storm has
three observation results in the past. Therefore, this paper proposes additional novel
method for dealing with insufficient time-varying characteristics (less than two observation
results in the past) using machine learning-based models and other temporal features
consisting of physical properties and descriptive statistics of the radar observation results
between contiguous times. In summary, this paper provides four main contributions,
as shown below.

• Machine learning-based approach to predicting future centroid coordinates of the
given convective storm using temporal properties derived from its trajectory

• Flexible adjustments of sampling interval and maximum nowcasting range by increas-
ing or decreasing the number of prediction models

• Applicable to analyze time-varying properties of the given convective storm along the
same lines of the proposed method, including size-related parameters and variance of
peak intensity

• Applicable to much meteorological analysis of which the future movement matters

This paper is organized as follows. Section 2 describes the data used in this paper.
Section 3 introduces the methodology, and Section 4 analyzes and discuss the experimental
results. Finally, the conclusions are presented in Section 5.

2. Data

The data used in this paper consists of 1872 three-dimensional composite radar data
from 13 independent observation days from June to August 2018. The selected dates are
concentrated in the summer because Korean summers are scorching and humid that are
optimal conditions for forming convective storms. It is also necessary to obtain a more
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extensive observation range for precise analysis, mostly when the convective storms live
long, although it is possible to examine trajectories of convective storms using observation
data from a single radar. Therefore, as shown in Figure 1, this paper uses the composite
radar data provided by Korea Meteorological Administration (KMA) combined with ten
dual-polarization Doppler radars that observe the entire Korean region’s overall weather
conditions. The size of composite radar data is 2049 × 2049 × 200, where the spatial
resolution in x-axis, y-axis, and z-axis are 500 m, 500 m, and 50 m, respectively. Moreover,
the observation interval is ten minutes.

Figure 1. Ten dual-polarization radar locations and their observation ranges in Korea.

From the three-dimensional composite radar data, 768 reference tracks consisting
of 5384 convective cells, are manually extracted and verified by meteorological experts.
As shown in Figure 2, many convective cells in the reference tracks survive for 70 min
on average. The longest life in the observation is 340 min, and the shortest is 10 min.
Considering that the machine learning model needs a sufficient amount of learning data,
it is challenging to predict the given convective storm’s future locations further than a
specific time due to a lack of observation cases with verification. Therefore, this paper
limits prediction bounds up to 60 min at an interval of ten minutes. Table 1 indicates
the number of learning data pairs for each prediction model. From those data pairs, it is
possible to extract various types of features, including descriptive statistics. Moreover,
this paper divides training data and test data for each model because one of the essential
issues for designing a machine learning model is to split training and test data. If not,
the model delivers unreliable and over-optimistic prediction results due to the overfitting
problem [14]. Table 1 shows that each data pair is divided into training and test data by
applying an 8:2 ratio. For instance, 2004 data pairs for the (t + 1) prediction model are
divided into 1603 and 401 data pairs for training and test.
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Figure 2. Histogram of the reference track length.

Table 1. The number of learning data pairs for each model (Training:Test = 8:2).

Model (t + 1) (t + 2) (t + 3) (t + 4) (t + 5) (t + 6)

Number of data pairs 2004 1458 999 685 486 344

Training data pairs 1603 1166 799 548 389 275

Test data pairs 401 292 200 137 97 69

3. Methods

In this section, the entire process for convective storm location prediction is elucidated.
The operating principles of the proposed method follows the centroid-based method. Its
process consists of three primary components as shown in Figure 3: identification, tracking,
and location prediction.

Four kinds of observations obtained by dual-polarization radars are applied for the
proposed convective storm prediction: corrected reflectivity (CZ), differential reflectivity
(DR), cross-corrlation (RH), and vertically integrated liquid (VIL). CZ data is selected
among the observations because the centroid-based prediction method [5] uses CZ data for
the identification process. It groups contiguous points in the given radar data sequentially
along the x-axis, y-axis, and z-axis. It is equivalent to hierarchical clustering with a single-
linkage method using the three-dimensional kernel in a bottom-up fashion. The single-
linkage clustering is adopted in this paper because it is better than the sequential approach
in the time and computational complexities perspective.

It is crucial to match CZ’s coordinates to DR, RH, and VIL because there is a possibility
not to one-to-one correspondence. In other words, the observed coordinate in CZ may
not exist in DR, RH, or VIL due to observation properties. In the spatial feature extraction
process, various properties are derived: two-dimensional and three-dimensional centroid
coordinates, size-related features, and their descriptive statistics. Because CZ, DR, RH,
and VIL have nonnegative values, entropies in image processing with base-2 logarithm are
also computed as shown in Equation (1) by contemplating them as gray-scale images.

H(X) = ∑
x

p(x) log2

(
1

p(x)

)
(1)

where p(x) indicates the normalized histogram counts of each identified convective storm
in observation results.

Moreover, there are other newly proposed characteristics, named cluster VIL. The stan-
dard VIL in existing method is computed using Equation (2).

VIL =
∫ hT

hB

Mdh′ = a
∫ hT

hB

Zbdh′ = 3.44× 10−6
∫ hT

hB

Z
4
7 dh′ (2)
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where Z, hB, hT indicate CZ values, top and bottom altitudes, respectively. As shown in
Equation (2), VIL integrates the reflectivity on the z-axis, which means that the altitude-
based information will become indistinguishable. In other words, if several convective
storms exist in the overlapping region on xy-plane with different altitudes, their distinctive
characteristics can be squashed. Therefore, it is beneficial to utilize another VIL property of
individual convective storm. As a result, two kinds of VIL-related features are generated in
this paper. The identification method is straightforward: determine as a convective storm
if a given object has a larger volume and higher reflectivity than thresholds {θν, θZ} =
{50 km3, 35 dBZ} based on a sensitivity analysis presented by [5].

Figure 3. Overview of proposed convective storm nowcasting method.

After the identification process, many valuable features can be extracted. Based
on those features, it is possible to derive temporal features to understand the develop-
ment of changes and trends of identified storms’ characteristics. As shown in Table 2,
52-dimensional temporal features are derived, such as Euclidean distances, trends of
size-related and fundamental statistical features-related changes and trends. By includ-
ing distance metrics, it is unnecessary to set a specific decision boundary by the users,
unlike the traditional methods mostly refer to the TITAN method that uses a Hungarian
algorithm. Instead of finding all possible links of given convective storms, this paper
converts the problem as a binary classification. In other words, the tracking method in
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this paper finds a connection between a given identified convective storm at the time
(t) and identified convective storms at the time (t− 1) based on the extracted temporal
features. When all connections between the identified storms at the time (t) and (t− 1) are
considered, the process is moved to the time (t− 1) and (t− 2). With the iterative manner,
it is possible to track the convective storm in reverse order of time, as shown in Figure 3.

There are several successful prediction methods for the convective storm’s future location.
Those methods are mostly based on the box-based method, which selects one of the adjacent
boxes that will contain the future centroid coordinate of the given convective storm. This
paper proposes a novel approach for convective storm location prediction from the time (t + 1)
to (t + 6) by utilizing temporal properties in two-dimensional space. Finding the centroid
coordinate of time (t + 1) at time (t) needs to apply trigonometrical functions and L2-norm.
As shown in Figure 4, for instance, assuming that the goal is to find E coordinate using A, B, C,
and D, using Equations (3)–(6) can be derived coordinates for each axis.

Figure 4. An example of deriving a future location.

xE = xD +
∥∥∥−→DE

∥∥∥
2
· cos

(
tan−1

(
yD − yC
xD − xC

)
− θ(E, D, C)

)
(3)

yE = yD +
∥∥∥−→DE

∥∥∥
2
· sin

(
tan−1

(
yD − yC
xD − xC

)
− θ(E, D, C)

)
(4)

θ(E, D, C) = θ̂(t + 1) = fAngle(θ(C, B, A), θ(D, B, C)) (5)∥∥∥−→DE
∥∥∥

2
= d̂(t + 1) = fDistance

(∥∥∥−→CD
∥∥∥

2
,
∥∥∥−→BC

∥∥∥
2
,
∥∥∥−→AB

∥∥∥
2

)
(6)

where θ indicates the contained angle, ‖·‖2 implies L2-norm, fAngle(·), θ̂(t + 1), fDistance(·)
and d̂(t + 1) mean the prediction models and their results of the contained angle and
distance at time (t + 1), respectively. Repeatedly applying the same principle to time,
it is possible to extend the model’s prediction range. In this paper, the maximum limit of
prediction range is (t + 6), considering the given ground-truth dataset’s condition.

As shown in Equations (5) and (6), the three previous centroid coordinates can pro-
vide two contained angles and three L2-norms to angle and distance prediction models.
It is a prerequisite of the proposed location prediction method: it must have a sufficient
number of tracked centroid coordinates, more than three previous coordinates, for deriving
temporal properties. However, at the beginning of the convective storm’s development,
it is impossible to provide enough coordinates to derive temporal properties because its
track has a short length.

This paper resolves the situation by dividing the trajectories into three occurrence
cases, as shown in Figure 5: “Case 01” when the track has (t) and (t − 1) coordinates,
“Case 02” when the track has (t), (t− 1), and (t− 2) coordinates, and “Case 03” when
the track has (t), (t− 1), (t− 2), (t− 3), and more coordinates. The track, which consists
of only a coordinate at (t), leaves out of consideration because it can be a noise signal
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and has insufficient properties to derive its movements through time. Considering that
“Case 01” and “Case 02” have not enough previous centroid coordinates, they predict
a distance between the current location and future location of given convective storms
using 52-dimensional temporal features and machine learning-based models as shown in
Table 2. Also, they adopt previous advancing angles by following the TITAN method’s
first assumption: A storm tends to move along a straight line.

When the number of coordinates satisfies a specific condition regardless of observed
and predicted, angles and distances are derived using nonlinear autoregressive models.
In other words, the nonlinear autoregressive model forecasts the third future coordinate
(x̂t+3, ŷt+3) in “Case 01”, the second future coordinate (x̂t+2, ŷt+2) in “Case 02”, and the
first future coordinate (x̂t+1, ŷt+1) in “Case 03”, as shown in Figure 5.

Table 2. The extracted temporal features from consecutive convective storms between (t) and (t− 1).

Number Features Descriptions

1 dist_3d Euclidean distance (3D)
2 dist_w3d Weighted Euclidean distance (3D)
3 dist_m3d 3D Euclidean distance (maximum reflectivity)
4 dist_ed 2D Euclidean distance (ellipse)
5 d_volume Volume difference
6 d_area Area difference (ellipse)
7 d_ecc Eccentricity difference (ellipse with k=1)
8 d_mean_CZ Mean CZ difference
9 d_max_CZ Maximum CZ difference
10 d_min_CZ Minimum CZ difference
11 d_median_CZ Median CZ difference
12 d_iqr_CZ IQR CZ difference (Inter-Quartile Range)
13 d_mode_CZ Mode CZ difference
14 d_entropy_CZ Entropy CZ difference
15 d_std_CZ Standard deviation CZ difference
16 d_cv_CZ CV CZ difference (Coefficient of Variation)
17 d_mean_DR Mean DR difference
18 d_max_DR Maximum DR difference
19 d_min_DR Minimum DR difference
20 d_median_DR Median DR difference
21 d_iqr_DR IQR DR difference (Inter-Quartile Range)
22 d_mode_DR Mode DR difference
23 d_entropy_DR Entropy DR difference
24 d_std_DR Standard deviation DR difference
25 d_cv_DR CV DR difference (Coefficient of Variation)
26 d_mean_RH Mean RH difference
27 d_max_RH Maximum RH difference
28 d_min_RH Minimum RH difference
29 d_median_RH Median RH difference
30 d_iqr_RH IQR RH difference (Inter-Quartile Range)
31 d_mode_RH Mode RH difference
32 d_entropy_RH Entropy RH difference
33 d_std_RH Standard deviation RH difference
34 d_cv_RH CV RH difference (Coefficient of Variation)
35 d_mean_VIL Mean VIL difference
36 d_max_VIL Maximum VIL difference
37 d_min_VIL Minimum VIL difference
38 d_median_VIL Median VIL difference
39 d_iqr_VIL IQR VIL difference (Inter-Quartile Range)
40 d_mode_VIL Mode VIL difference
41 d_entropy_VIL Entropy VIL difference
42 d_std_VIL Standard deviation VIL difference
43 d_cv_VIL CV VIL difference (Coefficient of Variation)
44 d_mean_clus_VIL Mean cluster VIL difference
45 d_max_clus_VIL Maximum cluster VIL difference
46 d_min_clus_VIL Minimum cluster VIL difference
47 d_median_clus_VIL Median cluster VIL difference
48 d_iqr_clus_VIL IQR cluster VIL difference (Inter-Quartile Range)
49 d_mode_clus_VIL Mode cluster VIL difference
50 d_entropy_clus_VIL Entropy cluster VIL difference
51 d_std_clus_VIL Standard deviation cluster VIL difference
52 max_cv_VIL CV cluster VIL difference (Coefficient of Variation)
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Figure 5. The proposed convective storm future location prediction method.
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4. Results and Discussion

This paper selected four representative machine learning methods: artificial neural
networks (ANN) [15], linear regression model (LM) [16], random forests (RF) [17], and sup-
port vector regression (SVR) [18]. Those methods are well-known machine learning-based
models and prove their capabilities to solve classification and regression problems in the
real world. Moreover, this paper implemented the linear regression model with double
exponential smoothing [19], which is the nowcasting method of TITAN, for comparison
with maximum number of time points nt is 6 and weight parameter α is 0.5. It can be
a good criterion for evaluating the proposed machine learning-based methods because
TITAN is a standard model for convective storm prediction. Considering that the proposed
machine learning-based methods’ goal is to predict the future location of the convective
storm, the nowcasting method of TITAN forecasts only the centroid coordinates by using
Equation (7).

pt = p0 +

(
dp
dt

)
δt (7)

where pt and p0 indicate the predicted and the current value, and dp/dt is the estimated
rate of change.

The nowcasting method of TITAN can also predict storm volume and the parameters
of the projected-area ellipse. The predicted results are combined and evaluated like dealing
with binary classification results. Namely, the prediction result is right when the forecasted
storm position and actual radar echoes at the forecast time exist in a specific grid area.
On the other hand, the prediction result indicates wrong when either the forecasted (failure
case) or the actual echoes (false alarm case) at the forecast time does not exist in a specific
grid area. It is not easy to apply the same evaluation process to the proposed methods
because they predict only the centroid coordinates, making no way to derive failure
and false alarm cases which allow deriving evaluation metrics such as the probability of
detection (POD), critical success index (CSI), and false alarm ratio (FAR). Therefore, the root
mean squared error (RMSE) is selected for performance verification in this paper, as shown
in Equation (8).

RMSE =

√
1
n

n

∑
i=1

(x̂i − xi)
2 + (ŷi − yi)

2 (8)

Table 3 describes the performance of five models. As shown in Table 3, The hyper-
parameters of each machine learning-based model were empirically set to produce better
results from the simple structure: ANN with a single hidden layer contained ten neurons
with hyperbolic tangent sigmoid activation function, and an output layer contained a
single neuron with linear activation function; RF with 25 subtrees with ten maximum splits;
and SVR with radial basis function kernel. And the nowcasting method of TITAN has
only four RMSE-based performances from (t + 3) to (t + 6) because it needs five historical
data for predictions as mentioned above. On average, ANN shows better than others in
the contained angle prediction, and RF is better than others in the distance prediction.
Furthermore, almost all machine learning-based models proposed in this paper have better
performance than the nowcasting method of TITAN. Considering that the angle and dis-
tance models are mutually independent, it is unnecessary to utilize homogeneous models
for prediction. Therefore, this paper also conducts experiments using both ANN and RF
for angle and distance prediction, respectively.

This paper selected two representative trajectory examples in the test data to visually
compare and analyze the experimental results: the convective storm in the first example,
as shown in Figure 6, moves linearly for 90 min along the coastline in the southern region
of Korea; the convective storm in the second example, as shown in Figure 7, shows the
sudden movement of the centroid coordinates along the inland area in the capital region of
Korea. The different shapes of the trajectory and the different geographical characteristics
can help analyze the accuracy and the efficiency of the proposed methods. Moreover,
the experimental results, as shown in Figure 8, comparing the nowcasting method of
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TITAN as the standard model can demonstrate the proposed machine learning-based
methods’ superiority.

Table 3. Performance evaluations using root mean squared error (RMSE) for location prediction results.

Case 01 Case 02 Case 03

Model Hyper-
Parameters

Predicted
Time

Distance Distance Angle Distance

ANN 1 hidden layer
10 neurons

(t + 1) 0.6784 - 1.7012 0.3818
(t + 2) - 0.1824 2.9922 0.7689
(t + 3) - - 1.9005 0.3814
(t + 4) - - 0.5228 3.9906
(t + 5) - - 1.4420 0.0269
(t + 6) - - 3.6229 1.7449

Avg. - - 2.0303 1.2158
Std. - - 1.1140 1.4822

LM -

(t + 1) 2.0859 - 6.0777 1.3242
(t + 2) - 0.4730 2.6389 0.0714
(t + 3) - - 3.6844 0.6866
(t + 4) - - 0.8749 0.6694
(t + 5) - - 6.9876 0.2317
(t + 6) - - 10.4492 1.0764

Avg. - - 5.1188 0.6766
Std. - - 3.4364 0.4782

RF 25 subtrees
10 splits each

(t + 1) 0.6121 - 4.8406 0.3120
(t + 2) - 0.0913 0.1398 0.2722
(t + 3) - - 5.6896 0.3742
(t + 4) - - 0.5762 0.2214
(t + 5) - - 5.3583 0.5860
(t + 6) - - 9.1702 0.7567

Avg. - - 4.2958 0.4204
Std. - - 3.4128 0.2078

SVR RBF kernel

(t + 1) 2.5191 - 5.5931 0.3209
(t + 2) - 0.1824 1.9501 0.1533
(t + 3) - - 3.7806 1.0203
(t + 4) - - 3.3121 1.1352
(t + 5) - - 5.3855 1.5833
(t + 6) - - 10.1840 2.0986

Avg. - - 5.0342 1.0519
Std. - - 2.8637 0.7386

TITAN -

(t + 1) - - - -
(t + 2) - - - -
(t + 3) - - - 1.7137
(t + 4) - - - 2.2190
(t + 5) - - - 3.3513
(t + 6) - - - 3.9340

Avg. - - - 2.8045
Std. - - - 1.0178

Figure 6a illustrates the experimental results at “Case 01” when (t) and (t− 1) are
given. As shown on the left side of Figure 6a, the objective is to derive future locations
of (2), which are (3) to (8), using information derived from (1) and (2). Due to a lack of
temporal movement information, all models draw deviated results from the reference
track coordinates, as shown on the right side of the Figure 6a. Figure 6b indicates the
experimental results at “Case 02” when (t), (t− 1), and (t− 2) are given. As shown on the
left side of Figure 6b, the objective is to derive future locations of (3), which are (4) to (9),
using information derived from (1) to (3). In this case, the RF-based method derives better
results, as shown on the right side of Figure 6b, because the predicted locations exist near
the reference track coordinates. The lowest RMSE values of the RF-based method provide
numerical evidence for the results in Figure 6b. Other methods, which have greater RMSE
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values than the RF-based method, draw somewhat deviated (ANN, ANN+RF, and LM) or
shrunk results (SVR). On the other hand, Figure 6c describes the successful experimental
results at “Case 03” when (t), (t− 1), (t− 2), and (t− 3) are given. As shown on the left
side of Figure 6c, the objective is to derive future locations of (4), which are (5) to (10),
using information derived from (1) to (4). In this case, the combined method of ANN and
RF derives better results, as shown on the right side of Figure 6c, because the predicted
locations exist near the reference track coordinates. Although the RF-based method and
ANN-based method seem to show similar performances, the trajectory’s detailed results
prove the combined method slightly better than the RF-based or ANN-based method alone.
Moreover, the RMSE values of the combined method substantiate the results, as shown
in Figure 6c. Other methods draw somewhat deviated and shrunk trajectory results (LM
and SVR). In summary, the RF-based method is useful when there are insufficient temporal
properties, whereas the combined method of ANN and RF derives optimistic predictions
when sufficient temporal data is guaranteed.

Likewise, Figure 7a describes the experimental results at “Case 01” when (t) and (t− 1)
are given. As shown on the left side of Figure 7a, the objective is to derive future locations
of (2), which are (3) to (8), using information derived from (1) and (2). Although all models
draw nowcasting results close to the reference track coordinates from (3) to (5), they keep
moving away from the reference after (6) due to insufficient temporal movement infor-
mation, as shown on the right side of the Figure 7a. Figure 7b indicates the experimental
results at “Case 02” when (t), (t − 1), and (t − 2) are given. As shown on the left side
of Figure 7b, the objective is to derive future locations of (3), which are (4) to (9), using
information derived from (1) to (3). In this case, all models draw more deviated results
from the reference track coordinates, as shown on the right side of Figure 7b. On the other
hand, Figure 7c represents the optimistic experimental results at “Case 03” when (t), (t− 1),
(t− 2), and (t− 3) are given. As shown on the left side of Figure 7c, the objective is to
derive future locations of (4), which are (5) to (10), using information derived from (1) to
(4). In this case, the combined method of ANN and RF derives better results, as shown on
the right side of Figure 7c, because the predicted locations exist near the reference track
coordinates. The lowest RMSE values of the combined method of ANN and RF, as shown
in Figure 7c, also verify the results. Other methods draw somewhat deviated results (ANN,
RF, LM, and SVR). In summary, it is difficult to forecast when the centroid coordinates
show sudden movements and there are insufficient temporal properties, whereas the com-
bined method of ANN and RF derives promising results when sufficient temporal data
is guaranteed.

Figure 8 illustrates the experimental results for comparison between the nowcasting
method of TITAN and the proposed methods. As mentioned above, each model employs
information derived from (1) to (6) because the hyperparameter (nt) for the nowcasting
method of TITAN is set to 6. Naturally, the common objective is to derive future location
of (6), which are (7) to (10). As shown in Figure 8a, the nowcasting method of TITAN
shows the worst result due to overpredict the distance, although it shows a similar linear
movement. Furthermore, as shown in Figure 8b, the nowcasting method of TITAN not
only deviates from the reference track coordinates but draws shrunk trajectory results
due to the centroid’s abrupt direction change. Furthermore, the highest RMSE values
of the nowcasting method of TITAN corroborate the results that the proposed machine
learning-based prediction models are better, as shown in Figure 8a,b.

From the experimental results in Table 3, Figure 6–8, the proposed machine learning-
based method proves the following advantages than the nowcasting method of TITAN:
First, it can relieve restrictions on the maximum number of time points. Second, it can
learn how to deal with nonlinear and abrupt movements from data. Third, it can predict
the given convective storms’ future locations more accurately under the same condition.
Fourth, it can derive prediction results efficiently when the model has completed its learn-
ing process, whereas the nowcasting method of TITAN needs to compute the weighted
linear regression every time.



Atmosphere 2021, 12, 343 12 of 16

(a) Case 01: (t) and (t− 1) are given (09:10 to 09:20) for prediction location from 09:30 to 10:20

(b) Case 02: (t), (t− 1), and (t− 2) are given (09:10 to 09:30) for prediction location from 09:40 to 10:30

(c) Case 03: (t), (t− 1), (t− 2), and (t− 3) are given (09:10 to 09:40) for prediction location from 09:50 to 10:40
Figure 6. Observed trajectories and prediction results: (a) Case 01, (b) Case 02, (c) Case 03.
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(a) Case 01: (t) and (t− 1) are given (16:30 to 16:40) for prediction location from 16:50 to 17:40

(b) Case 02: (t), (t− 1), and (t− 2) are given (16:30 to 16:50) for prediction location from 17:00 to 17:50

(c) Case 03: (t), (t− 1), (t− 2), and (t− 3) are given (16:30 to 17:00) for prediction location from 17:10 to 18:00
Figure 7. Observed trajectories and prediction results: (a) Case 01, (b) Case 02, (c) Case 03.
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(a) (t), (t− 1), (t− 2), (t− 3), (t− 4), and (t− 5) are given (09:10 to 10:00) for prediction location from 10:10 to 10:40

(b) (t), (t− 1), (t− 2), (t− 3), (t− 4), and (t− 5) are given (16:30 to 17:20) for prediction location from 17:30 to 18:00
Figure 8. Observed trajectories and prediction results for comparing proposed methods and TITAN.

5. Conclusions

Convective storms are hazardous meteorological events that are accompanied by
torrential rain and strong winds. They influence various fields and have been considered
primary goals in meteorological fields to make a nowcasting model. This paper proposes a
novel method using machine learning-based models to predict a convective storm’s future
location. In other words, the proposed approach forecasts future centroid coordinates of
the given convective storm using temporal properties from its trajectory. The experimental
results showed that the machine learning-based prediction models could forecast future
locations of convective storms with superior performance to the nowcasting method of
TITAN. As future work, we will consider exogenous variables as inputs, including satellite
images, thermodynamic-related variables, numerical weather prediction results, wind,
and buoyancy. The exogenous variables may derive promising results, such as improving
prediction performance and dealing with more complicated trajectories.

Moreover, this paper proved that the machine learning-based model in a nonlinear
autoregressive fashion utilizing only the dual-polarization radar data could derive the given
convective storm’s future locations. However, there is a strong underlying assumption in
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the reference tracks: the connections between identified convective storms in contiguous
time have a one-to-one correspondence. It is critical to deal with the mergers and splits
of the convective storm in practical fields. Unfortunately, the splitting and merging cases
of convective storms were insufficient, and most of them did not drastically influence the
changes of the centroid coordinates’ positions. Considering that the machine learning-
based methods cannot achieve expected performances if the learning data is insufficient
and indistinguishable, we trained the proposed models under the mentioned assumption.
As future work, we will apply classification methods based on machine learning for dealing
with the splitting and merging cases of convective storms: classifier will determine the
given convective storm will split, merge, or keep as it goes. We expect that the size-
related input variables and their temporal trends significantly influence the classifier.
With collecting a sufficient number of merging and splitting cases with meteorological
experts’ verification, we expect that it is possible to derive promising results to handle
the split-merge condition. Furthermore, it is possible to apply the proposed machine
learning-based nonlinear autoregressive model to predict essential information, such as
peak intensity of each convective cell and the trend of size changes through time.
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