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Abstract: The evolution of low-cost sensors (LCSs) has made the spatio-temporal mapping of indoor
air quality (IAQ) possible in real-time but the availability of a diverse set of LCSs make their selection
challenging. Converting individual sensors into a sensing network requires the knowledge of diverse
research disciplines, which we aim to bring together by making IAQ an advanced feature of smart
homes. The aim of this review is to discuss the advanced home automation technologies for the
monitoring and control of IAQ through networked air pollution LCSs. The key steps that can allow
transforming conventional homes into smart homes are sensor selection, deployment strategies,
data processing, and development of predictive models. A detailed synthesis of air pollution LCSs
allowed us to summarise their advantages and drawbacks for spatio-temporal mapping of IAQ.
We concluded that the performance evaluation of LCSs under controlled laboratory conditions
prior to deployment is recommended for quality assurance/control (QA/QC), however, routine
calibration or implementing statistical techniques during operational times, especially during long-
term monitoring, is required for a network of sensors. The deployment height of sensors could vary
purposefully as per location and exposure height of the occupants inside home environments for a
spatio-temporal mapping. Appropriate data processing tools are needed to handle a huge amount
of multivariate data to automate pre-/post-processing tasks, leading to more scalable, reliable and
adaptable solutions. The review also showed the potential of using machine learning technique for
predicting spatio-temporal IAQ in LCS networked-systems.

Keywords: smart homes; low-cost sensors; affordable pollution sensing; deployment strategies;
machine learning; predictive modelling

1. Introduction

Indoor air pollution is placed among the top five environmental public health risks
that cause morbidity and mortality globally. The majority of people spend more than 90%
of their time in indoor environments [1,2], and health problems and diseases associated
with poor indoor air quality (IAQ) can cause a variety of adverse health effects to them [3,4].
The time spent indoors recently increased significantly in year 2020 due to severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic when people are advised to
‘stay home stay safe’ to protect health workers [5,6].

Table 1 summarises common indoor air pollutants, their sources, and current guide-
lines to maintain IAQ. Air pollutants inside indoor environments can be generated from
different sources, including occupants’ exhalation (carbon dioxide; CO2), activities such
as cooking and smoking, emissions from building materials, etc. from which various air
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pollutants, such as carbon monoxide (CO), particulate matter (PM), and volatile organic
compounds (VOCs) are released [2,7]. CO2 is not counted as an air pollutant, but its level
represents the performance of ventilation systems, especially in wintertime, whereas high
CO2 levels represent poor ventilation and possible accumulation of other indoor air pollu-
tants [8–10]. Additionally, IAQ could be affected by local outdoor air pollutants, which can
ingress into indoor environments (see Table 1).

Table 1. The unhealthy exposure thresholds defined for the common indoor and outdoor air pollutants [11–13].

Pollutants Indoor Air Outdoor Air References

Benzene (C6H6)
[µg m−3]

Carcinogenic compounds, no safe level of exposure
recommended risk of leukaemia estimated as 6 × 10−6

at 1 µg m−3,
World Health Organisation (WHO).

5 (annual) European Union (EU)
1.7 (annual) WHO [13,14]

CO
[mg m−3]

100 (15 min–once per day)
35 (1 h–once per day)
10,000 (8 h)
7 (24 h) all from WHO.

10 (max daily 8 h mean) EU
30 (1 h) WHO
10 (8 h) WHO

[13,14]

CO2
[ppm]

<1000 (hygienically harmless)
1000–2000 (elevated)
>2000 (hygienically unacceptable) all from AIR.

405 (by climate.gov, accessed on
21 March 2021) [15]

HCHO [µg m−3] 100 (30 min) WHO N/A [13]

Naphthalene [µg m−3] 10 (annual) WHO N/A [13]

NO2
[µg m−3]

200 (1 h) WHO
40 (annual) WHO

200 (1 h) EU/WHO
40 (annual) EU/WHO [13,14]

O3
[µg m−3] N/A 120 (max daily 8 h mean) EU

100 (8 h) WHO [14,16]

PAH (benzo[a]pyrene)
[µg m−3]

All indoor exposures relevant to health,
lung cancer with risk of 8.7 × 10−8 at 1 µg m−3.

1 (annual) EU
0.12 (annual) WHO [13,14]

PM2.5
[µg m−3]

10 (annual) WHO
25 (24 h) WHO

10 (annual) WHO
25 (24 h) WHO
25 (annual) EU

[13,14,16]

PM10
[µg m−3]

20 (annual) WHO
50 (24 h) WHO

20 (annual) WHO
50 (24 h) WHO
40 (annual) EU
50 (24 h) EU

[13,14,16]

Tetrachloroethylene
[µg m−3] 250 (annual) N/A [13]

Trichloroethylene
[µg m−3] Carcinogenicity with risk of 4.3 × 10−7 at 1 µg m−3 N/A [13]

TVOCs a

[mg m−3]

<0.3 (no hygienic objections)
>0.3–1 (no relevant objections)
>1–3 (some objections)
>3–10 (major objections)
>10–25 (not acceptable)

N/A [17]

Note: N/A refers to not available; AIR refers to German Committee on Indoor Guide Values, formerly known as “Ad-hoc AG”. a Total
VOCs, defined by the International Organisation for Standardisation (ISO) 16000-6.

climate.gov
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Rapid developments in low-cost sensors (LCSs) and wireless communication tech-
nologies have become much more prominent in in everyday life [9,18–22]. LCSs have
the potential to revolutionise insufficient IAQ monitoring systems with the prospect of
delivering real-time air pollution data through sensor networks, which complement the
established reference measurement methods defined in the EU Air Quality Directives (e.g.,
2008/50/EC). Although there is no officially agreed definition of the term “low-cost” [23],
“low-cost” has been identified by the United States Environmental Protection Agency
(US EPA) as devices costing less than $2500 (USD); this is the limit often defining capital
investment limits by LCS users [24]. Due to the importance of this technology in the
future development of smart homes, the EU has invested millions of Euros on a number
of sensor-based projects such as EuNetAir, IAQSense, and SENSIndoor and the similar
investments can be seen elsewhere (e.g., USA, Australia). Smart homes can enable an
adaptable living environment, e.g., in managing IAQ, to promote comfort and convenience
to the occupants. The outcomes of these projects could contribute in the development of
novel sensor systems, real-time air pollution monitors, air quality models, and standardised
methods [25–28]. These projects have encouraged research institutions and businesses to
take a greater interest in the advancements of sensing technology in IAQ-related research
inside smart homes. In the subsequent text, we have interchangeably used the terms
“sensor”, “sensor kit” and “LCS”.

Deploying a network of air pollution LCSs with the support of advanced commu-
nication technologies is sufficient to provide accurate information in understanding the
spatio-temporal distribution of indoor air pollutants and assessment of personal exposures
in smart homes. However, among the limited studies focused on LCS applications in
indoor environments, studies mainly focused on general applications, benefits/challenges,
future demands/directions of LCSs for specific indoor applications [11,23,29,30]. Moreover,
their focus on data analysis was limited to changes in concentrations and no prediction or
precautionary actions against the possible events were incorporated [31,32]. Although these
studies presented promising results, their scope was not to consider the needs of smart
homes. Given the scattered information and research gaps in the existing body of literature,
this review aims to fill this knowledge gap by summarising the relevant knowledge in
different research disciplines, synthesising the emerging themes and providing unique
insights for making homes smart with respect to air quality. In particular, the specific
objectives of this review are to (i) provide a comprehensive summary of common indoor
air pollutants and pros/cons of LCSs manufactured for indoor applications, (ii) review
and summarise the optimal deployment strategies of LCSs within a domestic context,
(iii) discuss pre-/post-processing protocols to conduct reliable measurements, carry out
data management and data processing, and generate useful information for occupants
from the large datasets obtained by networked structures, (iv) evaluate the effectiveness of
predictive modelling tools to obtain best-fit approaches with an adequate spatial resolution
for estimating exposure to indoor air pollution using LCSs.

2. Scope and Outline

The scope of this review is limited to advanced automation technologies, including
sensor selection, deployment strategies, data processing, and development of predictive
models, which brings healthier indoor environments via monitoring and control of IAQ
through the use of networked LCSs. Therefore, a discussion on how to improve IAQ for
healthier environments, as well as considerations of ventilation settings, optimal selection
of filtration units or air purifying systems are excluded from the scope of this study.

We searched peer-reviewed research articles focusing on the main keywords in vari-
ous scientific electronic resources, such as Web of Science, ScienceDirect, Wiley, Springer,
PubMed and those known to authors. The terminologies used in the search were either one
or a combination of “smart homes”, “home automation”, “low-cost sensors”, “affordable
pollution sensing”, “sensor deployment strategies”, “data collection”, “data assimilation”,
“data processing”, “machine learning”, “data modelling”, “predictive modelling”, “indoor
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air pollution” and “indoor air quality”. Documents published in the technical reports or
the following websites, WHO, UK Department for Environment, Food and Rural Affairs
(DEFRA), European Commission, US EPA organisations, and different sensor manufactur-
ers were also reviewed for their contents. Since the topic is broad and explored by private
companies/organisations as well, studies/reports outside the aforementioned databases
were reviewed as a part of a grey literature review using similar keywords through the
Google search engine. Studies that did not have one of the quoted terms or explicitly fo-
cused on outdoor/ambient environments were discarded from the analysis. The resulting
documents were manually screened and collected information fitting to the context was
selected for discussion. The search was limited to English-based articles/reports.

As summarised in Figure 1, the article starts with a brief review of the common
indoor air pollutants for developing the background context for the topic areas covered
(Section 3), followed by the state-of-the-art air pollution sensing technologies for indoor
environments by considering their performance and drawbacks (Section 4). The subsequent
section (Section 5) explores optimal deployment strategies to better capture spatio-temporal
distribution of indoor air pollutants and addresses how these strategies could be built to
improve the accuracy and reliability of data. Section 6 summarises pre- and post-processing
methods and tools in dealing with LCSs data. Section 7 describes suitability of advanced
IAQ predictive models for indoor settings. Finally, a summary of topic areas covered,
conclusions and future remarks are presented in Section 8.
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indoor air quality (IAQ) and health benefits to home occupants.

3. Common Indoor Air Pollutants and Their Sources

IAQ is affected by diverse ranges of indoor sources as well as infiltration of outdoor
air pollutants. Each source could impact the overall IAQ, depending on their intensity and
the operational time (see Table 1). The most common indoor air pollutants arising from
indoor occupants, activities and/or materials are CO2, CO, VOCs, and PM in different
aerodynamic size fractions, including PM ≤ 2.5 µm (PM2.5) and ≤10 µm (PM10). Although
there can be other pollutants, such as polycyclic aromatic hydrocarbons (PAHs; specifically,
benzo[a]pyrene), nitrogen oxides (NOx = NO+NO2), ozone (O3), sulphur dioxide (SO2),
formaldehyde (HCHO), radon and persistent organic pollutants (POPs), the presence of all
of these components in one place is unlikely. In addition, under-controlled thermal comfort
parameters, such as temperature, air velocity, relative humidity (RH), noise and lighting
levels are other parameters that make the living environment pleasant for the occupants.
Hence, a flow of clean air throughout a building environment is necessary to minimise the
risk of accumulation of indoor air pollutants.
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4. Sensor Technology

Assessing the existing IAQ and unexpected changes in its level through continuous
measurement is necessary to know the status of IAQ and its effects on the occupants’
health. Sensing IAQ with the help of LCSs could be served as the core of smart homes
and counted as one of the major components to maintain high-quality living standards.
The desirable sensors in smart homes should: (i) be sensitive and selective to target
pollutants for reliable sensing relevant to indoor environments that pose health risks to
occupants; (ii) be durable with optimal performance over a long-term of deployment; (iii) be
small in size, maintenance-free with low-power consumption; (iv) be adopted in complex
sensor networks; and (v) work quietly with minimum operating noise [11,12,33–37]. These
features enable air pollution sensors to be deployed with relative ease to locations where
understanding air quality level could have a huge impact on human health. However,
LCSs come with challenges, which may reduce user trust, accuracy and interpretability of
recorded data [12,38]. If their quality remained unchanged under realistic conditions, they
could become a game-changer in various IAQ measurements [39].

4.1. Electrochemical Sensors

Electrochemical technology is one of the oldest and perhaps widely used technologies for
concentration measurements of gaseous pollutants using either potentiometric (measuring a
difference of potentials) or amperometric (measuring current of a redox reaction) principles.
Fundamentally, electrochemical sensors (ECs) require at least two electrodes (reference and
counter electrodes) for operation, which operate based on a chemical reaction between a
gaseous pollutant in the air and an electrode in an electrolyte. The sensors are coated with
a catalyst that provides a high surface area, which promotes reactions [34]. The recent ECs
contain a cell with three electrodes including, measuring, reference and counter electrodes,
which host reduction/oxidation of chosen gases. In this technology, the sample gas diffuses
through the sensor’s membranes towards the measuring electrode, which results in an
electron transfer (produce an internal current). Recently, some sensor manufacturers (e.g.,
those of AlphaSense and Membrapor, Wallisellen, Switzerland) have upgraded ECs by
adding the fourth electrode to monitor physical changes and measure drift [40].

ECs have a comparatively low-cost, high sensitivity/low cross-sensitivity, low detec-
tion limit (~sub-ppm), reasonable response time, and less power-intensive (µW) character-
istics compared to traditional monitors [34]. Additionally, stability with acceptable drift
values (between 2% and 15% per year) have been reported for the commercial ECs (e.g.,
Nemoto and SGX Sensortech) [40]. However, they are more complicated, vulnerable to
poisoning, large in size, of shorter life span (~1–3 years), and more expensive than that of
metal oxide semiconductor (MOx) gas sensors (see Section 4.2). As listed in Table 2, ECs
have shown interference with the change in meteorology (e.g., air temperature), which is
in the first-order impact on an electric output signal of gas concentration (ppb level) and
second-order error on gas sensitivity. Low temperatures decrease the speed of reaction in
electrochemical cells, which reduce the applicability to operate under cold environments
(<10 ◦C). However, there is a solution to overcome the effects of temperature on background
currents (zero currents) that would make a significant impact on measurements at low
concentration levels [41].

4.2. Metal Oxide Semiconductor (MOx) Sensors

In MOx sensors, gaseous air pollutants react with the sensor surface and change
it’s electrical (resistance or conductivity) properties [44,45]. Measuring the changes in
electrical properties represent the concentration of the target pollutant in the air. Because
of advances in fabrication methods and the simplicity of semiconductor sensor devices,
MOx gas sensors are moderately low-priced compared to other technologies (cheaper than
ECs). MOx sensors are robust, lightweight/long-lasting, sensitive to low-concentration
gases (as low as ppb level), and less power intensive (less than 1 W) but higher than PIDs
(photoionisation detectors; see Section 4.3) [46–48].
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Simple and fast production processes on a large scale as well as simply controllable
processes make MOx gas sensors a desirable technology for air quality monitoring. MOx
gas sensors have been reported to be sensitive to a variety of air pollutants [48], with
responses changing with the concentration of gaseous pollutants and device operating
temperature [46]. MOx gas sensors have been implemented to measure/monitor trace
amounts of gaseous pollutants, such as CO, CO2, O3, total VOCs, Ammonia (NH3) and
NOx [46,49]. However, non-linear output signals, cross-sensitivity to other gases (especially
to changes in environmental conditions and other VOC substances in complex mixtures),
poisoned by certain or high doses of target gases (e.g., high concentration of certain
organic compounds and gaseous sulphur-containing substances) have been discussed in
the literature [12,48,50,51].

Table 2. The current available air quality LCSs characteristics, advantages and disadvantages [39,40,42,43]. Examples of
different deployed environmental and air pollution LCSs suggested for indoor environments are presented at the end of
table.

Sensor
Technology Known for Summary of Pros and Cons

Electrochemical NO2, SO2, O3, NO,
CO,

NH3 and VOCs 1

√
Good sensitivity, from mg m−3 (potentiometric) to µg m−3 (amperometric).√
Fast response time (30–200 s). 2

√
Small in size (20 mm) and low power consumption (µW).√
Long-term stability with acceptable drift values (between 2% and 15% per year)

reported for the commercial ECs.
× Large in size, complicated, vulnerable to poisoning, and shorter life span (~1–3 years).
× Highly sensitive to change in meteorology (temperature and RH variations)
depending on electrolyte. 3

× Show cross-reactivity with similar molecule types.
×More expensive than MOx gas sensors.

MOx

CO, CO2, H2, O3,
NH3,

NO, NO2, NOx,
CH4,

C3H8 and VOCs 4

√
Good sensitivity, from mg m−3 to µg m−3 (ppb level) and relatively long lifetime (>5

years).√
Small in size (few millimetres) and long-lasting/light weight (few grams).√
Least power intensive (<1 W) – but higher than PIDs.

× Results are affected by temperature and RH variations.
× Long response time (>30 s; some cases 5–50 min), long stabilisation period before
measurements (~24 h), and longer-term performance drift.
× Poor recovery to achieve initial status under a change in experimental condition or
exposure to a high concentration of target gases.
× Output depends on the history of past inputs.
× Instability over time. 5

PID
VOCs 1

√
Small in size with moderate price (approximately 400€ for a sensor to ~5000€ for a

handheld device).√
Good sensitivity, down to mg m−3, some down to µg m−3.√
Limited temperature dependence and RH effects.√
Very fast (a few) response time.

× Not selective: reacts to all VOCs that can be ionised by the UV lamp. Proper
calibration and maintenance may be needed.
× Significant signal drift.

Optical particle
counter PMs

√
Fast response time (in a second).√
Sensitivity in the range of 1 µg m−3.√
Able to identify the size of the particle in the size of PM10 and PM2.5.

× Conversion from PM counts to PM mass with the theoretical model.
× The measured signal depends on a variety of parameters such as particle shape,
colour and density, RH, refractive index, etc.
× Unable to detect ultrafine particles. 6
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Table 2. Cont.

Sensor
Technology Known for Summary of Pros and Cons

Optical CO and CO2

√
Good sensitivity for CO2 (350–2000 ppm).√
Selectivity is good through characteristic CO2 IR spectra.√
Response time 20–120 s.√
Limited drift over time of the sensor calibration.

× Need for correction for the effects of temperature, RH and pressure.
1 Photoionisation detectors (PIDs) demonstrate a better sensitivity than electrochemical cells for volatile organic compounds (VOCs)
(range from 100 ppb and 20 ppm).
2 Depend on the air temperature [40].
3 The interference caused by temperature influence can be compensated.
4 MOx should not be used to measure low concentrations of VOCs in the presence of high concentrations of NO, NO2 or CO. MOx
sensors are suitable when sensing VOCs, which are not detected by PIDs (e.g., many chlorofluorocarbons (CFCs)) [40].
5 An empirical relation for drift or stability corrections have been suggested [40,44].
6 No LCS is available that could detect ultrafine particles (<100 nm in diameter), because the optical systems are unable to detect
<300 nm particles [42].
Note 1: Near real-time monitoring in indoor environments is required to capture the immediate incidents and to adopt
precautionary and corrective measures, but not all the sensors discussed above are fast/immediate responsive enough to
concentration changes. Currently, a reasonable average time among the deployed sensors is 30-s and/or 1-min averaging timestamp
as per published studies in the literature. Besides, a balance should be maintained between sampling frequency and power source.
Note 2: There are LCSs for other pollutants, such as Radon, NO, H2S, and SO2 which are not listed in here.
Note 3: Here are some sensors that have been used in IAQ studies:

• Temperature/relative humidity (RH)/pressure: AM2302 (Adafruit, New York, USA), BME280/680 (Bosch GmbH), HDC1080
(Texas Instruments Co., USA), SHT-31 (Sensirion, Switzerland).

• Sound/noise: ICS-434342 (Invensense) and Adafruit #1063.
• Light: BH1721FVC (ROHM Semiconductor) and TSL2561 (Texas Advanced Optoelectronic Solutions).
• Particulate matter (PM1/2.5/10): some of the PM sensors such as the GP2Y1010AU0F (Sharp Corporation, Osaka, Japan),

DSM501A (Samyoung S&C, Seongnam-si, South Korea), PPD42NS (Shinyei Technology, Japan), and PPD60PV (Shinyei
Technology Co., Kobe, Japan) cannot distinguish between particle sizes and report single mass concentration of particles (sizes
> ~0.3 µm) in air. However, other sensor manufacturers such as HPMA115S0 (Honeywell Sensing Inc., Charlotte, NC, USA),
OPC-N2/3 (Alphasense, Braintree, UK), Plantower PMS series, such as 5003 and 7003 (Beijing Plantower Co., Ltd., Beijing,
China), ZH03A (Zhengzhou Winsen Electronics Technology Co., Ltd., Zhengzhou, China), SDL301/607 and SDS011/018/021
(Nova Fitness Co., Ltd., Jinan, China) rely on different size bins. There are other sensors such as household air pollution
exposure (HAPEx) and TZOA-r for PM measurements.

• CO: CO-A44/-B41 (EC; Alphasense, UK), 4-CO-500 (EC; Euro-Gas Management Services LTD., Brixham, UK), 110-102 (EC;
SPEC Sensors, LLC), MQ-7 (MOx; Zhengzhou Winsen Electronics Technology Co., Ltd., China), MICS-5525 (MOx;
SGX-Sensotech, Corcelles, Switzerland), TGS-5042 (EC; Arlington Heights, IL) and EL-USB-C. For both MOx and EC CO
sensors, poor performance (R2 ≈ 0.1) was observed in long-term deployment (4.5 months). Hence, routine in-field calibration
should be accounted to avoid aging [40].

• CO2: ELT S300 (NDIR (nondispersive infrared); ELT Sensor Corp., Bucheon-si, Korea), TGS 4161-type (NDIR; FIGARO USA,
Inc., Arlington Heights, IL, USA), INE20-CO2P-NCVSP, SST CO2S-A (NDIR; SST Technologies), and T6713 (NDIR; Amphenol
Advanced Sensors, St Marys, PA, USA).

• TVOCs: BME680 (MOx; Bosch GmbH), CCS811 (MOx; ScioSense, Eindhoven, The Netherlands), and MiCS-VZ-89TE (MOx;
Amphenol Advanced Sensors, USA).

• NO2: OX-B431, NO2-A43F/-B43F (EC; Alphasense, UK, NO2 sensor with O3 filter to minimise the O3 interference), NO2_3E50
(EC; Citytech, UK), and MICS-2710/4514 (MOx; SGX-Sensotech). Excellent performance (R2 ≈ 1) under laboratory conditions,
while poor performance under field conditions was achieved that highlights the necessity for careful performance evaluation.

• O3: MICS-2610/2611 (EC; SGX Sensortech, Switzerland), MQ131 (MOx; ETC), OX-A431/-B431/-B421/O3B4 (EC; Alphasense,
UK), and O3_3E1F (EC; Life Safety Germany GmbH, München, Germany). Both EC and MOx sensors performed well under
controlled laboratory conditions (R2 > 0.9); however, their performance gets decayed under field conditions (R2 = 0.01–0.94).
Temperature, RH and cross-sensitivity to CO, CO2, NO, NO2, SO2, and NH3 have been reported as drawbacks that affect the
outputs [23].

4.3. Photoionisation Detectors (PIDs)

The PID is another type of LCS, which uses high-energy photons (ultraviolet (UV)
light) for ionisation of gaseous molecules [40]. The main principle is that the gas between
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the electrodes is ionized by UV light (in the energy scale of 10 eV) to produce charged ions.
The resulting ions are proportional to the output signals as well as pollutant concentra-
tions in the detector. Due to high sensitivity, PIDs are extensively used for the detection
of VOCs, because each VOC component has its own ionisation potential (IP). IP range
varies from easy to ionise substances (~7 eV) to extremely difficult to ionise substances
(~12–16 eV). For example, PIDs effectively detect most hazardous gases, including VOCs
(e.g., benzene = 9.25; hexane = 10.13; toluene = 8.82; and xylene = 8.56 eV) due to their low
IPs, and offer a range of benefits, such as fast response, small size, ease of use/maintenance,
and ability to detect low concentrations. However, PIDs cannot detect air constituents (O2
and N2), CO2, CO, SO2, CH4, and O3 due to their high IPs.

4.4. Optical Sensors

Optical sensors, also called light scattering sensors, are used for detection of PMs.
Light-scattering PM sensors measure the optical properties of the particles as an ensemble,
which offers fast and real-time responses, minimal drift and greatly reduces the cost and
size of the sensors [52–55]. In addition to small size, low-energy consumption (less power
supply voltage ~5 V) and ability to generate high-frequency output data during opera-
tions make optical sensors a good candidate in various applications [56,57]. Furthermore,
variations in PM2.5 concentration measurement under low-concentrations (20–30 µg m−3)
among different optical PM sensors against reference instruments could be a major draw-
back of sensors of this type. This is because the amount of scattered light is reliant on size,
shape, density, and refractive index of particles [58]. Despite all these limitations, reliable
functioning of optical PM sensors in indoor environments with small spatial scale was
reported [59].

4.5. Sensor Selection

Putting multiple sensors together onto boards, calibrating and reshaping them as
commercial products for indoor (or outdoor) applications has been a common practice.
Such sensor-based products are becoming increasingly available, while the information
around lifetime and maintenance are not clearly available. Table 2 (sensors) and Table 3
(commercial sensor-based products) summarise the specification of technologies in the
market, whose performances have been evaluated by at least one indoor study. Moreover,
the manufacturer’s specifications obtained from technical datasheets, such as type of
pollutant, technology, measuring range, reported sensor lifetime, sampling mechanism,
sampling interval, environmental operating range, and connectivity have been summarised
in Table 3.

Studies showed that the sensor correlations against the research-grade instruments
could vary before and/or after deployment even for identical sensors under identical
conditions [60–63]. Furthermore, environmental conditions (temperature and RH) and
cross-sensitivities of certain pollutants (e.g., NO2 gas on O3 sensors, NO gas on NO2 sen-
sors, and hydrogen molecule on CO sensors) on sensor readings have been imperfectly
addressed [34,38,64–66]. In other words, due to the lack of regulatory bodies, questions are
raised about their reported values, reproducibility and comparability. However, significant
progress has been made in this direction in the recent past. For example, the Air Quality
Sensor Performance Evaluation Centre (AQ-SPEC) operated by South Coast Air Quality
Management District (SCAQMD) [67,68], the US EPA, Air Sensor Toolbox [69], and the EU
Joint Research Centre (EU JRC) [50,70] programs have been initiated to quantitatively eval-
uate the performance, stability and quality assurance/control (QA/QC) of sensor-based
products. To tackle these issues in a more convenient way by not only considering in-field
co-location, field normalisation or field calibration with reference instruments [71–73], re-
cent studies have shown an alternative solution that can be utilised to improve the QA/QC
of readings. Affordable laboratory facilities, such as the Envilution® chamber are currently
offered by academic and research institutions to calibrate and evaluate the performance of
LCSs before and after deployment under controlled environments [73]. Here, a controlled
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environment is defined as a situation where changes in environmental conditions and pol-
lution concentrations, representing indoor environments, for testing LCSs can be simulated
(controlled) inside the chamber. Therefore, LCSs performance can be assessed under a com-
bination of indoor variations in environmental parameters and pollution concentrations.
In-field co-location would be an alternative QA/QC measure after deployment. Moreover,
routine calibration checks after deployment for simple networks along with advanced
statistical techniques, e.g., data consistency checks, network correlations, and principal
components analysis, in complex networks (Section 7) can boost the performance of this
system to maintain long-term satisfactory performance. Such platforms, initiatives and
programs offer support to obtain reliable data by the use of appropriate sensors, which
could result in improving personal exposure estimates in home environments.

Table 3. Specification of sensor-based product specifications (both single- and multiple-purpose units) reported by manu-
facturers available in the market that could be used for IAQ and/or personal indoor exposure monitoring systems. The
authors highly suggest the buyers to check the up-to-date specifications of the sensors prior to selection and do not endorse
any brand or a product.

Single-Purpose Units Designed for IAQ

Sensor name Pollutant Technology Specific Practical Features

Aeroqual S500

(OZU)

Can be used with a wide
range of gas sensor
heads (e.g., CO, CO2, O3,
VOCs, PM2.5 and PM10).

A sensitive MOx that
relies
on the conductance of
heated tungstic oxide
(WO3).

Battery: Yes (12Vdc 2700 mA.h)
Sampling mechanism: Air pump
Sampling interval: N/S
Environmental operating conditions –5 to 45 ◦C; up
to 95% of RH
Internal data storage/wireless communication:
Yes/Yes
Calibration: Zero and span calibration

AirAssure by TSI
Real-time measurements
of PM2.5 mass
concentrations.

Enable a light-scattering
photometer that detects
and measures PM2.5
between 5 and 300 µg
m−3.

Power supply: Yes (24 V, 5 W max)
Sampling mechanism: Air pump
Sampling interval: N/S
Environmental operating conditions: 10 to 30 ◦C;
<65%
Internal data storage/wireless communication:
No/Yes
Calibration: Pre-calibrated sensor with the National
Institute of Standards and Technology (NIST)
Statement of Conformance

AirBeam2

by HabitatMap

Measures PM1, PM2.5
and PM10, temp. and
RH.

Use a light-scattering
method to measure PMs.
Particle sensor
(Plantower PMS7003);
RH sensor (Honeywell
HIH-5030-001); Temp.
sensor (Microchip
MCP9700T-E/TT)

Battery: Yes (up to 10 h battery life)
Power supply: Yes - micro universal serial bus (USB)
port
Sampling mechanism: Air pump
Sampling interval: N/S
Environmental operating conditions: N/S
Internal data storage/wireless communication:
No/Yes
Calibration: Pre-calibrated by the manufacturer

Alphasense OPC

- Particulate Monitor

Measures PM1, PM2.5
and PM10.
Certified with ISO
9001:2015.

Use laser beams to
detect
particles from 0.38
micron
to 17 micron in diameter.

Power supply: No battery, 175 mA
Sampling mechanism: Air pump
Sampling interval: Histogram period (1–30 s)
Environmental operating conditions: up to 50 ◦C; up
to 95%
Internal data storage/wireless communication:
Yes/No
Calibration: Pre-calibrated by the manufacturer
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Table 3. Cont.

Single-Purpose Units Designed for IAQ

Sensor name Pollutant Technology Specific Practical Features

AS-LUNG
portable

Real-time measurements
of PM1, PM2.5 and PM10
in µg m−3 as well as
CO2 concentrations.

Use Plantower PMS3003
laser particle counter
sensors, which come
factory calibrated.

Battery: No (Yes for the station)
Power supply: Yes, DC-5V
Sampling mechanism: Air pump
Sampling interval: N/S
Environmental operating conditions: N/S
Internal data storage/wireless communication:
Yes/Yes
Calibration: Pre-calibrated by the manufacturer

Cair

Detect dust particle
concentration of a given
size range in pcs ft−3.
It measures VOC in ppm
level, air temp. and RH.

Count particle via laser
beams

Power supply: No battery, yes (USB 5 V)
Sampling mechanism: Air pump
Sampling interval: 1 min
Environmental operating conditions: N/S
Internal data storage/wireless communication:
No/Yes
Calibration: Pre-calibrated by the manufacturer

Cairsense
micro-sensors

Offers a separate range
of air quality gas sensors,
including T, RH, NO2,
NH3, CO, O3+NO2,
NH3, H2S+CH4S,
HCHO, SO2, PMs, and
non-methane VOCs.

See Technical Data of
each sensor kit for
detailed specifications.

Battery: Yes
Power supply: 5 VDC/500 mA
Sampling mechanism: Air pump
Sampling interval: 1, 15, and 60 min
Environmental operating conditions: up to 40 ◦C; up
to 100%
Internal data storage/wireless communication:
Yes/Yes
Calibration: Pre-calibrated by the manufacturer

Dylos - DC1700-PM

Measures both PM2.5
and PM10 number (>0.5
µm and >2.5 µm) and
mass concentrations
interchangeably.

Use a true laser particle
counter, where laser
beams detect particles
going past by their
reflectivity.

Battery: Yes (up to 6 h of continuous use)
Power supply: Yes
Sampling mechanism: Air pump
Sampling interval: Minimum for 1 min
Environmental operating conditions: N/S
Calibration: Pre-calibrated by the manufacturer

Eco Witt WH43

Designed to provide
real-time measurements
of PM2.5 mass
concentrations.

Use Honeywell HPM
Series Particulate Sensor
to detect/count particles
using light-scattering
between 0–999 µg m−3.

Battery: Yes
Power supply: Yes (USB power cable)
Sensor lifetime: 10 years for the Honeywell HPM
Series PM2.5 sensor
Sampling mechanism: Air pump
Sampling interval: N/S
Environmental operating conditions: N/S
Internal data storage/wireless communication:
No/Yes
Calibration: Pre-calibrated by the manufacturer

Laser Egg

A handheld device that
provides real-time
measurements of PM2.5
and PM10.

Use light-scattering to
measure particles
between 0.3 and 10
micron within 10–100
ms in aerodynamic
diameter.

Battery: Yes
Battery Life: 8 h
Power supply: DC 5 V (USB charging cable)
Sampling mechanism: Air pump
Sampling interval: N/S
Environmental operating conditions: N/S
Internal data storage/wireless communication:
No/Yes
Calibration: Pre-calibrated by the manufacturer
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Table 3. Cont.

Single-Purpose Units Designed for IAQ

Sensor name Pollutant Technology Specific Practical Features

Micro Aeth

Model AE51
aethalometer, BC aerosol
monitor that measures
0–1 mg BC m−3

Measures the rate of
change in absorption of
transmitted light due to
a continuous collection
of aerosol deposit on T60
(Teflon coated glass
filter).

Battery: Yes
Power supply: Yes (5 V DC/0.5 A)
Sampling mechanism: Internal pump up to 200 mL
min−1

Sampling interval: 1, 10, 30, 60, or 300 s
Environmental operating conditions: 0 to 40 ◦C
Internal data storage/wireless communication:
Yes/Yes
Calibration: Pre-calibrated by the manufacturer

MicroPEM by RTI
A portable sensing
device that measures
PM2.5 and PM10.

It combines real-time
nephelometry and
integrated referee filter
PM measurements. The
device carries an
impactor and a
light-scattering particle
detector.

Battery: Yes (up to 40 h of continuous operation)
Power supply: Yes (120 V AC/60 Hz AC adapter to
USB)
Sampling mechanism: Pump (500 mL min−1)
Sampling interval: 10 s
Environmental operating conditions: N/S
Internal data storage/wireless communication:
Yes/Yes
Calibration: Pre-calibrated by the manufacturer

Naneos - Partector

A portable,
battery-powered
instrument that
measures the lung
deposited surface area
(LDSA) of nanoparticles.

Measures nanoparticle
surface area based on a
non-contact electrical
detection principle.

Battery: Internal rechargeable Li:Ion battery (15 h)
Power supply: USB charger (to either charge or run
indefinitely)
Sampling mechanism: Air pump (0.5 L min−1)
Sampling interval: N/S
Environmental operating conditions: N/S
Internal data storage/wireless communication:
Yes/No
Calibration: Pre-calibrated by the manufacturer

POM * by 2B

Technologies

Personal Ozone Monitor
(POM) 4 ppb–10 ppm,
Resolution 0.1 ppb

Absorption of ultraviolet
light
at 254 nm
Baseline drift <2 ppb per
day,
<5 ppb per year
Sensitivity drift <1% per
day,
<3% per year

Battery lifetime: 5–8 h
Power supply: Yes
Sampling mechanism: Air pump (0.75 L min−1)
Sampling interval: 10 s, 0.1 Hz (Fast mode: 2 s, 0.5
Hz)
Environmental operating conditions: up to 50 ◦C
Internal data storage/wireless communication:
Yes/Yes
Calibration: Pre-calibrated by the manufacturer

PurpleAir

PA-II
(IAQ and OAQ) An OPC, which

measures PM1, PM2.5
and PM10 mass
concentrations from the
counts.

Use Plantower PMS5003
laser particle counter
(maximum range ≥1000
µg m−3), where laser
beams detect particles
going past by their
reflectivity.

Power supply: 5 V DC, 3 A
Sampling mechanism: Air pump
Sampling interval: N/S
Environmental operating conditions: N/S
Internal data storage/wireless communication:
No/Yes
Calibration: Pre-calibrated by the manufacturer

PurpleAir

PA-I-Indoor

Use PMS1003 laser
particle counters
(maximum range ≥1000
µg m−3) where laser
beams detect particles
going past by their
reflectivity.

Power supply: 5 V DC, 3 A
Sampling mechanism: Air pump
Sampling interval: N/S
Environmental operating conditions: up to 60 ◦C; up
to 99%
Internal data storage/wireless communication:
No/Yes
Calibration: Pre-calibrated by the manufacturer
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Table 3. Cont.

Single-Purpose Units Designed for IAQ

Sensor name Pollutant Technology Specific Practical Features

Samyoung S&C

SY-DS-DK3

Designed to provide
real-time measurements
of PM2.5 mass
concentrations.

The PM2.5 sensor
provides mass
concentration over 0.3
µm sized particles
through Samyoung
S&C’s proprietary
optical structure with
Infrared emitting diode.

Power supply: Yes
Sensor lifetime: min. 5 years
Sampling mechanism: Air pump
Sampling interval: 2 s
Environmental operating conditions: up to 65 ◦C; up
to 95%
Internal data storage/wireless communication: N/S
Calibration: Pre-calibrated by the manufacturer

Sensirion - SPS30

Eval Kit

Real-time PMs
mass/number
concentrations.
Mass concentration:
PM1.0, PM2.5, PM4 and
PM10
Number concentration:
PM0.5, PM1.0, PM2.5,
PM4 and PM10

Based on laser scattering
(1 to 1000 µg m−3) by
using advanced particle
size binning

Power supply: Yes
Sensor lifetime: >8 years, operating continuously for
24 h/day
Sampling mechanism: Air pump
Sampling interval: 1 s
Environmental operating conditions: 10 to 40 ◦C;
20% to 80%
Internal data storage/wireless communication: N/S
Calibration: Pre-calibrated by the manufacturer

Speck by Airviz

Detects fine PM
(between 0.5 and 3.0
micron) in indoor
environments.

Equipped with an
optical sensor
(DSM501A) that counts
the number of particles
per litre of air (ppl). It
can estimate the particle
mass per cubic meter of
air
(µg m−3).

Power supply: Micro USB, 5 V 500 mA
Sampling interval: 5 s to 4 min (default 1 min)
Environmental operating range: −10 ~ +65 ◦C; <95%
Internal data storage/wireless communication:
Yes/Yes
Calibration: Pre-calibrated by the manufacturer by
exposing to two controlled particle concentrations

Multipurpose units designed for IAQ

Sensor name Pollutants Technology Specific Practical Features

+IQAir - AirVisual

Pro

A handheld device that
provides real-time
measurements of PM
(0.3–2.5 µm) and CO2
(400–10,000 ppm).

Use a light-scattering
method to measure PMs.

Battery: Rechargeable Li:Ion (up to 4 h on a single
charge)
Screen Size: 5” light-emitting diode (LED)
Sampling mechanism: Air pump
Sampling interval: N/S
Operating temp.: 0 to 40 ◦C; 0 to 95%
Internal data storage/wireless communication:
No/Yes
Calibration: Pre-calibrated by the manufacturer

Air Fruit

A handheld device that
provides real-time
measurements of PM2.5,
CO2, temp. and RH.

Use light-scattering to
measure PM2.5.
PM2.5: 0~500 µg m−3

CO2: 0~10,000 ppm

Power supply: 5 V USB cable
Sampling mechanism: Air pump
Detection time interval: daytime 15 min / night 1 h
Sampling interval: N/S
Environmental operating conditions: up to 70 ◦C;
<100%
Internal data storage/wireless communication:
No/Yes
Calibration: Pre-calibrated by the manufacturer



Atmosphere 2021, 12, 453 13 of 33

Table 3. Cont.

Single-Purpose Units Designed for IAQ

Sensor name Pollutant Technology Specific Practical Features

Air Quality Egg

V2 2020

Used for measurements
of CO2, SO2, CO, O3,
PM (PM1, PM2.5 and
PM10) and NO2 (not all
together). Each set of
sensors also monitors
temp., pressure and RH.

Dual Plantower
PMS5003 sensor ranges
between 0.3 and 10 µm.

Power supply: No battery, 5 V USB or Micro-USB
Sampling mechanism: Air pump
Sampling interval: N/S
Environmental operating conditions: up to 40 ◦C; up
to 95%
Sensor response time: Maximum of 30 s
Sensor lifetime: 3 years
Internal data storage/wireless communication:
Yes/Yes
Calibration: For gases, using previously calibrated
electrochemical gaseous sensors

Airthings Wave Plus

A smart air quality
monitor capable of
measuring temp., RH,
TVOCs, air pressure,
radon and CO2.

Sensor specifications
(except for CO2 which is
NDIR) are not included
in the product sheet.
Settling time:
TVOC ~7 days
CO2 ~7 days

Battery: Yes, 2 AA 1.5 V
Power supply: No
Sampling mechanism: N/S (diffusion for radon)
Sampling interval: 5 min
Environmental operating conditions: 4 to 40 ◦C;
<85%
Internal data storage/wireless communication:
No/Yes (Bluetooth or AirthingsSmartLink)
Calibration: Pre-calibrated by the manufacturer

AirThinx IAQ

Real-time measurements
of PM1, PM2.5 and PM10
in µg m−3. It also
provides temp., RH,
pressure, CO, CH2O and
TVOC measurements.
Holds Conformitè
Europëenne (CE),
Federal
Communications
Commission (FCC), PCS
Type Certification
Review Board (PTCRB)
certificates.

Equipped with a factory
calibrated Plantower
PMS5003 laser particle
counter.
CO2: 0~3000 ppm
PMs: 0~500 µg m−3

CH2O: 0~1 mg m−3

TVOC: 1~30 ppm of
EtOH

Power supply: Yes (5 V DC)
Sampling mechanism: Air pump
Sampling interval: 1, 5, 10, 15, and 30 min
Environmental operating conditions: up to 75 ◦C
Internal data storage/wireless communication:
No/Yes (incl. cellular)
Calibration: Pre-calibrated by the manufacturer

Awair

Real-time measurements
of temp., RH, CO2,
PM2.5 and chemicals
(VOC). It needs Wi-Fi for
setup.

Senso specs:
Temp. −40 to 125 ◦C
RH 0 to 100%
CO2 400–5000 ppm
PM2.5: 0–1000 µg m−3

VOCs: 0–60,000 ppb

Battery: No
Power supply: 5 V/2.0 A external power adapter
Sampling mechanism: N/S
Sampling interval: 5 min
Environmental operating conditions: N/S
Internal data storage/wireless communication:
No/Yes
Calibration: Pre-calibrated by the manufacturer

Blueair Aware

The Blueair Aware is a
standalone air quality
monitor to measure T (0
to 50 ◦C), RH (25% to
75%), CO2 (450 to 5000
ppb), PM2.5 (1 to 500 µg
m−3), and TVOC (125 to
1000 ppb).

N/R

Power supply: Yes (Non-detachable USB cable)
Sampling mechanism: Air pump
Sampling interval: 5 min
Environmental operating conditions: 0 to 50 ◦C; 5 to
95%
Internal data storage/wireless communication:
No/Yes
Calibration: Pre-calibrated by the manufacturer
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Table 3. Cont.

Single-Purpose Units Designed for IAQ

Sensor name Pollutant Technology Specific Practical Features

Edimax

The Edimax Edigreen
Home sensor measures
PM2.5 and PM10 in µg
m−3, CO2, HCHO,
TVOC, temp. and RH.

Use a Plantower
PMS5003 laser particle
counter, which comes
factory calibrated.
PM2.5/10: 0–500 µg m−3

PM10: 0–500 µg m−3

CO2: 400–2000 ppm
TVOC: 0–1000 ppb
HCHO: 0–1 mg m−3

Power supply: Yes (USB power adapter)
Sampling mechanism: Air pump
Sampling interval: N/S
Environmental operating conditions: 0 to 50 ◦C; 0 to
100%
Internal data storage/wireless communication:
No/Yes
Calibration: Pre-calibrated by the manufacturer
(CO2 and TVOC sensors require up to 72 h to
self-calibrate after the installation).

Huma-i (HI-300A)

Advanced Portable Air
Quality Monitor Indoor
and Outdoor Measures
temp., RH, CO2, VOC,
PM1, PM2.5, and PM10.

CO2 (400~5000 ppm)
VOC (0.000~10 ppm)
PM1, PM2.5 and PM10
(0~1000 µg m−3)
CE and FCC certification

Battery: Yes, built-in Li-polymer @ 650 mAh/3.7 V
Power supply: AC 100/240 V, 50/60 HZ, USB-C
Sampling mechanism: Air pump
Sampling interval: N/S
Environmental operating conditions: –10~60 °C;
0~99%
Internal data storage/wireless communication: Yes
(90 days)/Yes
Calibration: Pre-calibrated by the manufacturer

IDEAL AS10

The IDEAL AS10 indoor
air sensor measures the
air composition, indoor
climate and possible
environmental impacts,
all in real time.

It measures PM2.5 and
PM10 (0–1000 µg m−3),
VOCs (0–32,768 ppb),
temp (–10 to +50 ◦C),
RH (20–90%) and air
pressure (20–110 hPa).

Battery: No
Power supply: 5 V micro USB cable
Sampling mechanism: N/S
Sampling interval: 1 s
Transmission interval: 60 s
Environmental operating conditions: Up to 50 °C;
20~90%
Internal data storage/wireless communication:
No/Yes
Calibration: Pre-calibrated by the manufacturer
valid for 24 months

Laser Egg

+chemical or

+CO2

A handheld device that
provides real-time
measurements of temp.,
RH, PM2.5 and VOCs or
CO2.

Use light-scattering to
measure particles
between 0.3 and 2.5
micron.

Battery: Yes
Battery Life: 8 h
Power supply: DC 5 V (USB charging cable)
Sampling mechanism: Air pump
Sampling interval: N/S
Environmental operating conditions: N/S
Internal data storage/wireless communication:
No/Yes
Calibration: Pre-calibrated by the manufacturer

Magnasci SRL -

uRADMonitor A3
(HW105)

Measures 8 air quality
parameters including
PM2.5, CO2, VOC,
HCHO, temp., RH,
barometric pressure and
Gamma/X-ray radiation.

Use laser scattering
sensor to detect PMs; a
NDIR sensor to measure
CO2; an EC for HCHO, a
Bosch BME 680 sensor
for temp., RH,
barometric pressure and
VOC; and an S129BG
Geiger Tube to detect
gamma and X-ray
radiation.

Battery: No
Power supply: 6–28 V
Sampling mechanism: Air pump for active flow
Sampling interval: N/S
Environmental operating conditions: up to 85 ◦C, up
to 100%
Internal data storage/wireless communication:
No/Yes
Calibration: Pre-calibrated by the manufacturer
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Table 3. Cont.

Single-Purpose Units Designed for IAQ

Sensor name Pollutant Technology Specific Practical Features

SainSmart - Pure

Morning P3

Measures PM2.5, HCHO,
CO2, air temp. (in ◦C)
and RH (%).

Equipped with a
Plantower PMS5003
laser particle counter.

Battery: No
Power supply: Yes (5 V)
Sampling mechanism: Air pump
Sampling interval: N/S
Environmental operating conditions: N/S
Internal data storage/wireless communication:
No/Yes
Calibration: Pre-calibrated by the manufacturer

Temtop M2000

Measures real-time
reading of HCHO,
PM2.5, PM10,
CO2, temp. and RH.

PM2.5 range:
0~999 µg m−3

PM10 range:
0~999 µg m−3

CO2 range:
0~5000 ppm
HCHO range:
0~5 mg m−3

Battery: Yes
Power supply: 5 V DC
Sampling mechanism: Air pump
Sampling interval: N/S
Environmental operating conditions: up to 50 ◦C;
<90%
Internal data storage/wireless communication:
Yes/No
Calibration: Pre-calibrated by the manufacturer

uHoo

Carries eight dedicated sensors for VOCs (10–10,000
ppb), PM2.5 (0–200 µg m−3), CO (0–1000 ppm), CO2
(400–10,000 ppm), O3 (10–10,000 ppb), temp. (–40 to
85 ◦C), RH (0 to 100%) and air pressure (300–1100
mbar).

Battery: No
Power supply: Yes, 5 V DC
Sampling mechanism: Air pump
Sampling interval: N/S
Internal data storage/wireless communication:
No/Yes
Calibration: Pre-calibrated by the manufacturer

* Designated by US EPA as a Federal Equivalent Method (FEM: EQOA-0815-227). Note 1: Sensors’ lifetime of the reviewed kits is not
reported in the technical documents. Note 2: N/S and N/R stand for not specified and not reported, respectively.

5. Deployment Strategies

Enclosed environments such as homes trap more polluted air than open environments
due to the presence of indoor sources, lack of free-flow air circulation and inadequate ven-
tilation. In addition, different exposure levels to indoor air pollutants have been reported
for individuals even at the same location [32,74]. Unfortunately, the use of conventional
monitoring devices are unable to satisfactorily capture a spatial variation and map in-
stantaneous changes in IAQ because of the associated cost, non-scalability, and lack of
spatio-temporal mapping of indoor air pollutants [11,30,75,76]. Considering these poten-
tials and demands for technologies, the emergence of LCSs has changed the landscape of
IAQ monitoring systems, where specific sensors and sensor-based products are manufac-
tured and designed for indoor applications (see Tables 2 and 3, respectively). Although air
pollution sensors have some drawbacks (Table 2), relatively smaller changes in the environ-
mental parameters and less complexity of indoor air flow patterns compared to outdoor
environments could be beneficial for using them indoors. Table 4 summarises examples
of the sensor applications in indoor environments, in which less attention has been given
to strategies for spatio-temporal distribution of multiple air pollutants. The objectives of
the reviewed studies were limited to the performance evaluation of sensors in enclosed
environments, in which near-source air pollution monitoring systems or considering an
adult’s breathing height as a common practice among the studies is inadequate to assess
overall IAQ [35,77–79]. Considering indoor arrangements and the relationship between
indoor-outdoor environments [80], here we focus our efforts in developing suitable strate-
gies for indoor environments, while air pollution sensors are playing the major role in
covering the area.
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Table 4. Some recent LCS deployments indoors across the world.

Pollutants/Range of Operation Sensor Type Room Size Reference Instrument Sensor Placement/
Country

Sampling
Frequency

Correlation Factor
R2/Agreement Duration References

PM1, PM2.5, PM10

PM-Model-II particle
counters (Plantower
PMS3003)

88 m2 Particle monitor (Thermo
Scientific Model FH 62 C14)

An apartment in
Beijing

1 min
resolu-
tion

79% of the
spatiotemporal
variation based on a
regression model

10 days [81]

PM1, PM2.5, PM10

Dylos DC1100 Pro and
Plantower PMS sensor
(AirU)

Two homes,
306.6 m2 and
140 m2

GRIMM, DustTrak, and
MiniVol

Two households in
Salt Lake City, USA 1 min See various R2 in the

manuscript

One-week
calibration, several
weeks for sampling

[82]

PM2.5 and PM10 from 21 common
residential sources

Air Quality Egg 2018;
IQAir AirVisual Pro (AVP);
Awair 2nd Edition;
Kaiterra Laser Egg;
PurpleAir Indoor; and Ikair

N/R
Grimm Mini Wide-Range
Aerosol Spectrometer Model
1371

N/R 5 min R2 ≥ 0.83 48 h [83]

CO (0-29), CO2 (0-3600), PM10/2.5
(0-1) and VOC (0-46) *

Aeroqual Series 500 with
different sensor heads.
gas-sensitive
electrochemical (GSE),
NDIR, laser particle
counter, and PID types

Floor area of
merely 9.3 m2 Not applicable Subdivided unit

(SDU) in Hong Kong

60, 120,
5, and
30 sec

No significant
correlation between
indoor and outdoor
pollutants in case of
CO (3.58%), PM10
(0.96%), and PM2.5
(7.11%).

48 h in each SDU in
the summer of 2018 [84]

Noise (35–120 dB), T (0–50 ◦C), RH
(0–100%), CO (0–1000 ppm), CO2
(0–5000 ppm), NO (0–20 ppm),
NO2 (0–20 ppm) and PM2.5
(0.38–17 µm)

Netatmo Weather Station,
Onset Temperature,
Alphasense (COB4, NOB4,
NO2B43F, and OPC-N2),
and Harvard miniPEM

In a residential
building

RTI MicroPEM for PM only (5
min avg.)

Boston, MA,
USA 1 min

Carried out only for
PM2.5
(Lab (TSI SidePak™
AM510): R2 = 0.47;
field (RTI MicroPEM):
R2 = 0.83)

Multiple 1-week
sessions [71]

CO, NO2, NO, O3, PM2.5 (PAM,
Model AS520)

4-electrode ECs
(Great Notley, UK): CO-A4
(for CO), NO2-A43F (for
NO2), NO-A4 (for NO),
and Ox-A431 (for O3).
For PM: a miniaturised
OPC (OPC-N2,
Alphasense)

A living
room

BLUME instrumentation uses
chemiluminescence to measure
NO2 and NO, UV absorption
for O3, non-dispersive infrared
absorption for CO, and
particle light-scattering for
PM2.5 (model EDM180, Grimm
Aerosol Technik, Ainring,
Germany).

The indoor
instrument was
placed into the
home’s living room,
which was either
adjacent to the back
garden or separated
from it by a room in
between.

Maximum:
1 Hz.
Minimum:
20 sec
(PM).

For the inorganic
gases (0.92 < R2 <
0.96)
for PM2.5 (R2 = 0.64)

Simultaneous
indoor pollutant
measurements
in residential
buildings in Berlin,
Germany.
Instruments
measured one
week per location.

[85]

Ammonia (1–500 ppm), CH4
(>1000 ppm), C3H8 (>1000 ppm),
C4H10 (>1000 ppm), CO (1–1000
ppm), Ethanol (10–500 ppm), H2
(1–1000 ppm), NO2 (0.05–10 ppm)

MOx sensors (MICS series)

Real-time IAQ
monitoring in
a home using
iAir

N/R Guarda,
Portugal 30 sec N/R N/R [86]
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Table 4. Cont.

Pollutants/Range of
Operation Sensor Type Room Size Reference Instrument Sensor Placement/

Country
Sampling
Frequency

Correlation Factor
R2/Agreement Duration References

CO and PM2.5

HAPEX and TZOA-R for PM2.5
EL-USB-C for CO

1 m from an
indoor
fireplace and
0.6 m above
the ground

DustTrak DRX (Model 8534)
BGI/Mesa Labs pump (Model
BGI4004)
Q-Trak (Model 7575)

Non-smoking
private single-family
house/Spain

5 min R2 up to 85 5 days [87]

CO and PM2.5
HAPEX (PM2.5) and
EL-USB-C (CO)

Main living
area at least at
1 m above the
ground

SKC pump (Model Universal
PCXR8)

4 households located
in 4 villages/India
March-April 2016

5 min N/R 1 week [87]

PM2.5 (25 µg m−3), tVOC
(300 ppb), CO2 (1300 ppm),
T (40 ◦C), and RH (60%)

Foobot kit

An occupied
bedroom (floor
area
10.5 m2) of a
modern flat

GrayWolf TG-502 TVOC,
IQ-410, and PC-3016A Glasgow, UK 5 min

A significant
agreement with the
GrayWolf
T (rs = 0.83–0.87)
RH (rs = 0.94–0.95)
tVOC (rs = 0.83–0.87)
PM2.5 (rs = 0.79–0.87)

81 h 25 min (from
28 August 23:50 LT
to 1 September
2017 11:25 LT)

[88]

PM, CO, O3, NO2, noise,
temp.
and RH

A dust sensor (Sharp, Model
DN7C3CA006, Osaka, Japan)
A 4-electrode CO sensor
(Alphasense, Model CO-B4 with
sensor board 000-01SB-02, Essex,
UK)
A 4-electrode oxidizing gas sensor
(Alphasense, model OX-B431 with
sensor board 000-01SB-02, Essex,
UK)
A temp. and RH sensor (Adafruit,
model AM2302, NY, USA)
A custom-built noise level sensor

DataRAM 1500 Aerosol
Monitor (Thermo Fisher
Scientific., pDR, Shoreview,
MN, USA) for PM
Q-Trak Plus 8552 (TSI Inc.,
Shoreview, MN, USA) for CO,
POM (2B Technologies Inc.,
PO3M, Boulder, CO, USA) for
O3
A sound level meter (NTi
Audio, SLM, Schaan,
Liechtenstein) for noise,

Within the
fabrication area of a
manufacturing
facility

5 min

0.98 to 0.99 for
particle mass
densities
up to 300 µg m−3

0.99 for CO up to 15
ppm.
0.98 for the oxidizing
gas sensor (NO2) over
the sensitive range
from 20 to 180 ppb.
1% between 65 and 95
dBA.

Three months [89]

PM Wireless PM sensor, Sharp
GP2Y1010AU0F

Approximately
29 m2 of floor
area

TSI Sidepak AM 150 (TSI Inc.,
Minnesota, USA)

2 kitchens in Raipur,
India

Sidepak
1 Hz
and
sensors
0.25 Hz

0.71
Multiple days at
the two
households

[35]

Light (0.1 to 40,000 Lux), T
(−55–80 ◦C), RH (0–100%),
CO2 (0–10,000 ppm)

TAOS TSL2561, Onset HOBO (NTC
thermistor, Sensirion SHT15),
SenseAir K-30

IAQ in an
educational
building

N/R

Two locations at
Illinois Institute of
Technology in
Chicago, IL

1 min N/R 1 week [33]

1 Automatically control building climate control systems (air purifiers, kitchen hoods, bathroom or whole house fans, operable windows, or dampers in the mechanical room), when measured pollutant levels are
higher than acceptable levels. * Concentration values are in mg m−3. Note: N/R represents not reported.
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Air quality sensors should be deployed systematically across a location in order to
(i) optimise the cost and the number of sensors according to building layout, space and
room features, (ii) ensure the reliability level of the sensor network in case of sensor failure,
(iii) provide acceptable spatial and temporal coverage of indoor air pollutants, and (iv)
minimise the cost associated to computational analysis and prediction models [23,90–92].
There are common suggestions regarding deployment strategies in practical engineering
applications, such as sensor selection as per common indoor sources, considering the
impacts of outdoor air pollution on indoors, and deploying sensors along the wall with
proper accessibility for calibration or maintenance [35,93]. However, sensor deployment
strategies, especially for IAQ applications are usually determined based on objective
functions and sensor applications [90,94]. In general, deployment strategies in indoor
environments vary with time and space, which can be categorised into (i) engineering,
and (ii) optimisation methods. In the engineering method, previous experiences and rules
of thumb are incorporated. Uniform deployment of several sensors in space would be a
common practice in engineering methods as can be seen in studies listed in Table 4, which
may result in a fairly expensive and unfeasible output in some cases. Application of this
method may result in lack of (i) spatio-temporal mapping, (ii) controlling the response
time, and (iii) generalisability to multiple rooms/spaces [90,94,95]. To compensate for
the limitations of this method, the optimisation method has recently developed, in which
indoor airflow patterns in the deployment of sensors are taken into account [96–100]. In
this method, modelling tools such as computational fluid dynamics (CFD), zonal model,
and multi-zone airflow model are utilised along with genetic algorithm, artificial neural
networks (ANNs), simulated annealing, and stochastic approximation methods to optimise
objective, cost, or fitness functions based on the predefined goals [97,98,101,102]. Although
this method could bring precision in choosing the optimal strategy, optimisation methods
could be computationally intensive in the large deployment of sensors in multi-zone airflow
and CFD-based simulations [95]. Nevertheless, to achieve optimal strategies regardless
of sensor locations and to avoid occasional error in the prediction results of small sensor
networks (a combination of 3 to 4 sensors as reported by Ren and Cao [79]), systematic
sensor deployment methods, such as clustering model of fuzzy C-means (FCM) algorithm
based on ANN [103] or based on the genetic algorithm [104] for the efficient prediction of
indoor environments could be employed.

Although no standard values for IAQ exist and the idea of setting guideline val-
ues [13,105] is not new, we propose a simple deployment strategy for LCS deployment
in typical indoor spaces after building the evidence-base from the relevant published
literature (Figure 2). This basic strategy could be considered as a generalised plan, where
developing an optimisation model is not computationally feasible and could include (i)
deployment of environmental and pollutant sensors across the indoor space, whereas
deploying height has to be set according to occupants’ height; and (ii) deploying sensors
based on specifications discussed in Figure 2, in locations, where taking samples using
sensors’ induction fan can represent the entire environment. In the absence of a legislative
framework for regulating IAQ, such a strategy could help optimise the sampling that is
representative of indoor environments and can be beneficial in planning appropriate miti-
gation steps for reducing the exposure from indoor air pollutants. However, an optimised
network of air pollution LCSs needs to be supported by the appropriate data processing
(Section 6) and predictive modelling (Section 7) to allow its interpretation, visualisation
and conveying the meaningful messages to the users in a simple form.
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Figure 2. Schematic diagram of a simple home deployment strategy for LCSs as per location, including proposed envi-
ronmental and air pollution sensors (green boxes) and their associated ranges (a blue box) in a typical indoor space. The
representative image of a home building was obtained from free sources using Google image search engine.

6. Data Processing

A network of LCSs requires a substantial amount of pre- and post-processing of data
before presenting to the users. Pre-processed data is recorded by LCSs, which utilises an
initial calibration (pre-processed data). Post-processed data is transmitted by the sensor to
a database, which subsequently undergoes QA/QC protocols before being made available
to the users. Pre-processed data should often not be made available to the users until
sufficient QA/QC has been performed. QA/QC is essential in LCS monitoring systems
and refers to a set of activities and measures that are taken to ensure that the requirements,
objectives and established quality standards with a pre-established level of performance
and confidence being met. However, their role is not to guarantee that the data is of the
highest possible quality, which is often unreachable and unfeasible. What is sought is
to ensure that the data are accurate, reliable, fit and adequate for a particular purpose
or application.

6.1. Pre-Processing of Low-Cost Sensor (LCS) Data

LCSs are manufactured to measure numerous parameters, including but not limited
to (i) date/time; (ii) environmental parameters (e.g., temperature (◦C), relative humidity
(RH, %), barometric pressure); (iii) gaseous pollutants (concentration by molar ratio or
mass); and (iv) particle concentrations, segregated size fractions in different size bins
(µg m−3). The amount of data produced by LCSs is often orders of magnitude greater than
traditional measurement techniques. For example, at an acquisition rate of 1 Hz, the total
number of measurements could be 86,400 per day per single measurement. If one considers
monitoring of six indoor parameters at a minute sampling frequency, it will have 8640
samples in one day per location. Considering a network with multiple locations, it brings
challenges to data management and processing [106–108].

Handling of large volume datasets requires an infrastructure to process data. To do so,
several tools have been developed to address the processing of such large multivariable
dataset, with good performance. One of the available tools is the Apache Spark framework
(https://spark.apache.org; accessed on 21 March 2021), which was initially designed
to be open-source. The tool supports the processing of large amounts of data using
distributed computing for the development of iterative algorithms (like machine learning
and graph models), interactive data mining, streaming and time-series applications [109].
The framework supports a set of programming languages such as Java, Python, Scala, and
R, while being capable of distributing data and computation with a robust fault tolerance

https://spark.apache.org
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mechanism for both. One of the main current tasks of this emerging smart computing
platform includes the processing and streaming of large amounts of data from sensors as
well as machine learning tasks [109,110]. This framework is able to offer an optimal model
in terms of both processing time and least error rate in working with air quality databases,
especially related to smart monitoring [111–114].

On top of big data frameworks—a descriptor for very large and multivariate time-
series datasets produced by LCS systems—different kinds of tool were designed to tackle
specific applications. In the internet of things (IoT) area, multivariate time-series are
continuously needed to be pre-processed to guarantee its fitness for their expected usage.
Currently, the combination of big data frameworks along with time-series databases,
data collectors, data monitors, and data visualisers, has boosted the ability to use data
from LCSs to generate useful and reliable IAQ information. For time-series database
management and streaming, the open-source InfluxDB platform [115] offers a variety of
tools and mechanisms to deal with LCSs time-series datasets [82,116,117]. The capability
of open-source InfluxDB has been proved for its time-series functionality, keeping costs
as low as possible, making querying archives simple, and connectivity to data collectors
like Telegraf and to graphing software like Grafana low-effort [116]. The Telegraf tool [118]
offers a plugin architecture that supports the connection between a broad range of data
sources to collect and report metrics and events. Grafana [119] has emerged as one of the
most used platforms by the industry, offering a rich and extendable web interface to build
dashboards on top of data sources and collectors, catch errors and monitor readings, bring
compatibility with several languages, tools and frameworks [116].

In summary, pre-processed datasets always involve three problems: the quality of
data, high dimensionality, and the growing amount of data. The measurements provided
by LCSs are only useful when these issues are overcome. With an increase in interest
surrounding big data and its applications, many open-source frameworks have been
developed as discussed with the capability to process and store large amounts of time-
dependent data. These tools help LCS networks to effectively propagate and batch-process
data enabling users to conduct a wide range of experiments concurrently with real-time
monitoring of the results.

6.2. Post-Processing of LCS Data

Post-processing techniques, such as outlier detection, data cleaning and gap-filling
methodologies could help to determine missing, duplicated, inconsistent datasets, and
eliminate high-frequency noises to improve the quality of measured data [120,121]. To
meet the demands for higher data quality in LCS systems, Mahajan and Kumar [106]
presented a toolbox, known as Sense Your Data: Sensor toolbox. This web-based tool
provides easy and efficient functions to analyse air pollution data for both researchers
as well as the general public. The tool offers data plotter (including data summary),
anomaly/outlier removal and gap-filling. The three different algorithms implemented in
this tool for data processing are: (i) autoregressive integrated moving average (ARIMA)
additive for tasks related to prediction/forecasting [122]; (ii) K-nearest neighbour (K-NN)
for anomaly detection [120,123]; and (iii) the ANN model for air pollution time-series data
dealing with forecasting [122] and gap-filling [120]. The two algorithms for gap filling
are: (i) Interpolation using the “imputeTS” package [124] to fill the missing values in the
dataset; and (ii) Kalman filter to estimate past, present and future values even when the
precise nature of the system is unknown [125].

Other anomaly detection techniques that are specialised in time-series data are the
SAX algorithm (symbolic aggregate approximation); [126]) and the cluster-based algorithm
for anomaly detection in time-series using Mahalanobis distance (C-AMDATS; [127]).
SAX addresses the detection of anomalies in time-series datasets using the concept of
discords, which transforms a time-series into a sequence of characters (i.e., a string) using
clustering techniques [128]. C-AMDATS, in turn, is an unsupervised learning technique
that uses clustering methods and the covariance matrix to compute the Mahalanobis
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distance, to determine how a certain pattern differs from the others, and to calculate the
most anomalous using an anomaly rank index. It is a multivariate technique and its
performance has been evaluated as the best results compared to the SAX algorithm using
urban air pollution data [127]. Recently, a lightweight python library called Luminol for
time series data analysis was developed, which implements several anomaly detection
algorithms [129]. Luminol owns a series of applications ranging from detecting and
correcting network anomalies—the amount of writing, requests, etc.—to health, sensors
and IoT applications, which could be valuable and important for post-processing time-
series data from networked LCSs.

7. Predictive Modelling

Developing a predictive model that can forecast the changes in IAQ and occupants’
exposure is crucial to obtain concentration profiles of air pollutants in indoor spaces [130].
Predictive modelling is a commonly used technique, which employs analysis of histori-
cal/current data and generation of a model to help predicting future outcomes. With the
availability of IAQ data collected using the LCSs, sophisticated techniques can be employed
to develop a predictive model. In the subsequent sections, we review and consolidate
the techniques used for predictive modelling and bring the prevalent best practice and
knowledge to develop optimal indoor models, in which previously discussed topics are
used as the foundation in the model development.

7.1. Types of Indoor Air Quality (IAQ) Predictive Models

IAQ modelling is a non-invasive and inexpensive method to better estimate spatio-
temporal distribution of indoor air pollutants. IAQ is commonly predicted using mech-
anistic (white box) or statistical (black box) models. Mechanistic models utilise detailed
input parameters which apply fate and transport of indoor air pollutants via diffusion,
convective mass transfer, and sorption of pollutants. Mechanistic models can be applied
on unoccupied microenvironments where detailed indoor/outdoor target air pollutants,
building layout and ventilation conditions are available or under-controlled. Mechanistic
models have been implemented in several studies to predict indoor PMs [131–133] as well
as VOCs [134–137]. Mechanistic models can be categorised as single compartment mass
balance-based model and CFD model, as described here:

• The single compartment mass balance-based model is a common mechanistic model
that has been widely used in studies to explore IAQ with proper validation against
real-world data [138–140]. Liu and Zhai [94] integrated a probability-based adjoint
inverse method into the single compartment mass balance-based model to back-track
indoor pollution sources. In the model, interpolation was used to obtain the pollutant
concentrations at the locations among sensors, where sensor readings are assumed
to be always accurate. However, this is not the right assumption in the case of LCSs
due to drift error. For example, the uncompensated drift error and standard deviation
of a VOC sensor in many environments were about 0.8 and 0.3 ppm per 4 months,
respectively [141]. Therefore, Xiang et al. [142] improved the mass balance-based
model by considering LCS specifications and optimally compensating drift errors.
The corrected model was composed of an optimal indoor concentration prediction
and estimation model, which was supported by a hybrid sensor network synthesis
algorithm.

• CFD is a well-known mechanistic model that is restrictive in nature due to its excep-
tional complexity and dependency on many assumptions, approximations, and real
observations. Empirical models can be integrated into detailed mathematical models
to enhance the accuracy of predictions. CFD supported models by empirical/physics-
based models require additional resources and pre-existing knowledge during model
development [143–145].

In statistical models, model parameters are identified using experimental data and
the model structure is inferred by applying statistical methods. While mechanistic and



Atmosphere 2021, 12, 453 22 of 33

empirical/physics-based models are complicated to develop and there are no estab-
lished mechanisms, statistical models can help especially in case of dealing with large
datasets [146]. This technique can deliver reliable outcomes, but the complete lack of
physical insights is a significant drawback. Statistical models have been developed in
which they appear to be less resource-demanding compared to other models. In fact, sta-
tistical models need the use of consistent input data streams via data loggers or pollution
monitors, thereby, the absence of input information flow could endanger the accuracy of
the model [144,147,148].

In addition to traditional statistical models, such as kriging or Gaussian process
regression, the use of machine-learning techniques gained increased attention in statistical
IAQ predictions. The common statistical machine learning-based models are multiple linear
regression, partial least squares, generalized linear model, decision trees (classification and
regression trees), Bayesian hierarchical model, generalized boosting model, support vector
machine, random forests, and ANN [72,146,149–153]. Although discussing the details of
these methods is not the primary objective of this study, we showcase the most applicable
models that can be of use in building predictive models using LCSs.

Linear regression is a statistical method that captures the linear relationships of in-
dependent variables to predict the value of a dependent variable, such as forecasting air
pollution [154,155]. Partial least square model and generalised linear model provide a
general framework for handling regression models for normal/non-normal data that can
be applied in IAQ applications [156,157]. Decision trees are simple but successful tech-
niques that predict the target value via learning simple decision rules [152,158]. Bayesian
hierarchical modelling is a statistical model that utilises Bayes’ theorem for estimations.
The hierarchical approach facilitates the understanding of multi-parameter problems and
developing computational strategies [159,160]. A generalised boosting model is a com-
bination of decision tree-based algorithms and boosting techniques, which frequently fit
decision trees to improve the accuracy of the model [152]. Support vector machine regres-
sion is the proposed method to deal with non-linear problems [72,161]. Random forest
or random decision forests regression model is a simple, flexible and most used machine
learning algorithm, which can be utilised in both classification and regression applica-
tions [162–165]. ANN is the most commonly used machine learning technique for solving
complex problems [70,72,166–169]. ANN has shown the capability of estimating IAQ with
an acceptable range of 0.62 < R2 < 0.79 only with one hidden layer [167,170,171]. However,
there are few emerging applications of deep neural networks (DNN), like recurrent neural
networks (RNN), long short-term memory (LSTM), and gated recurrent units (GRU), that
need exploration [146,172–174].

7.2. Best-Fit Approaches for LCS IAQ Modelling

Table 5 presents a summary of modelling studies for residential settings that var-
ious machine learning techniques are used for the prediction of IAQ parameters. The
development of machine learning and statistical models in recent years (Section 7.1) has
offered significant benefits in the prediction of complex indoor environments [72,146,165].
The development of these predictive models would require large scale data collection
provided by the sensor network, adequate computing infrastructure for data processing,
analysis and model construction. Although the applications of predictive models are vast,
the limited efforts on implementation of ANN, multiple linear regression, and random
forest regression models showed acceptable performances in predicting indoor variables.
Nevertheless, further efforts should be undertaken to enhance the performance of these
tools in predicting all known indoor air pollutants (Figure 2) using continuously generated
data by sensor networks rather than focusing only on proxies.
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Table 5. A summary of recent IAQ modelling studies that use various machine learning techniques for the prediction of
IAQ parameters. Studies carried out in offices, schools and commercial buildings are excluded as their layouts could be
different from residential buildings.

Input to the
Model

Model
Output

Environment, Location,
Date, Time Model Correlation Recommendations Reference

Time, in/out
temp. and
RH

Temp. and
RH

A test house (147.8 m2 ×
3 m) in Finland

Artificial neural
networks or ANN
(non-linear
autoRegressive with
eXternal input
(NNARX) model and
genetic algorithm were
employed to construct
networks)

Correlation
coefficients
0.998 and
0.997 for
temp. and
RH

Three-layer feed-forward
ANN is capable of
predicting any nonlinear
relations even in a complex
situation where (i) some
impact factors are still
unclear and (ii) some
important information is
unavailable.

[175]

Resident
activities CO2

Two smart apartments
and a smart workplace,
Washington State
University, Pullman, WA,
USA

Naïve Bayes, ANN and
Decision tree N/S

The decision tree algorithm
did perform best in many
examined cases.

[176]

Indoor temp.
and RH CO2

8 apartments (4
bedrooms and 6 living
rooms) located in
Kuopio, Finland, from
May to October 2011.
Measurements were
taken every 10 s.

ANN (based on
multilayer perceptron
network)

R2 ≤ 0.39 ±
0.02

The prediction of CO2 is
difficult, if it is based only
on measurements of RH
and temp.

[168]

Temp.,
internal
PM2.5
sources,
window
opening

PM2.5

Dwelling (single-storey
flats in England during
October to May)

ANN (feed-forward) R2 between
0.84 to 0.90

ANN is able to accurately
predict IAQ from a reduced
set of input variables.

[177]

Temp. and
RH CO2

Two rooms named as
R203 and R204 of Smart
Home

Decision tree
regression/random
forest

Accuracy of
46.25 ppm

It is possible to use the
Random Forest method
with sufficient accuracy in
CO2 estimation on the
basis of the internal and
external temp./RH, the
time and date as the input
parameters.

[178]

Particle
deposition
parameters

PM2.5 N/R ANN (multilayer
Perceptron) N/R ANN gives an average

relative error of <5% [179]

PM2.5, PM10,
CO2, temp.,
and RH

Indoor
airborne
culturable
bacteria

Data were measured in
various buildings in
Baoding, a city that
suffers from PM2.5
pollution in China.

General
regression
neural
network (GRNN)

N/R

A machine learning-based
method can estimate the
concentration of indoor
airborne culturable
bacteria.
A well-trained GRNN
model can help to quickly
acquire the estimated
concentration.

[180]

Ambient
PM2.5 with 10
and 80 min of
lag time

PM2.5

Indoor and ambient
PM2.5 in 13 households
in Beijing, China.

Exponential regression R2~0.87

The PM2.5 concentrations
can be predicted based on
ambient measurements.
The overall exposure
would be overestimated
without taking indoor air
concentrations into
consideration.

[181]
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Table 5. Cont.

Input to the
Model

Model
Output

Environment, Location,
Date, Time Model Correlation Recommendations Reference

Temp.
and RH CO2

In a room for almost a
week (starting from 11
February 2015, to 18
February 2015) in Mons,
Belgium

ANN (multilayer
Perceptron)

<17 ppm
difference on
average to
actual CO2
value

Open-loop and
five-steps-ahead prediction
networks had better MSE
performances, higher
sensitivity and specificity
values vs. open- and
closed-loop models.
The CO2 concentration
data are always needed to
obtain acceptable
predictions.

[166]

One
dependent
variable and
87 potential
predictor
variables

PM2.5

7-day PM2.5
measurements inside the
homes of pregnant
women from January
2014 to December 2015 in
Ulaanbaatar, Mongolia

Multiple linear
regression
and random forest
regression

Multiple
linear
regression
(R2 = 50.2%)
and random
forest
regression
(R2 = 48.9%)

The improved performance
of blended multiple linear
regression/random forest
regression models in
predicting indoor air
pollution.

[164]

PM10, PM2.5,
CO2, temp.,
and RH

PM1

Real-time daily IAQ
monitoring in 10
households during
March 2014 to July 2014,
India.

Multiple linear
regression R2 = 0.81–0.98

Multiple linear regression
models were found to
perform satisfactorily as
indicated by 0.92 < index of
agreement < 0.99 and 0.81
< R2 < 0.98.

[182]

Ambient
PM2.5 and
questionnaire-
elicited
information

PM2.5

Daily average of PM2.5
during 3 consecutive
days in summer and
winter for 116
households in Hong
Kong

Linear mixed regression
R2 = 0.61 by
cross-
validation

The fitted linear
mixed-effects model is
moderately predictive for
the observed indoor PM2.5.

[183]

Based on the review of various predictive modelling techniques, it has been found
that the statistical models based on machine learning (Table 5) could provide a good fit
for indoor air pollution prediction in smart homes. This technique provides a powerful
tool for modelling the behaviour of indoor built environments with a complex interplay
of the response and predictor variables. The predictive model should also be able to op-
timally maintain its stability in dealing with inaccurate readings and source generation
rate estimates by applying proper weighting factors (a function of sensor drift and source
generation rates) to improve the overall prediction accuracy. To do so, mechanistic model
techniques are utilised to provide the basis for the selection of appropriate parameters for
machine learning models on theoretical physics-based principles. However, uncertainty
and potential disadvantages of mechanistic models as highlighted in the previous sec-
tion could endanger the feasibility of the model in multiple buildings or the case of an
occupied building.

8. Conclusions and Future Remarks

People spend a significant amount of their time in indoor environments, where they are
most probably exposed to at least one IAQ problem. IAQ remains mostly unregulated and
maintaining safe IAQ during the long-term stay at homes to tackle the novel coronavirus
pandemic, or similar outbreaks is more challenging [184]. Smart homes equipped with air
quality LCSs and integrated processing/predicting tools can offer a healthy environment
to occupants. Although technologies in this field are continuously evolving, emerging
knowledge among the researchers in different fields is sparse, and smart home components
are considered separately due to diversity in the research field. Here, we reviewed the
standard protocols needed to be met to satisfy the indoor measurement challenges. Then we
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reviewed data assimilation and data processing tools and predictive modelling techniques
to estimate indoor exposure. From the study, the following conclusions are drawn:

• Indoor pollutants are released from different sources at different concentration levels,
thereby, selection of LCSs should be in the way that they can serve the task according
to the target pollutants and concentrations. The accuracy and diversity of LCSs used
in indoor environments is an important focus in deployment strategies of LCSs in
smart homes. Proper deployment height is also suggested due to variation in exposure
heights among the occupants.

• Deployment of networked LCSs to map spatio-temporal distribution of indoor air pol-
lutants is necessary to optimise the number of deployed LCSs, obtain meaningful data,
reducing the computational time/cost, and data handling without losing accuracy.
There are limited studies on long-term deployments of sensor networks, especially in
indoor residential environments.

• The lack of data reliability and QA/QC is counted as the most important challenge
associated with LCSs. We emphasised an important role of laboratory calibration of
LCS. Relying only on initial LCS calibration, which is a prevalent practice in reviewed
studies, for long-term deployment should be complemented by routine performance
testing to the success of networked sensors. Such performance evaluations can allow
maintaining data quality, oversee manufacturing variability, sensor stability, drift and
ageing over time.

• Several open-source tools have been developed for data processing to give network
providers the tools to deploy large-scale networks with little overhead. As LCSs record
large amounts of time-series data, open-source tools such as InfluxDB and Grafana are
necessary to be able to capture and process recorded measurements as well as allow
easy visualisations for both the network operator and the occupants. Considering
home-specific internal data servers can offer additional security from the external
threats.

• A wide range of data processing tools are available with many capabilities, including
data cleaning, data plotting and different types of anomaly detection. These tools can
increase the confidence and reliability of the data, improving the services provided by
the network providers and improving the experience for the occupants.

• There is an increasing trend towards the application of machine learning-based sta-
tistical models due to the availability of a continuous flow of IAQ data using LCSs.
However, there are several limitations of exclusive data-based studies due to the lack
of established knowledge related to the selection of desirable parameters, appropriate
performance metrics, and the application of different models for different scenar-
ios. Therefore, the best way forward would be to further advance the knowledge of
statistical models for IAQ prediction by carrying out larger-scale deployments and
considering a wider range of indoor pollutants that are backed by the theoretical prin-
ciples from mechanistic models for modelling the underlying micro-environmental
principles and mechanisms.

Making homes smarter is becoming an integral component of the smart city concept.
According to the Allied Business Intelligence (ABI) Research report on smart homes [185],
almost 300 million smart homes are set to be installed around the world by 2022. Having
smart homes in terms of IAQ is not a distant dream. This review reveals the benefits of
using technological advancement in estimating the effects of long-term exposure to indoor
air pollutants and determining new prevention strategies and control measures on health
conditions in smart homes. It contributes to future generations of smart buildings as well
as designing of smart cities and embracing smart technologies for IAQ monitoring by
the general public and adopted in their routine lifestyle. Some of the ongoing projects
such as the MyGlobalHome [186] aim to develop such advanced property development
platform by connecting developers to consumers of sustainable and connected homes and
seek to bridge a gap between the smart technology developers and property developers.
The efforts by the aforementioned projects along with the support of ongoing research
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activities concerning air quality sensors could result in appreciable health benefits to smart
home occupants.
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