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Abstract: In this study; the spatial distribution of the Daily Precipitation Concentration Index (DPCI)
has been analyzed inside the Greater Sydney Metropolitan Area (GSMA). Accordingly, the rainfall
database from the Australian Bureau of Meteorology archive was utilized after comprehensive quality
control. The compiled data contains a set of 41 rainfall stations indicating consistent daily precipita-
tion series from 1950 to 2015. In the analysis of the DPCI across GSMA the techniques of Moran’s
Spatial Autocorrelation has been applied. In addition, a cross-covariance method was applied to
assess the spatial interdependency between vector-based datasets after performing an Ordinary
Kriging interpolation. The results identify four well-recognized intense rainfall development zones:
the south coast and topographic areas of the Illawarra district characterized by Tasman Sea coastal
regions with DPCI values ranging from 0.61 to 0.63, the western highlands of the Blue Mountains,
with values between 0.60 and 0.62, the inland regions, with lowest rainfall concentrations between
0.55 and 0.59, and lastly the districts located inside the GSMA with DPCI ranging 0.60 to 0.61. Such
spatial distribution has revealed the rainstorm and severe thunderstorm activity in the area. This
study applies the present models to identify the nature and mechanisms underlying the distribution
of torrential rains over space within the metropolis of Sydney, and to monitor any changes in the
spatial pattern under the warming climate.

Keywords: precipitation concentration index; extreme rainfall; spatial inter-dependency

1. Introduction

The awareness of the importance of the spatial and temporal distribution of precipi-
tation is important not only from a meteorological viewpoint, but also for its importance
in different fields such as agriculture, hydrology, water resources and flood control. Esti-
mation of the spatial and temporal distribution of precipitation is a complex undertaking,
particularly in cases where detailed information concerning the impact of topography and
land−use impacts on the prevailing atmospheric circulation is not quite available, such as
the situation over southeastern Australia [1].

The concentration index (CI) is one of the indices that can be applied to characterize
the temporal concentration of precipitation followed by spatial analysis [2]. A CI analysis
makes it possible to characterize different spatial scales, which is of interest due to its effects
on geo−hydrological processes and the analysis of erosion and soil loss [3]. Applying
this type of analysis, interest is not only focused on climate but also on the effect of heavy
rainfall on other areas of the environment and society [4,5]. The CI method was already
applied in many different parts of the world [6–18]. While we focus on the most commonly
applied index here, there are other indices that indicate different aspects of precipitation
concentration, such as the relative cumulative precipitation, inequality concentration
indices and the ordered version of the n index [2].
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Many of the previous studies analyzed the CI based on monthly precipitation and
examined the annual and seasonal CI values, which are mostly determined by the cli-
matological and synoptic characteristics of a particular region. On a shorter timescale,
daily analysis and prediction of the intensity of precipitation would help in in water
resource planning and also identifying areas of high and low flash flooding potential.
Likewise, it would facilitate the regulation of the flows from high−intensity areas towards
low−intensity ones [19]. For example, a high precipitation concentration, represented
by large percentages of the yearly total precipitation in a few very rainy days, has the
potential to cause floods and also drought phenomena. This is exactly the scenario of
precipitation extremes inside the Sydney region, such as rainstorms, ex-tropical cyclone
remnants, east coast lows and severe thunderstorm events occurring over a few days that
account for high percentages of the annual total. These events may potentially bring more
frequent disasters for human society of the Greater Sydney metropolitan area (GSMA). In
the past, specific attention has been paid to patterns of such uneven spatial variation of
intense rainfalls using different statistics and mathematical methods (e.g., [20]). Never-
theless, a long time-span daily precipitation series has not been analyzed by applying a
CI approach. Thus, this study examines the precipitation concentration in the area based
on data with daily resolution. The DPCI is also good supplementary information to other
extreme precipitation indices on similar timescale, such as the highest amount of daily
precipitation (RX), the maximum consecutive 5-day precipitation (RX5D), number of days
with precipitation ≥ 20 mm or above 50 mm (R20/D50MM) and days with precipitation >
95 percentile (D95P) recommended by the World Climate Research Programme’s Expert
Team on Climate Change Detection and Indices (ETCCDI, [21,22]).

The organization of the paper is as follows. Section 2 first introduces the climatological
characteristics of the GSMA. Section 3 then depicts the methodology applied, including
the daily CI and spatial correlation analysis. Results are discussed in Section 4. Finally an
overall summary is given in Section 5 together with further discussion on implications and
future work.

2. Climatology of the Study Area

The GSMA, which is located on the southeast coast of Australia in New South Wales
and lies in the western part of the Tasman Sea (Figure 1), includes a highly populated
area of approximately 3.8 million in population. The study area is bounded in the north
by 33◦30′ S latitude, extending to 150◦30′ E longitude in the west, and to the southeast
at 34◦30′ latitude and 151◦30′ longitude. The region is bowl-shaped with a low plain in
the middle which is effectively walled in on three sides by hills. In general, the Sydney
region enjoys a temperate climate and commonly the broad-scale wind pattern is westerly
in the winter, and easterly in the summer. The climate of this region arises from a complex
interaction of broad-scale, regional and local controls [23].

Rainfall over the GSMA may occur throughout the year but is highest between March
and June. Also, precipitation is slightly higher during the first half of the year when
easterly winds dominate (February–June), and lower in the second half; mainly from July
to September. Rainfall can occur throughout the year with variation concerning altitude
and distance from the coast, with wetter areas being closer to the coast or in higher altitudes.
Due to the low predictability of rain as well as the well-known impacts from climate drivers
to the region [24], the wettest and driest months change annually. Within the study area and
surrounds, annual rainfall varies from around 700 mm to 1400 mm. More climatological
information of the study area can be found in [25] and [26].

On the regional scale, rainfall in the GSMA is influenced by the synoptic weather
systems in the region, such as fronts originated from the Southern Ocean, east coast lows,
subtropical cyclones and ex-tropical cyclone remnants migrating to the higher latitudes.
More locally, the GMSA is also known as one of the hotspots for severe thunderstorms
in Australia [26]. As can be seen in the following analysis, the torrential rain from severe
thunderstorms contribute significantly to the spatial characteristics of CI in the area.
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Figure 1. The location map of the GSMA within New South Wales of Australia (upper). The lower
panel shows the boundaries of the local government areas within the GSMA, with the names of some
major local cities (dots).

3. Data and Method
3.1. Data

Daily rainfall data for forty−one (41) weather stations have been extracted from the
Australian Bureau of Meteorology (BoM) online archives. Recording periods varied in
duration for each station, but many data are available from 1950 to 2015. Rainfall data from
the BoM has already been quality controlled with confirmation of the extremes with local
reports and that observations from nearby stations do not disagree with each other. We
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have further verified such agreement among the stations after we downloaded the data.
Most of the stations have complete data series in the study period—even the station with
the least recorded data over the whole period has over 90% of coverage. The provided
daily rainfall data, presenting relatively uniform coverage throughout the study area, have
been carefully entered in a particular GIS database. Rainfall station characteristics are
shown in Table A1 (Appendix A) and their spatial distribution is mapped in Figure 2. The
only series with less than 10% missing data on an annual scale were used to calculate the
DPCI indexes.
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pendix A). Topography in the area can refer to the DEM in Figure 4.

To reach the main aims of the study, four interconnected techniques of Concentra-
tion Index, Moran’s Spatial Autocorrelation, Ordinary Kriging interpolation, and a cross-
covariance method were applied to assess the spatial dependence (covariance) between
vector-based datasets. The last method was applied to reveal several of the inherent spatial
inter-dependencies among dissimilar variables.

3.2. The Daily Precipitation Concentration Index (DPCI)

The DPCI, proposed by [27], is examined in this study. An example is illustrated for
the Albion Park station data; this station recorded the highest rain during the 67 years from
1950 to 2015 (see Table A2 in Appendix A). In computing the DPCI, only observed daily
precipitation values more than 1 mm were considered. The DPCI method was applied to
the data based on the fact that the contribution of daily rainfall events to the total amount
is generally well described by a negative exponential distribution [28].

The DPCI in this study consists of aggregating daily precipitation into increasing
10−mm categories and determining the relative impact of the different classes by analyzing
the relative contribution (as a percentage) of the accumulated precipitation, Y, as a function
of the accumulated percentage of occurrence frequency (X). Previous work such as [11]
showed that such function can be based on Equation (1).

Y = aX.ebX (1)
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where a and b are constants that can be determined through the least−squares method.

In a =
∑ x2

i ∑ ln Yi + ∑ xi ∑ xiln xi −∑ x2
i ∑ lnxi −∑ xi ∑ xi ln Yi

N ∑ x2
i − N (∑ xi )

2 (2)

b =
N ∑ xilnYi + ∑ xi ∑ lnxi − N ∑ xilnxi −∑ xi ∑ xiinYi

N ∑ x2
i − N (∑ xi)

2 (3)

where N is the number of classes. After determining the two constants a and b, the integral
of the exponential curve (so−called Lorenz curve) between 0 and 100 shows the area S
(Figure 3), which is given by:

S =
∫ 100

0

[
a
b

ebx
(

x− 1
b

)]
dx (4)

Based on S, the area S′ compressed by the exponential curve, the equidistribution line
and X = 100 is apparently the difference between 5000 (half of the total area) and the value
of S:

S′ = 5000− S (5)

Applying Equation (5) the DPCI value for each rainfall station is then a fraction of S′

to the lower surface of the triangle bounded by the equidistribution line.

DPCI =
S′

5000
(6)

Examples of the empirical curves or “concentration curves” of Y versus X for Albion
Parks and Wombeyan stations are presented in Figure 3. The annual DPCI values for these
two stations are 0.62 and 0.54, respectively (see Table 1). By definition, the value of the
DPCI is always a number between 0 and 1, and geometrically it represents the percentage
of the triangle area between the line Y = X and the exponential curve. The DPCI is virtually
equal to 0 when the contribution of each category of precipitation to the total is the same,
and equal to 1 when precipitation falls into one category only and the exponential curve
becomes the straight line Y = 0. Exponential curves of this type were calculated for all
meteorological stations across the GSMA. As an example, different stages of calculating
the above−mentioned parameters are given in Tables A1 and A2 (Appendix A).

Table 1. Values of the constants “a”, “b”, DPCI, 90% percentile of rain and maximum daily rainfall
(mm) at each of the 41 stations (with full names given in Table A1).

Station “a” “b” DPCI 90% Rain Max Daily Rain

AP 0.033 0.032 0.619 52 536.4

BA 0.053 0.029 0.609 58 243

BE 0.056 0.028 0.583 57.5 248

BI 0.055 0.028 0.590 58 237.6

BL 0.053 0.029 0.582 58 245

BO 0.053 0.029 0.568 58.5 214.2

BR 0.062 0.027 0.572 59 203.2

BU 0.040 0.031 0.618 54 399.6

CA 0.058 0.028 0.564 58.5 231.1

CH 0.056 0.028 0.567 58 229
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Table 1. Cont.

Station “a” “b” DPCI 90% Rain Max Daily Rain

DA 0.038 0.032 0.612 52 336.8

DF 0.037 0.032 0.612 53 415

FA 0.049 0.030 0.580 57 280.4

FF 0.048 0.030 0.583 56.5 248.4

GL 0.048 0.030 0.577 56 220

KA 0.047 0.030 0.621 57 285

KI 0.047 0.030 0.618 56 304.4

KH 0.049 0.030 0.579 56 283.7

LH 0.047 0.030 0.584 56 254.5

MA 0.059 0.028 0.565 58 325

MV 0.047 0.030 0.585 57 422

MK 0.055 0.028 0.574 58 243.2

OU 0.047 0.030 0.584 55 320

PN 0.047 0.030 0.590 57 293

PI 0.054 0.029 0.603 58 245.9

PK 0.039 0.032 0.622 54 322.5

PR 0.051 0.029 0.581 57 321

RI 0.052 0.029 0.570 58 210

RO 0.045 0.030 0.601 56 196.6

SS 0.045 0.030 0.602 57 239

SW 0.048 0.030 0.606 56 274.4

SA 0.051 0.029 0.583 57 216.2

SO 0.048 0.030 0.616 57 327.6

EN 0.054 0.029 0.598 59 246

WA 0.054 0.029 0.603 58 215.9

WP 0.041 0.031 0.597 54 409.8

WO 0.072 0.026 0.587 62 165

WC 0.071 0.026 0.544 61 230.6

WN 0.039 0.032 0.626 54 436.8

WY 0.050 0.029 0.595 57 256.2



Atmosphere 2021, 12, 627 7 of 19

Atmosphere 2021, 12, x FOR PEER REVIEW 6 of 19 
 

 

CA 0.058 0.028 0.564 58.5 231.1 
CH 0.056 0.028 0.567 58 229 
DA 0.038 0.032 0.612 52 336.8 
DF 0.037 0.032 0.612 53 415 
FA 0.049 0.030 0.580 57 280.4 
FF 0.048 0.030 0.583 56.5 248.4 
GL 0.048 0.030 0.577 56 220 
KA 0.047 0.030 0.621 57 285 
KI 0.047 0.030 0.618 56 304.4 
KH 0.049 0.030 0.579 56 283.7 
LH 0.047 0.030 0.584 56 254.5 
MA 0.059 0.028 0.565 58 325 
MV 0.047 0.030 0.585 57 422 
MK 0.055 0.028 0.574 58 243.2 
OU 0.047 0.030 0.584 55 320 
PN 0.047 0.030 0.590 57 293 
PI 0.054 0.029 0.603 58 245.9 
PK 0.039 0.032 0.622 54 322.5 
PR 0.051 0.029 0.581 57 321 
RI 0.052 0.029 0.570 58 210 
RO 0.045 0.030 0.601 56 196.6 
SS 0.045 0.030 0.602 57 239 
SW 0.048 0.030 0.606 56 274.4 
SA 0.051 0.029 0.583 57 216.2 
SO 0.048 0.030 0.616 57 327.6 
EN 0.054 0.029 0.598 59 246 
WA 0.054 0.029 0.603 58 215.9 
WP 0.041 0.031 0.597 54 409.8 
WO 0.072 0.026 0.587 62 165 
WC 0.071 0.026 0.544 61 230.6 
WN 0.039 0.032 0.626 54 436.8 
WY 0.050 0.029 0.595 57 256.2 
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3.3. Spatial Correlation

In the second stage of data analysis, a Moran’s spatial autocorrelation technique
was used to measure spatial autocorrelation based on rainfall station locations and DPCI
values [29]. Given the set of 41 rainfall stations and associated DPCIs, it evaluates whether
the pattern expressed is clustered, dispersed or random (Figure A1 in Appendix B). The
tool calculates the Moran’s I Index value and both a z-score and p-value to evaluate the
significance of that Index. The Moran’s I statistic for spatial autocorrelation is given by

I =
N
S0

∑n
i=1 ∑n

j=1 wi,jzizj

∑n
i=1 z2

i
(7)

where Zi is the deviation of an attribute for feature (i.e., a particular rainfall station’s
DPCI) from its mean, Wi,j is the spatial weight between stations i and j (designated as the
significance, i.e., the p-value, of the correlation of rain between the two stations), N is the
total number of stations and S0 is the aggregate of the spatial weights by:

S0=

n

∑
i=1

n

∑
j=1

wi,j (8)

For the current study, the ZI score for the statistic is computed by applying the
following equations.

ZI =
I−E [I]√

V [I]

V[I] = E
[
I2]− E[I]2

(9)

In which E is the expectation value and V the variance. Under the case of no spatial
autocorrelation, E[I] = −1/(N − 1).

Subsequently, a spatial interpolation method, known as the Kriging technique, was
applied to yield better results than other techniques ([30,31]). The Kriging technique
assumes that the statistical surface to be interpolated has a certain degree of continuity ([32]).
The technique applies moving averages and has the advantage of producing the standard
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error for the estimated values. Among all the Kriging methods, the ordinary mode was
applied, as an advanced geostatistical procedure. This method was well fitted to all data
layers to generate estimated DPCI surfaces from a re−projected set of point values [33]. The
Kriging model is based on a statistical technique that includes autocorrelation; that is, the
statistical relationships among the measured points. Potentially, geostatistical techniques
not only have the capability to produce a prediction surface but also provide some measure
of the certainty or accuracy of the predictions. Kriging tools weight the surrounding
measured values to derive a prediction for each DPCI unmeasured location. There are
variations of the techniques, such as the Ordinary Cokirging and those that consider
topographical information, that can further improve the performance ([34,35]). The general
formula for both interpolators is formed as a weighted sum of the data:

Ẑ(S0) =
N

∑
i=1

λi Z (Si) (10)

where Z (Si) is regarded as the measured DPCI values at the ith location, λi shows an
unknown weight for the measured value at the ith rainfall station location, S0 specifies the
prediction location and N indicates the number of stations. With the Kriging method, the
weights are based not only on the distance between the measured points and the prediction
location but also on the overall spatial arrangement of the measured points. To use the
spatial arrangement in the weights, the spatial autocorrelation must be quantified. Thus, in
ordinary Kriging, the weight, λi, depends on a fitted model to the measured points, the
distance to the prediction location and the spatial relationships among the measured DPCI
values around the prediction location. In the current study, an Ordinary Kriging formula
is used to create maps of the prediction DPCI and “b” constant surfaces and associated
accuracy models. Ordinary Kriging assumes the second−order trend removal model with
no transformation type:

Z(S) = µ+ ε(s) (11)

In the above equation, µ is an unknown constant whereas one of the main issues
concerning ordinary Kriging is whether the assumption of a constant mean is reasonable.
Sometimes there are good scientific reasons to reject this assumption. However, in this
study, it was found that applying a second−order trend removal following an exponential
Kernal Function (as a simple prediction method) gives remarkable flexibility in final
interpolation method accuracy. Once again, the Kriging method was also applied to
illustrate the variation and spatial distribution of the constant “b” values in the study area.
This arbitrary way allows direct interstation comparison of the distribution of “b” value at
each rainfall station across all districts.

To calculate the Pearson Overall Correlation Coefficient, a band collection statistic
tool was furthermore computed among the DPCI and one of the other rainfall related
parameters [36]. These parameters include the mean annual precipitation (AP), coefficient
of variation (CV) of rainfall, the total number of rainfall days (TN), maximum rainfall
observed (MxR) and the “a” and “b” constants taken from Equation (1). This tool was
applied to provide statistics for the bivariate analysis of a set of raster bands by computing
covariance and correlation for every event. The following equation was accordingly used
to determine the covariance between layers i and j.

Covij =
∑N

k=1(Zik − ui)
(

Zjk − uj

)
N− 1

(12)
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In the above equation, Z indicates for example DPCIs observed of a cell, i, j are layers
of a stack, u is the mean of cells and N is the number of cells. The overall correlation
between the rainfall datasets was then computed as:

Corrij =
Covij

σiσj
(13)

where the σ’s are standard deviations. As usual, the correlation coefficient is between −1
and 1.

4. Results
4.1. Spatial Distribution of DPCI

By calculating the annual DPCI values it was found that they range greatly, between
0.54 and 0.63, and are spread across the study area represented by the 41 rainfall stations.
This range is consistent with the global results in [2] that showed high values (>0.5) of the
Gini Index (which has the same concept of the DPCI but without the assumed mathematical
form of the Lorenz curve as in Equation (1), thus the Gini index is highly correlated with the
DPCI) over eastern Australia. Table 1 indicates the DPCI values and the rainfall percentage
contributed by 90% of the rainiest days for the 41 weather stations across GSMA from
1950 to 2015. Also values of the constants “a” and “b” (as the exponential curves are
given by Equation (1)) and observed maximum daily rainfall are represented in the table.
DPCI values present strongly different daily precipitation regimes, as Woonona station
(0.63) is located in the southeast of the study area and precipitation there has a higher
concentration and is more irregular than in Wombeyan station (0.54) which is located on
the Tableland somewhere in the outlying southwest of the study area. The concentration
can be considered a function of the relative separation of the equidistribution line, which
is greater in Albion Park (with the highest maximum daily rainfall observed) than others
(Figure 3).

Applying the Global Moran’s I statistic it is possible to test an existing spatial autocor-
relation based on rainfall station locations and DPCI values. The Spatial Autocorrelation
tool returns five values: the Moran’s I index, expected index, variance, z-score and p-value.
Given the z-score of 3.55, there is a less than 1% likelihood that this clustered pattern could
be the result of random chance, expressing the fact that there are spatially significant clus-
ters of DPCI values among the existing dataset based on the spatial autocorrelation report.

The result of the Ordinary Kriging interpolator model is shown in Figure 4 after
smoothing small errors depending on the measurement parameters overlaid with a Digital
Elevation Model (DEM) of the study area. The maximum values of DPCI are crossing over
the Kiama, Shellharbour and Wollongong districts located in the southeast of the study area.
For example, Woonona station (34.34◦ S; 150.90◦ E) represents the highest value of 0.63,
while the lowest values of DPCI could be seen in Wombeyan station (34.31◦ S; 140.97◦ E)
with 0.54. The highest DPCIs were detected primarily in the Illawarra (along with the
south coast) and Blue Mountains districts (Katoomba station with 0.62). Furthermore, the
secondary maximum annual values of DPCI were found around the Sydney Metropolitan,
mainly around the Central Business District (CBD). On the other hand, districts with the
lowest values are located in the southwest Tablelands of the Wingecarribee and Hawkes-
bury districts. Meanwhile, the strongest gradient occurs between the west and east and
between the northwest and southeast of GSMA, as coastlines meet the highest DPCI values.
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To find more about the nature of the spatial distribution of intense rains inside of
the GSMA, the geographical distribution of the “b” constant, which from Equation (1) is
the parameter to control the shape of the rainfall concentration curve and thus carries
important information on the rainfall distribution, has been converted to classes of intensity
level of rainfall occurrence (Figure 5). Very high intense amounts can be seen near the
topography southeast of the study area, just over the Illawarra Escarpment. Besides, in
some parts of the Sydney Metropolitan district, for example in the west of the City, and
areas located in the northwestern corner of the Parramatta River, very intense “b” values
can be observed. In comparison with the lowlands of the GSMA, over the Blue Mountains
(Katoomba station), intense rain events are also relatively high. In contrast, non−intense
classes of “b” values can be seen over the inland parts of the GSMA.

For comparison, the geographic position of the flash flood events (observed during
1989−2015 with a thundery−rain more than 50 mm) is overlaid on the distribution of the
“b” constant map. In the GSMA, flash flood events are mostly induced by several weather
systems, such as the local thunderstorms and east coast lows over the ocean. It can be seen
that most of these flash flood events occurred in the areas with the high “b” values, which
determine the shape of the concentration curve. The spatial pattern of “b” also highly
resembles that of the severe thunderstorms, especially those with hail occurrence [26].
These facts indicate that the storm activity in the GSMA largely determine the CI pattern
on the daily timescale.
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4.2. Spatial Correspondences

A cross−covariance model was presented to assess the spatial dependence (covari-
ance) between two vector-based datasets. Here the first dataset is the DPCI, while the
second is one of the important rainfall-related parameters such as mean annual rainfalls
(AP), coefficient of variation (CV), the total number of rainfall days (TN), maximum rain-
falls observed (MxR) and the “a” and “b” constants taken from Equation (1) that control the
concentration curve. In the analysis, the attribute of one point (i.e., the DPCI) is correlated
with the second attribute (i.e., one of the rain−related parameters) at another point, and
this is repeated for all pairs of geographic points. The spatial distribution of the correla-
tion (termed cross-covariance surface or cloud) can then be applied to examine the local
characteristics of spatial correlation between the two attributes (datasets). The details of
this cross-covariance model has been documented in Appendix C. This technique was
applied to look for spatial shifts in existing correspondences between the DPCI and the
other datasets throughout the GSMA.

A covariance surface with directional search capabilities was also involved in the
modeling. For this reason, the values in the cross−covariance cloud were put into six
bins based on the direction and distance separating a pair of locations [37]. These binned
values were then averaged and smoothed to produce a cross−covariance surface (and
associated correlations) for each pair of dataset throughout the study area (Figure 6). It
can be seen that the DPCI possesses regions of high covariance with most of the rain
parameters and also the “a” and “b” constants in the concentration curve, however, there is
variability in the locations with the highest covariance. For example, the DPCI has high
covariance with the climatological parameters AP and TN over the northwest. The highest
covariance with the ‘magnitude’ of the concentration curve (“a”) is also on the western
side. This may be due to the topographic variation. However, the pattern of covariance
with the two parameters directly related to the DPCI, namely the MxR and “b”, has a
southwest−northeast orientation. This is aligned with the distribution of the DPCI in
Figure 4.
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Figure 6. The result of cross−covariance surfaces for all pairs of variables: (CI,AP); (CI,CV); (CI,TN);
(CI,MxR); (CI,a); (CI,b). CI is the same as the DPCI. Six bins have been set for the categories of
covariance values. The arrows (with the blue and red lines) are examples of directional searches of
high covariance values over the surfaces. See Appendix C for details.

In Table 2, the values of Pearson’s correlation coefficient for the five pairs of variables
are indicated. The Pearson overall correlations (r) for all rainfall related parameters, except
the total number of rainy days (TN), are statistically significant at 0.95 and 0.99 levels,
respectively. Correlation between TN and annual DPCI is nearly +0.24 (p < 0.5) and not
significant; in other words high number of rain days is not a good indicator of high DPCI.
The reason is that similar annual values could be achieved with different daily distributions.

Table 2. Values of the Pearson’s correlation coefficient, significance level and category of
cross−covariance spatial shifting for five pairs of variables: (CI,AP); (CI,CV); (CI,TN); (CI,MxR);
(CI,a); (CI,b).

Parameter to Correlate with
DPCI

Correlation
Coefficient (r)

Significance Level
(p)

Cross−Covariance
Spatial Shifting

Mean annual precipitation
(AP) 0.472 0.01 High

CV of annual rainfall 0.314 0.05 Medium

Total number of rainy days
(TN) 0.239 Non−significant Very low

Maximum daily rainfall
(MxR) 0.508 0.01 High

“a” −0.701 0.01 Very high

“b” 0.703 0.01 Very high

5. Conclusions and Discussion
5.1. Summary

In the current study, daily rainfall observations (1950–2015) from 41 rainfall stations
inside the GSMA have been analyzed. According to the applied criteria and techniques
used, the outcomes are summarized as follow:
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• Within the GSMA, the essential features of climate in different districts are charac-
terized by narrow rainfall zones close to the coast, under the combined influence of
the Tasman Sea and the topography and land use patterns, leading to very different
rainfall spatial distributions.

• The DPCI values in the Illawarra coastal elevated areas, parts of the Sydney Metropoli-
tan area and the Blue Mountains are high, with concentration index values close to
0.60–0.63. This reflects the fact that very few rainy days could bring a high percentage
of annual precipitation.

• The DPCI values obtained and distribution pattern of constant “b” are largely subject
to influences from the topography and land use of the region. Generally, western and
central regions inside GSMA are areas where rainfall is regular compared to eastern
regions, while the southeastern districts and small parts of Metropolitan areas show
the most aggressive DPCI values.

• Despite the significant variations in spatial cross−correlating models between the
DPCI and 6 other rain−related parameters (AP, CV, TN, MxR, “a” and “b”), there are
considerable positive relationships among data layers at 0.95 significance levels for
most parts of the study area.

• The spatial patterns of the DPCI and “b” constant highlight the importance of catas-
trophic effects of such intense rainfall events, predominantly originating with severe
thunderstorm and flash flood events.

5.2. Discussion

Inside of the Sydney Metropolitan area, daily precipitation is one of the factors in the
processes of creating flash floods, and accordingly, differences in the spatial distribution
of precipitation can lead to dissimilar precipitation regimes and various climatic condi-
tions [38]. As was indicated in Table A1 (Appendix A), even if the annual total amounts are
similar in many of the rainfall stations, precipitation processes may be different due to a dif-
ferent degree of concentrated rainfall in the time and space of the study area. Accordingly,
the spatial distribution of precipitation can produce noticeably different impacts on natural
and social processes across the GSMA—of particular interest for water management—flood
control programs, and water availability for natural ecosystems. As the results show, the
daily concentration of precipitation on an annual scale (expressed by the DPCI values
in Table 1) is characterized by two different spatial gradients. One lies from the east to
the west and the second is detectable from south to north, the latter characterized by the
Tasman Sea coastal areas.

Overall, the spatial distribution of DPCIs follows a gradient between inland and the
coastal areas, which may indicate approaching intense rainfall from different geographic
directions. The results in this study have indicated that most parts inside GSMA are
subject to severe rain, but with different likelihood of high DPCI (Figure 4). For example,
the gigantic water resources of the Tasman Sea may influence the distribution of intense
rainfall. On the other hand, a large proportion of rainfall comes from severe thunderstorms
that occur over the northeast GSMA, the CBD and over the inner metropolitan area [26].
Also, the increased roughness associated with variation in topography and heat island
phenomena may affect the spatial distribution of concentrated precipitation [39].

However, the pronounced dissimilar DPCI values and the subsequent cross−covariance
surfaces (Figures 4 and 6) support the overall picture of multi−subjected developing areas
and approaching weather systems from various directions in the region, which are under
dissimilar synoptic patterns causing atmospheric instability [40,41]. It was found by pre-
vious studies that at least four types of weather patterns account for most of the rainfall
in the region [42,43], and logically the amount, frequency, and intensity of precipitation
events vary substantially in the region, as shown in the records during a long period from
1950–2015 [44,45]. Another weather pattern occurs in summer and involves the location
of the Tropical Convergence Zone bringing torrential rainfalls [46]. Occasionally, weather
systems from the southeast generate storms striking the region with torrential precipitation.
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During the warm months (October to March) the prevailing easterly moist winds provide
much of the moisture needed in the intensification of widespread and severe thunderstorm
activity in the region [26]. Given the short duration of typical thunderstorm activity in
terms of hours, likely it would contribute substantially to the DPCI.

Not all variations in the total precipitation and associated differences in the DPCI can
be explained simply in terms of differences between dissimilar weather systems and the
nature of the prevailing air masses [47]. The geographical distribution of DPCI and the “b”
values illustrate that the coastal areas are subject to a high probability of intense rainfall
(Figure 5). In the southwest extension of the coastal area, over the Illawarra Escarpment,
topography has clear influences on the rainfall amounts. The high “b” distribution in
the vicinity of elevated topography of the Illawarra Escarpment suggests an orographic
enhancement of instability, particularly for sites facing the east (as indicated by Figure
4). Similarly, in the highland area west of Sydney, there appears at least two different
patterns of intense rainfall events. The Blue Mountain ranges, located at the northwest of
the study area, have some of the highest DPCI values, particularly in the summer months.
Thus, the issue arises whether the limited number of rain stations, especially over the high
mountains, can capture such topographic effect to extreme precipitation adequately. One
way to improve is to extend the data sources representing rainfall distribution, which may
include a radar−based estimate and gridded reanalysis dataset, the latter able to reduce
the uncertainty during the spatial interpolation process. The other method is to incorporate
theoretical topographic rainfall models (e.g., [48,49]) to improve the representation of
extreme precipitation over high elevations.

Internationally, the values of CIs found across Europe are similar to those described in
Iran by [6] and are lower than those offered by [7] in China. It has been proposed by [7]
as a general explanation for differences between results from [27] in the Iberian Peninsula
and China, that different climate systems and precipitation mechanisms were responsible
for rainfall (such as a typhoon). Generally, it has been suggested that precipitation trends
based on annual maximum daily events observed in most parts of the world have nearly
the same signs. However, the trend of heavy precipitation is disproportionately larger
than the trend of the total [50]. Some of the previous investigations and the more recent
work of [5] demonstrated the prominence and precision of CI applications in different parts
of the world. It was suggested that even without any change in total precipitation, there
may be changes in the frequency of intense daily precipitation in a climate change context;
a fact that would have led to meaningful variations in the precipitation concentration
patterns [51–53].
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Appendix A

The tables in this appendix document basic information of the rain stations and rainfall
statistics in this study (Table A1), and parameters for computing the DPCI using Albion
Park station as an example (Table A2).

Table A1. The geographic coordinates, study period, average annual rainfall (AP), coefficient of variation (CV) and total
number of rainy days (TN) for the 41 rain stations across the GSMA.

Station Name
(With Abbreviated Map Codes) Latitude Longitude Altitude

(m)
Study Period

(year)
AP

(mm)
CV
(%) TN

Albion Park (AP) −4.57 150.78 8 1950–2015 1186.9 35.1 4811
Bankston Airport (BA) −33.92 150.99 6.5 1969–2015 874.6 25.1 3910
Berambing (BE) −33.54 150.44 792 1950–2015 1452.1 27.7 6774
Bilpin (BI) −33.52 150.49 610 1950–2015 1363.2 26.2 7224
Blackheath (BL) −33.63 150.29 1060 1950–2015 1240.6 28.3 6395
Bowral (BO) −34.49 150.40 690 1962–2015 931.7 26.6 5041
Bringelly (BR) −33.97 150.73 122 1950–2015 803.3 32.9 4496
Bundanoon (BU) −34.65 150.31 688 1950–2015 1249.6 30.7 5894
Camden (CA) −34.03 150.65 61 1950–2015 805.6 32.7 4964
Colo Heights (CH) −33.36 150.71 320 1963–2015 1034.4 26.7 4991
Dapto (DA) −34.50 150.79 10 1950–2015 1232.0 35.4 4822
Darkes Forest (DF) −34.23 150.91 370 1950–2015 1558.4 31.1 6994
Faulconbridge (FA) −33.69 150.53 460 1950–2015 1225.3 34.7 3351
Frenchs Forest (FF) −33.75 151.23 158 1957–2015 1374.9 25.5 6012
Glenorie (GL) −33.59 151.01 170 1950–2015 1002.7 27.7 5249
Katoomba (KA) −33.71 150.31 1015 1950–2015 1449.9 27.8 7479
Kiama (KI) −34.68 150.85 10 1950–2011 1332.9 31.1 5689
Kurrajong Heights (KH) −33.53 150.63 460 1950–2015 1278.8 28.9 6347
Lucas Heights (LH) −34.05 150.98 140 1958–2015 1021.9 26.6 5090
Maroota (MA) −33.46 151.00 203 1950-2015 952.9 31.7 4062
Moss Vale (MV) −34.54 150.38 675 1950–2015 961.6 30.1 6106
Mount Kuring-Gai (MK) −33.64 151.14 215 1965–2015 1171.1 28.7 4560
Ourimbah (OU) −33.36 151.33 195 1954–2015 1406.5 25.3 6183
Parramatta North (PN) −33.79 151.02 55 1966–2015 970.6 26.9 4554
Picton (PI) −34.17 150.61 165 1950–2015 886.5 32.8 4224
Port Kembla (PK) −34.47 150.88 9 1964–2015 1119.9 30.4 4440
Prospect Reservoir (PR) −33.82 150.91 61 1950–2015 936.4 28.6 5692
Richmond (RI) −33.62 150.75 20 1950–2015 868.8 29.5 5287
Riverview Observatory (RO) −33.83 151.16 40 1950–2015 1204.2 26.6 4946
Sans Souci (SS) −33.99 151.13 9 1950–2015 1153.5 28.3 6728
Springwood (SW) −33.71 150.58 320 1950–2015 1166.5 30.0 5727
Sydney Airport (SA) −33.95 151.17 6 1950–2015 1123.0 27.5 6384
Sydney Observatory Hill (SO) −33.86 151.21 39 1950–2015 1264.7 26.8 6607
The Entrance (EN) −33.35 151.50 22 1950–2015 1176.8 25.6 5889
Wallacia (WA) −33.86 150.64 50 1950–2015 890.9 33.0 5027
West Pennant Hills (WP) −33.75 151.04 120 1950–2014 1115.2 30.8 4858
Wollondilly (WO) −34.34 150.08 270 1974–2015 692.1 25.8 2781
Wombeyan Caves (WC) −34.31 149.97 580 1952–2015 847.8 22.7 4466
Woonona (WN) −34.34 150.90 45 1950–2015 1328.3 32.5 5679
Wyee (WY) −33.20 151.44 40 1950–2015 1250.9 24.8 6293
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Table A2. Frequency distribution (Ni, for rain >1 mm), total precipitation (Pi), relative cumulative frequencies (X) and percentage of
total precipitation (Y) for the Albion Park station.

Classes Midpoint Ni ΣNi Pi Σpi ΣN (%) = X Σpi (%) = Y
1–10 5 3037 3037 15,185 15,185 63.13 19.43
10.1–20 15 796 3833 11,940 27,125 79.67 34.70
20.1–30 25 367 4200 9175 36,300 87.30 46.44
30.1–40 35 187 4387 6545 42,845 91.19 54.81
40.1–50 45 109 4496 4905 47,750 93.45 61.09
50.1–60 55 71 4567 3905 51,655 94.93 66.08
60.1–70 65 52 4619 3380 55,035 96.01 70.41
70.1–80 75 38 4657 2850 57,885 96.80 74.05
80.1–90 85 22 4679 1870 59,755 97.26 76.45
90.1–100 95 30 4709 2850 62,605 97.88 80.09
100.1–110 105 20 4729 2100 64,705 98.30 82.78
110.1–120 115 12 4741 1380 66,085 98.55 84.55
120.1–130 125 8 4749 1000 67,085 98.71 85.82
130.1–140 135 12 4761 1620 68,705 98.96 87.90
140.1–150 145 13 4774 1885 70,590 99.23 90.31
150.1–200 175 25 4799 4375 74,965 99.75 95.91
200.1–250 225 8 4807 1800 76,765 99.92 98.21
250.1–300 275 2 4809 550 77,315 99.96 98.91
300.1–350 325 1 4810 325 77,640 99.98 99.33
500.1–550 525 1 4811 525 78,165 100.00 100.00
Sum 4811 78,165 1890.96 1507.27

Appendix B

Figure A1 in this appendix illustrates the physical interpretation of the Global Moran’s
I Statistic. Depending on the z-score value, the rainfall distribution changes from a dis-
persed pattern (negative extreme), random pattern (most of the z-score around the mean)
to a clustered pattern (positive extreme). The values of the Moran’s Index (−0.001755),
z-score (3.553463) and the p-value (0.000380) based on the dataset in this study are given in
the upper left corner of the figure.
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Appendix C

In this appendix the details in the procedure of performing spatial cross-covariance
analysis between two attributes (datasets) are documented. An example of the DPCI (first
attribute) and the constant “b” (second attribute) is illustrated in Figure A2. There are
several steps in the analysis:

• The empirical cross-covariance for a pair of locations (NSW rainfall stations) between
two datasets (DPCI and “b”) is first plotted as a function of the distance between
the two locations (Figure A2 upper panel). In this illustration, each red dot shows
the empirical cross-covariance between the pair of stations, with the attribute of one
station taken from the first dataset and the attribute of the second station taken from
the second dataset. The Cross-covariance cloud can be used to examine the local
characteristics of spatial correlation between two datasets, and it can be used to look
for spatial shifts in the correlation between two datasets. A cross-covariance cloud
looks something like the NSW example.

• The values in the cross-covariance cloud are put into bins based on the direction and
distance separating a pair of locations. These binned values are then averaged and
smoothed to produce a cross-covariance surface. The legend (Figure A2 lower panel
left) shows the colors and values separating classes of covariance values.

• A covariance surface with search direction capabilities is also provided in the ArcGIS
tool. The extent of the cross-covariance surface is controlled by the lag size and number
of lags that are specified (Figure A2 lower panel right). The search direction and width
are indicated by the blue and red lines over the cross-covariance surface. One example
has been shown in the figure and these options can be modified.
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