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Abstract: The reflectivity (Z)—rain rate (R) model has not been tested on single polarization radar
for estimating monsoon rainfall in Southeast Asia, despite its widespread use for estimating het-
erogeneous rainfall. The artificial neural network (ANN) regression has been applied to the radar
reflectivity data to estimate monsoon rainfall using parametric Z-R models. The 10-min reflectivity
data recorded in Kota Bahru radar station (in Malaysia) and hourly rain record in nearby 58 gauge
stations during 2013–2015 were used. The three-dimensional nearest neighbor interpolation with
altitude correction was applied for pixel matching. The non-linear Levenberg Marquardt (LM)
regression, integrated with ANN regression minimized the spatiotemporal variability of the pro-
posed Z-R model. Results showed an improvement in the statistical indicator, when LM and ANN
overestimated (6.6%) and underestimated (4.4%), respectively, the mean total rainfall. For all rainfall
categories, the ANN model has a positive efficiency ratio of >0.2.

Keywords: monsoon rainfall; radar rainfall; Z-R model; bias adjustment; artificial neural network

1. Introduction

The heterogenous of rain intensity that Southeast Asia (SEA) experiences throughout
the northeast monsoon (NEM) and southwest monsoon (SWM) and transition monsoon
every year, generally refers to the “monsoon rainfall”. The region often receives mean
annual rainfall of more than 2500 mm/year. The NEM brings in more rainfall (37–52% of
total annual rainfall) than of the SWM (33–40%) [1,2]. Worldwide most widely discussed
climate phenomena such as El Niño-Southern Oscillation (ENSO) and Madden–Julian
Oscillation (MJO) may be intrinsically linked with interseason variability of the downpour
rain [3]. The impact of extreme rainfall events in SEA is eventually the episodes of severe
floods. For instance, a massive flood event in Kelantan, Malaysia in 2014 resulted in huge
economic loss about USD 0.3 million [4]. Therefore, measuring accurate, reliable, and real
time rainfall is crucial in flood management and mitigation specially across SEA [1].

Traditionally used rain gauges although provide rainfall information limited by its
distribution in sparse locations and they are unable to inform spatial rainfall variability [3].
Despite the fact that the satellite-based microwave-radiometer can measure the volumetric
column of rainfall and spatial distribution of water vapor in the atmosphere, it is inherently
limited by spatiotemporal resolution [5]. Unlike both variants, the weather radar offers
continuous observations on a wider spatial coverage (~200 km), with a higher temporal
resolution (~10 min). Taking advantage of weather radar, several studies have advanced the
knowledge about atmospheric constituents and proposed weather forecasting techniques,
as well as improved inputs for developing hydrological models [6]. Since 1978, numerous
weather radar observation campaigns have been conducted in the SEA with a view to
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improve the accuracy of the prediction model, however, they have always been affected
by the heterogenous rain, originated from the intra-seasonal, synoptic, and mesoscale
precipitation processes [7].

Estimating rain from the weather radar measurement is not straightforward as the
radar data are formed in a multi-dimensional structure based on the range (distance),
azimuth (angle), and elevation (height) in a spherical coordinate system. The radar reflec-
tivity, Z, measured in dBZ, is related to the raindrop size distribution (DSD) in a radar
sample volume [8,9] and inverting to the rain rate, R (measured in mm/s), which strictly
depends on the raindrop number and DSD. Thus, the relationship has been introduced
by [10] through the parametric power–law relationship.

The α and β are the coefficients are determined empirically. Although both parameters
are dependent on the climate, drop size distribution, rainfall types, and microphysical
properties, they are independent to the rainfall rate itself [11]. The prefactor α is more
related to the radar reflectivity, while the exponent β has a close relationship between the
growth size of rain particles and size reshaping process [12]. In tropical climate, the warm
air forms the DSD and the drops tend to have different sizes for a given rainfall rate with
the monsoon effect. Therefore, large variation of the reflectivity requires a revision on the
Z-R relationship in the study area.

So far, three methods have been reported to present such relationship: (a) drop size
distribution [13], (b) matching probability [14], and (c) statistical technique [15]. The first
technique uses disdrometer to link with the rain rate, yet it is not widely used due to higher
cost and highly competent operator requirement, particularly in the SEA. The second
approach matches the same cumulative distribution function of grid reflectivity and gauge
vector. However, this approach does not represent the individual rain rate and is sensitive
to higher reflectivity. The last technique implemented a parametric model for deriving the
regression coefficients (α and β in Z-R model) or non-parametric statistical form which
is more efficient in inverting results but demands massive input data. Even the third
technique is the simplest one, it has likelihood to errors when incorporating the exact
volume and height in the atmosphere for the rain gauge measurements.

Marshall–Palmer (MP) and Rosenfeld (ROS) regression coefficients (giving α = 200
and β = 1.6 and α = 250 and β = 1.2, respectively) have been widely applied in many
regions [16,17], but are less robust for the regions where rain pattern and intensity during
monsoon is heterogenous. The default MP model has an overestimation of about 80%,
resulting in a cumulative estimate of about 160 mm/h [17,18]. This approach requires
a priori knowledge of the coefficients in order to initiate the MP model. The model
overestimation was also found in other studies, such as 30% in [19] and 50% in [20],
respectively. The empirical technique has shown much improvement for monsoon rainfall
if the spatial bias adjustment is applied after the coefficients were determined [16,21].
Radiometric correction resulted from bias adjustment has been reviewed comprehensively
in many studies in Europe, but less documented in SEA [22]. Although the research focused
on the parametric Z-R model, improving the accuracy has least considered in the past.
The appropriate processing steps in different monsoon rainfall classes may increase the
estimation accuracy [23,24].

Radiometric bias occurs when surface rainfall measurement obtained from the gauge
is used to match with the hypothetically volumetric rainfall derived from the radar reflec-
tivity. The correlation may deteriorate if the pixel reflectivity is either exceptionally low
(0 dBZ) or high (more than 70 dBZ). Therefore, pixel matching in radar calibration is crucial
for minimizing the radiometric bias at different spatial and temporal conditions. The bias
could be as high as 76% [25], thus deteriorating the Z-R model correlation [14]. Probability
matching method (PMM) [26], window probability matching method (WPMM) [27], win-
dow correlation matching method (WCMM) [28], and region probability matching method
(RPMM) [14] have been used in pixel matching for more than two decades. The PMM pro-
vided a weak correlation coefficient, while the RPMM was not robust for rains with higher
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temporal variability [14]. Even the WCMM was designed to minimize spatiotemporal
variations, however, failed to provide accurate and reliable areal rainfall estimation.

This study assumed that, unlike the parametric Z-R model, the non-parametric model
such as artificial neural network (ANN), could be an alternative to provide better mon-
soon rainfall estimation from the weather radar [29]. The method can be more robust
and plausible for non-linear mapping and error-tolerant regression in all radar rainfall
applications [30,31]. The ANN inverts the radar reflectivity to the rain rate by means of
the bias and weight vector in the generalization model. Thus, no spatial bias adjustment
needs to be applied. Yet, this approach requires extensive training samples to correlate
the radar reflectivity with the rain gauge data [32]. Besides, it is time-consuming since the
user has to retrain the training network repeatedly until a high correlation is achieved by
the network [33]. The ANN regression was initiated by [34] using radial basis function
neural network (RBFNN) and this effort continues using the backpropagation feed-forward
neural network (BPNN) [35] for weather radar rainfall estimation. The RBFANN consists of
neurons input vector and a radial basis layer to produce linear output using few numbers
of hidden layer. The BPANN is part of a feed-forward neural network (FFNN) with all
datasets flow in one direction and have a feedback known as weight to produce the output.
The FFNN is the simplest network where the information moved in one direction without
any looping. These studies discussed different criteria for network input with appropriate
training and validation data, as well as the number of hidden neurons involved.

However, the ANN technique has not been tested for monsoon rainfall, especially
in the context of the climate in Malaysia. This study therefore presents a framework for
estimating monsoon rainfall using parametric Z-R models and ANN regression on the
reflectivity data obtained from the single polarization radar in Malaysia. The framework
shows a clear contrast between the two models and, thus, this paper aims to assess the
accuracy of the monsoon rainfall estimates. Section 2 introduces the study area and
related data used for this study. Section 3 describes the framework to accurately estimate
the monsoon rainfall from the reflectivity data in which the geometric and radiometric
correction in pixel matching, the non-linear Z-R model with spatial field bias adjustment
and the ANN regression are presented in this paper.

2. Materials and Methods
2.1. Study Area and Data

Radar reflectivity data were collected by the S-band (10.91 cm) single-horizontal
polarization Doppler radar at Kota Bahru, Kelantan, and the data are under custodian of
the Malaysia Meteorological Department (MMD). The radar was stationed at 13 m ASL
and it covers radial measurement from 50 to 250 km radii (Figure 1).

This area experiences the wet and humid tropical climate throughout the year with
an average rain record of 3689 mm/year. More information of the study area is discussed
in [36]. The Kelantan river covers the basin in 284 km length which consists of Golok River
Basin, Kemasin River Basin, Semerak River Basin, and Kelantan River Basin.

The reflectivity data have a spatial resolution of 0.8 km and 10 min temporal sam-
pling. The reflectivity data representing the return signal were sampled in the lowest
scanning angle of 0.7 degree at the position within 2-km altitude from the ground. Such
setup would reduce the ground clutter effect which is typically pronounced in the signal
received close to the radar antenna providing reliable rainfall information near to the
surface [37]. Calibration through the threshold log receiver of signal-to-noise ratio (LOG)
and the Doppler channel clutter-to-signal ratio (CSR) were applied in pre-processing in
IRIS software for minimizing the uncertainties [38]. System calibration is also being applied
during regular maintenance routine in every six months. No correction on the radar signal
attenuation is conducted [39]. The reflectivity data obtained during the wet season of the
NEM from 2013 to 2015 (January, February, March, September, October, November, and
December) and recorded in the SIGMET file format. General specifications of Kota Bahru
radar are listed in Table 1.
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Figure 1. Weather radar map, showing locations of rain gauges in Kota Bahru, Peninsular Malaysia.

Table 1. Technical specification for Kota Bahru (KB) weather radar.

Specification Description

Model EEC WSR 745/1996
Peak power 500 kW
Pulse width 2.0 µs

Gain Minimum 39 dB
Pulse response frequency 250 Hz

Beamwidth 1.9 degree maximum on axes
Elevation range 0.0, 0.7, 1.5 and 2.5 degree
Threshold LOG 0.75 dB
Threshold CSR 18 dB

Rain gauge measurement by network of tipping bucket gauges provide rain intensity
at a volumetric resolution of 0.2 mm in 1-h resolution and this routine is organized by
the Department of Irrigation and Drainage (DID). There are 58 gauges involved in the
200-km radar observation range (Figure 1) where 29, 16, and 13 gauges in the near (4 to
50 km), intermediate (51 to 100 km), and far (101 to 200 km) range from the radar station,
respectively. Many gauges are stationed in flat area (Northern part) but sparsely distributed
on high terrains in the south of Kelantan and they are mostly located along the river.
Data quality control and homogeneity test have been conducted on all rain gauges in
Kelantan [40,41]. These studies reported that 50 gauges have experienced more than 10%
of data void and 41 gauges were working in homogenous fashion while the rest of gauges
were doubtful.

The digital elevation model (DEM) data are a product of the Shuttle Radar Topography
Mission (SRTM) with 30 m (1 arc-second) pixel spacing and was used for altitude correction
of each rain gauge. The data have spatial resolution of 30 m and 90 m in vertical and
horizontal, respectively [42]. The DEM products have been corrected on the void pixels
which can be downloaded from the U.S. Geological Survey (USGS) website.
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2.2. Data Preparation

The radar data conversion was applied through an open-source software, namely
Python atmospheric radiation measurement (ARM) radar toolkit (Py-ART) [43] to generate
the NetCDF from the SIGMET files to ensure interoperability for reading and processing
the reflectivity data. The 10-min reflectivity data are integrated in 1-h measurement
to temporally match with the gauge data. The reflectivity data with Z ≤ 0 dBZ were
removed to avoid misinterpretation of raindrop target representing such measurement
and thus underestimating the rain estimates. The rain data from gauge measurement
below 0.3 mm/h were eliminated to avoid false measurement for low-intensity rainfall
as suggested by [44], where the zero rain rate decreases the spatial variability of rainfall
and significantly affects the correlation in high rainfall intensity. As a result, about 9860 of
hourly reflectivity data were generated and matched with the gauge observation time.

2.3. Geometric Transformation and Pixel Matching

The reflectivity data have scattered reflectivity attributes in spherical coordinate
system and therefore it should be converted to the local map projection presenting in real
earth coordinates to match with the gauge location. The geometric transformation was
applied in MATLAB and the original coordinate was in polar system and transformed
into the Cartesian coordinate system, as shown in Figure 2. The coordinate transformation
algorithm adopted from [12,45] is used by incorporating the effective earth radius factor
4/3 as an input.

Figure 2. Illustration of single radar beam observing one target (A) at the atmosphere is a function of
the range (r), elevation angles (θ) and azimuth angles (φ) to be converted into Cartesian position in a
function of the latitude (x), longitude (y), and height (z).

The geometric correction only determines the planimetric and height position but the
corresponding reflectivity estimate was always not defined [46]. Therefore, resampling
of the reflectivity pixel has to be conducted. The three-dimensional pixel interpolation
based on the nearest neighbor (NN) was used and the Cartesian derived coordinates of
reflectivity and the corresponding gauge as the inputs with the height correction of gauge
as in Equation (1).

hcg = hg − ha (1)

where, hg is the rain gauge altitude determined from the DEM (meter) and ha indicates
the altitude of the radar station (meter). Despite of the fact that many interpolation
methods have been introduced in geometric correction of radar data [47–50], most of them
only operate in the 2D Cartesian grid. The nearest neighbor is the simplest interpolation
which preserves the reflectivity in a grid more than of other interpolation and producing
less artificial reflectivity estimate [51]. Study by [49] stated that the NN worked well
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for the lowest elevation angle in radar rainfall estimates. At this point, the position of
reflectivity pixel is almost matched with the position of gauge data and the total samples are
about 45,240.

2.4. Rainfall Intensity Classification

To sustain the quality of reflectivity, the match samples fall in the measurement range
between 4 to 50 km were used because the correlation to the gauge is more than 0.4
and more than 80% of gauge stations were included. For adequate assessment of the
spatiotemporal variability, all measurement data were sorted in three different intensity
classes namely low rain (0.3≤ R < 3.2 mm/h), medium rain (3.2≤ R < 13 mm/h), and high
rain (R ≥ 13 mm/h). This study assumes that the intensity cohort creates the optimum way
for assessment in controllable sample. Studies by [52,53] have proved that by partitioning
the sample in low rainfall rate has reduced the estimation uncertainty and recommend
this routine in estimating the monsoon rainfall particularly with highly heterogenous rain
types. There are about 3257 samples were selected at this point.

2.5. Non-Linear Least Square Optimization in Z-R Modeling

Parametric Z-R models have been derived either in linear or non-linear regression
models depending on the quality of both data and data screening [54,55]. In this study,
the non-linear regression with the Levenberg Marquardt (LM) optimization [56] is chosen
to estimate the optimal pre-factor α and exponent β in the Z-R model. Some conditional
functions such as the minimum cost function must meet within the given constraint of the
α and β (200 < α < 600 and 1.2 < β < 1.8) and the functional tolerance of 50% are applied.
The method applies functional weight and parametric conditions (different rain intensity
classes) in the objective function. The LM method was merely considered because of this
method shows more robustness in the prediction of the targeted parameter (rain rate)
even though the initial value of that parameter was far from the corresponding reflectivity.
Besides, the LM also has better time-efficiency in the inversion processing. This study
reapplies the coefficients derived in [36] to initiate the intensity-based Z-R regression.

To minimize the difference induced by the spatial bias inherited in interpolated
reflectivity pixels [6], the mean-field bias (MFB) known by gauge to radar ratio (G/R) [22]
is applied, right after both coefficients were determined.

B =
N

∑
i=1

Gi/
N

∑
i=1

Ri (2)

where Gi is the accumulated rainfall (mm/h) at the gauge i and Ri is the accumulated radar
rainfall estimates (mm/h) at the gauge i, and N is the total number of the matching pair of
those two observations. The bias factor, B is typically applied on the derived Z-R model
with the prefactor α and coefficient β as follows [21,57].

Z = αB−βRβ (3)

At this point, 1952 samples were applied in model development while 1305 for validation.

2.6. Artificial Neural Network (ANN) Regression Model

The artificial neural network (ANN) training network aims to prepare more compre-
hensive model that adapts to possible rain condition and spatio-temporal variability of
radar reflectivity in regard to season, location, climate, and the SNR. The network is de-
signed with three-layer perceptron consists of two hidden layers in a network, as suggested
in [34]. The network requires input of the reflectivity data and the target vector of the
rain rate at the gauge. The hidden layer is used to increase the non-linearity relation and
transform the representation of reflectivity data for better generalization over the function.
For the development of the ANN model, three datasets are considered, which are training,
testing, and validation. The training dataset used to determine the model’s weight and the
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testing dataset was used to test the performance of the trained model to predict the target
vector (rainfall from the gauge). Meanwhile, the validation was used to ensure that the
model is accurate and efficient to train independent reflectivity data. In this study, 60% and
40% of the match sample of reflectivity and gauge data was divided for training network
and validation process that corresponds to 1952 and 1305 samples, respectively.

The Bayesian regularization method was assigned as the training algorithm and the
backpropagation feed-forward neural network (BPANN), in a log sigmoid layer was chosen
to develop radar inversion model and thus estimate the radar rainfall. The network fitting
general equation is shown in Equation (4).

j(i+1) = f (i+1)
i

(
Wi+1 Ji+1 + bi+1

)
, i = 0, . . . , n− 1 (4)

where J is the rainfall estimates from the radar (mm/h), n is the number of the layer in
the training network, ft

(i+1) is the transfer function, Wi+1 is the neuron weight and bi+1

in the bias of the neuron. The main objective is to find a network function of inversed
radar, learn the reflectivity value pattern in the input vector and produce the best function
approximation to the target (i.e., the ‘true’ rain gauge measurement). The training network
will stop when it reaches the minimum MSE and higher correlation coefficient (i.e., MSE
less than 0.2 and Rc larger than 0.7).

In order to define the impact of different rain intensity in ANN model, samples in low,
medium and high rain classes and whole classes are used at separate training networks.
There are about 1436, 390, and 126 samples applied in each abovementioned training
network, respectively. In the validation process, the derived ANN model was applied
on the remaining 30% of match samples to assess the ANN accuracy. The validation was
conducted on the abovementioned training networks and involved about 958, 262, and
85 samples for low, medium, and high rain classes and 1305 for whole samples, respectively.

2.7. Accuracy Assessment

All derived rainfall from the reflectivity data from MP, ROS, LM, and ANN are quantita-
tively assessed using the correlation (R), coefficient of determination (R2), root mean square
error (RMSE), bias, and Nash- Sutcliffe efficiency index (NSE) [21,58] as follows.

R =
∑ RzRg − ((∑ Rz/∑ Rg)× n)

n×
√

∑ R2
z − (∑ Rz)2 ×

√
R2

g − (∑ Rg)2
(5)

R2 =

 n× (∑ RzRg)− (∑ Rz/∑ Rg)

n× (
√

∑ R2
z − (∑ Rz)2 ×

√
∑ R2

g − (∑ Rg)2)

2

(6)

RMSE =

√
(Rz − Rg)

2

n− 1
(7)

NSE = 1−
[

n

∑
i=1

(Rg − Rz)
2/

n

∑
i=1

(Rg − Rg)
2
]

(8)

Bias =
(Rg − Rz)

Rg
(9)

where Rz is the radar rainfall estimate (mm), Rg is the rain rate measurement from the rain
gauge (mm), Rg represents the average of the rainfall at the gauge [mm], n is the number of
the sample. Basically, the range of R is between −1 to 1 where the positive value indicates
the relationship between the reflectivity and the gauge data are mutually established and
vice versa. The RMSE indicates the error represents the average deviation between the
radar rainfall estimates from the rain gauge. The lower RMSE stipulates that the radar
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estimate has a strong tendency to the rain gauge. The NSE gives result from ∞ to 1 where
an index closer to 1 is a perfect score, negative index efficiency represents the average of
the actual rain gauge measurement performing better than the predicted rainfall of the new
Z-R model, while 0 indicates that the accuracy of the average between the rain gauge and
radar rain rate are equal.

To comprehensively assess the quality of the parametric and non-parametric models,
the Taylor diagram (TD) was presented in which the results of R, RMSE, and SIGMA [59].
The expression is as follows:

E′2 = σ2
f + σ2

r − 2σf σrR (10)

where, E′ represents the centered RMSE between the fields, and σ2
f and σ2

r are the variances
of the model and rain gauge. The diagram has been used to analyze proximity of the radar
rainfall estimate matching to the gauge data. The diagram summarizes the agreement of
the rainfall measurement between the rain gauge and Z-R models. Based on the TD, the
Z-R model that is in the agreement with the rain gauge would lie to the nearest observation
point at the abscissa which shows higher R and lower RMSE. The closer the estimated
model is to rain gauge data, the better it performs in capturing rainfall amount.

3. Results and Discussion
3.1. Pixel Matching

The radar technology does not measure the rainfall intensity directly, rather provides
the reflectivity of hydrometeor at a given altitude. Therefore, appropriate pixel matching
between the reflectivity pixel and the gauge point is required to minimize the spatial
variation between the reflectivity pixel and gauge vector. Routine pixel matching in radar
data processing usually is based on 2D approach which has spatial variability and requires
an adjustment. For this study, the pixel matching involves rainfall data collected from
58 rain gauge stations at 10 min temporal resolution for 16 months. Rain gauges IDs
1 to 58 indicates gauge locations from far to near radar range observation. The pixel
matching technique was evaluated by comparing the two different methods: nearest
distance (considered as actual/reference measurement) and 3D interpolation.

Figure 3a depicts the reflectivity obtained from the nearest point (2D) approach that
searches the reflectivity from the central pixel towards the gauge location. In the near
range (IDs 39 to 58), the nearest distance showed the fluctuated reflectivity at an average
of 5 dBZ and the reflectivity did not degrade even at 100 km (intermediate to the far
range). The result contrasts with the radar principle, where the echo would decrease as the
electromagnetic wave propagates toward the raindrop at a further distance. The reflectivity
signal is weak due to the high attenuation in case of faraway radar station and due to the
effect of vertical profile reflectivity [54].

The altitude correction is applied to all the reflectivity pixels and rain gauge altitudes
to represent better reflectivity at the gauge location. Therefore, the 3D interpolation pixel
matching was introduced to minimize the geometric variation between those two mea-
surements. Note that all interpolation techniques are not suitable for the 3D interpolation.
MATLAB only provided three interpolation types, including linear, natural neighbor, and
nearest neighbor for 3D interpolation. Only nearest neighbor interpolation (NN) and
resampling with vertical correction show a significant improvement of the consistency for
reflectivity measurements (Figure 3b), especially in the near and far range classes. The
reflectivity indicates random variation due to the radar beam composing of small and very
large water droplets that are evenly distributed throughout radar sampling volume. The
NN successfully interpolated and resampled the reflectivity at corrected altitude into a
grid of 0.8 km2 resolution by minimizing the artefact (void pixels) at the boarder of filled
reflectivity in this study. Ref. [60] also found NN effective for large spatial resolution.
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Figure 3. The error-bar plots illustrating reflectivity measured in different gauge locations interpo-
lated by the nearest distance (a) and the 3D interpolation (b), and the performance of (c) measured
in terms of residual mean square error (RMSE). Horizontal bars indicate the standard error of
the means.

The error difference in terms of residual mean square error (RMSE) between 2D and
3D pixel matching is shown in Figure 3c. The matching yielded 45,240 of 10 min sampling
observations excluding 0 dBZ. The altitude correction showed a good impact on the reflectivity
pattern and minimum systematic difference between low and far range observations from
the radar site (Figure 3). The results are in agreement with [61], however, in contrast to [62].
Elevation correction, however, did not significantly improve the interpolation quality.

Gauge ID 21 (Figure 3b) shows a higher reflectivity at 23 dBZ, indicating presence of
higher reflectivity in the nearest neighbors compared to other pixels. The mean difference
between the actual reflectivity (nearest distance) and the data interpolated from 58 rain
gauges was approximately 6 dBZ, retained reflectivity at the high-resolution structure.
Ref. [63] also reported that NN has lower RMSE values, but the error fields were non-
uniform. However, the discontinuity of the reflectivity data is observed by [64].

The 10 min reflectivity data from 3D NN interpolation were then aggregated to
generate hourly paired samples (Figure 4), illustrating the periodical monsoon rainfall
pattern, from January 2013–March 2015. A total number of 9860 matching pairs were
extracted within the 200 km radius range. However, only the close-range observations,
comprising of 3257 matching pairs extracted from the 3D resampling approach were used
to predict the rainfall since many doubts exist in the far range. This is due to the SNR of
the returned reflectivity which degraded at a far distance and significantly affected the
Z-R model.

The impact of the medium and far range reflectivity on rain estimation has been
highlighted in [65], where the correlation decreases with an increase in range observations.
There was an impact of seasonality on rainfall pattern and reflectivity recorded during
January 2013–March 2015 (Figure 4). Due to the radar beam composition of both small
and very large water droplets that are evenly distributed in the radar sampling volume,
resulting random variation in the reflectivity. Discrepancy between the reflectivity and the
rain rate pattern can be due to the temporal sampling error [66].
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Figure 4. Time series plot for the corresponding (a) reflectivity (dBZ) and (b) rainfall intensity (mm/h)
from 2013 to 2015. Higher reflectivity found up to 60 dBZ and high rainfall intensity was recorded at
150 mm/h. Yellow line represents the time average of each parameter.

3.2. Optimized Parametric Z-R Model

In the empirical Z-R model, the prefactor α represents the presence of the raindrop
size and the exponent β characterizes the microphysical process of the rain drops. If β
approaches to the unity, indicative of the homogeneous rain [67]. In tropical rainfall, the
α coefficient is significantly high for low to heavy rainfall intensity—ranging from 50 to
600, while β coefficient (1 to 2) is low for heavy rainfall and high for light rainfall. The Z-R
model is constructed by the non-linear least square method from the matching pair sample.
To solve the non-linear Z-R model, the Levenberg Marquardt (LM) was applied in this
study. The α and β coefficients optimized for monsoon rainfall under all rainfall intensity
conditions (non-classified) and the three different rainfall intensities (Table 2), suggesting
that there is a relationship between Z-R coefficients and the DSD.

Table 2. α and β coefficients of newly established Z-R models for different rain intensities.

Intensity Type Optimized Z-R

All intensity Z = 216.3 R1.6

Low Z = 214.3 R1.6

Medium Z = 215.9 R1.6

High Z = 218.2 R1.6

The optimized Z-R model obtained from the LM for the intensity of all class types
ranges from 216.3 to 218.2, which is within the range between MP and ROS. The α in
non-classified rainfall is 216.3, slightly larger (1%) than the default MP and deviated 13.5%
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from the ROS. While ROS was designed for tropical rainfall, the coefficients did not reflect
the monsoon rainfall. The monsoon rainfall has a characteristic of a stratiform type of rain
that provides evenly spread, low spatial distribution of rainfall. The difference between LM,
MP, and ROS for all intensity rainfall types is possibly due to the rain drops size captured
within the radar beam has been influenced by the evaporation process and wind shear.
Previous studies have ignored the role of rainfall intensity implemented under similar
climatic conditions [18,68]. The coefficient discrepancy is attributable to the type of radar
data product used, as well as the processing steps. To investigate the impacts of DSD on
rain intensity, the nonlinear fitting was then tested for low, moderate, and high rainfall
intensity, using similar samples and classes.

Because of various DSD diameter, the non-linear least square fitting clarifies that
prefactor α showed significant variations across different rain intensities ranging from
214.3 (low) to 218.2 (high), whereas exponent β showed an invariant value restricted to
1.6 (Table 2), which agreed with [10]. It is probably due to the insufficient dynamic of the
rain intensity as the input data to the LM model. The exponent β indicates the rainfall has
nearly homogenous drop size and distribution shape factor even though rainfall intensity
is different, but it hard to discriminate due to collision-coalescence and breakup process.
Radar system types, data products, range of rainfall intensity, and processing technique
yield different coefficients. Constant β has been found by [69] where the homogenous rain
drop was detected within the radar sampling volume. The impacts of constant exponent
β (1.4) was assessed by [13] and by [70] in Thailand. They concluded that the fixed value
has no effect at all. The small difference in α in low to the high rainfall intensity is due
to monodisperse nature of the rain drop size [71]. During the NEM, as there was high
rainfall intensity, the α was found to have greater DSD and accompanied by strong wind
and higher humidity. As a result, the growth rate of a raindrop increased since the total
number of drops grown. The result is consistent with the coefficients obtained by [18] in
Malaysia, [72] in Singapore, and [13] in Indonesia, respectively. They found α is larger in
high-intensity rainfall, but not for β.

The Z-R model (Table 2) obtained in this study are different from the current model
used for single polarization weather radar for Malaysia. This suggests that the need of
optimize Z-R model for local rainfall estimation and proved that the non-linear least square
regression is robust to the outliers from reflectivity pixel and rain gauge. Based on Table 2,
it shows that heterogenous monsoon rainfall intensity resulted in variation in coefficient of
α and constant trend of β is due to the similar microphysical rain drop properties within
radar sampling volume. It can be stated that during the NEM, the rainfall types show large
intrinsic variability of DSDs, affecting the variation in Z-R model. The variation of Z-R
model’s coefficients is probably due to the poor representation of spatial rainfall at the rain
gauge. This is because the empirical Z-R model depends on the rainfall data recorded at
the gauge station.

Since monsoon rainfall shows heterogenous DSD size, as plotted on a monthly ba-
sis in Figure 5, a clear difference in the Z-R model coefficient can be observed. At the
high intensity states, the α coefficient showed significant fluctuations and achieved the
maximum of 264 with a β of 1.6 as of January 2014. High variation of the coefficient is
probably due to a high concentration of DSDs with a high humidity. Meanwhile, due to
the lesser samples having intense downpour, the α is minimum at 208 with β of 1.58 in
February 2014. A smaller α coefficient is associated with the light rainfall encountering
small raindrops. The droplets have a possibility of not reaching the ground due to the
evaporation and suspension in the updrafts.
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Figure 5. Trend plot of α (solid line with circle mark) and β (dash line with cross mark) at each month
from January 2013 to March 2015.

Overall, the prefactor α increased from low to the high intensity rainfall due to the
increase in raindrop size distribution. For each intensity class, the fluctuation of prefactor
α varies from 211.3 to 220, 207.8 to 221, and 206.8 to 264.2 for low, medium, and high
intensity, respectively (Figure 5). Concurrently, the exponent β is restricted to a value of
1.6. During the NEM and the transitional monsoon, the magnitude rate of α at the low
to moderate rainfall intensities is more prominent, while β shows that the rainfall are
of heterogenous rain type. The LM shows that the estimated α significantly influenced
the variation in the Z-R model as the DSD difference is highly related to the raindrop
diameter, droplet concentration, and relative dispersion, which increases as the rain rate
increases. Abrupt change of α was found in January 2014 and it is probably due to the
impact of constant β modeled in all rainfall intensities. Besides the microphysical process
determined the value of β, the distribution shape factor also contributes to this change [73].
However, comprehensive discussion on the distribution of shape factor is beyond the scope
of this study. Low intensity rainfall with a value of less than 3.2 mm/h composed mostly of
smaller raindrop size (<2 mm), while intense rainfall tends to have a larger drop size (3 mm)
diameter [74]. During the SWM, a high α coefficient is also observed by other [75], since
the rain is generated from cumulonimbus cloud type. The maritime continents generally
have larger DSD size during NEM due to the diurnal variations [68].

3.3. Rainfall Estimation from Z-R Model

The optimal coefficient obtained in this study was derived based on the monsoon
season. The newly established Z-R relation is envisioned to improve estimation of rainfall
at varying DSD in this study. Radar-derived rainfall is measured at different rain inten-
sities are estimated and compared with observed data. The accuracy is assessed in TD
(Figure 6a–c).

All the parametric Z-R models show good correlation coefficient (R > 0.6) between
the radar measurements and the collocated rain gauge in all intensities (Figure 6d). The
LM has higher (R > 0.7), followed by MP (0.65) and ROS (0.6). In term of error difference,
MP has a lower RMSE of 3.56 mm/h compared to 6.1 mm/h (LM) and 5.6 mm/h (ROS). It
might be explained by the 3D interpolation pixel matching that reduced the spatiotemporal
variability through integrating time series data in building rainfall models [2]. This clearly
suggests that derived rainfall from LM, MP and ROS can be utilized to estimate the rainfall
and, thus, help to understand the rain pattern in SEA during the monsoon.
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Figure 6. The Taylor diagram illustrating a statistical comparison of four different hourly radar rainfall estimates with
rain gauge (RG) observation under different rainfall intensities: (a) low, (b) moderate, (c) high, and (d) all intensity. The
azimuthal angle denotes correlation; the radial distance is standard deviation; and the semicircles centered at the RG
represent residual mean square error (RMSE).

The radiometric calibration through bias adjustment is an important step in the
conventional Z-R model so as to reduce the spatial bias [15]. The rainfall estimated from
the Z-R was optimized for adjusting spatial bias, the MFB in this study. To evaluate
the accuracy of the Z-R model comparable to the rain gauge, the estimates of rainfall
were compared with MP and ROS models. MP and ROS underestimated total rain of all
intensities by 33.7% and 5.9%, respectively, while LM overestimated by 6.6% (Figure 7).
These results are in line with other studies conducted in similar climatic region (in the
Philippines and Malaysia by [17,76], respectively).
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Figure 7. Bar plot of bias and NSE for the estimated radar rainfall model.

The pristine estimation revealed that MP and ROS models overestimated by 18.5%
and 9.2%, respectively, and LM overestimated by 5.7% of low-intensity rainfall, which
is similar to others [77,78]. They reported that MFB can have lower RMSE compared
to the unadjusted radar by applying uniform correction and it can slightly improve the
correlation. The overestimation of low rainfall is due to the higher raindrop concentrations
in the stratiform rain. In the low rain intensity, the LM produced more significant results
than of the MP by reducing the RMSE from 0.42 to 0.36 mm/h.

The model also was tested for NSE (Figure 7). Only MP had the positive NSE (0.37)
and had a bias of 33% in all rainfall estimation. The LM, on the other hand, has a bias of
6.6%, but a negative NSE (−0.83). Comparing the bias among the models, the LM showed
a negligible difference between the radar and gauge measurements. This implies that
(1) rainfall at the lower elevation scanning angle can be well described using non-linear
least square fitting models, (2) MP and ROS failed to well explain the monsoon rainfall
which consist of both stratiform and convective rains. Thus, it can be concluded that radar
is able to represent the variability of spatial rainfall [2]. The optimized Z-R model obtained
in this study showed significant difference from MP and ROS, and error reduction, but
had almost similar correlation (Figure 6a) as shown by [79]. In addition, LM after the
adjustment showed no bias and perfect NSE of 1 (low intensity class in Figure 7).

The R2 and G/R were used to measure the variation and performance of radar derived
rainfall during monsoon (Figure 8). The G/R provided an insight of how much the radar
rainfall deviates from the gauge measurements, where G/R < 1 indicates overestimation
and G/R > 1 is underestimation. The regression analysis showed that LM had better ability
(R2 < 0.5 for 6 months) than that of MP and ROS to estimate the NEM rainfall. LM provided
reliable estimates as depicted from the rain estimates (G/R = 1) for most of the months.
The trend for the estimated rainfall indicates that MP and ROS underestimated rainfall
in October (G/R > 1). All the radar derived model showed low R2 for February 2013 and
October 2014. This could be due to the transitional monsoon event while LM had almost
the same estimate at the ground (G/R = 1).

Because it is sensitive to the high variation of reflectivity pixels, in order to reduce bias,
the parametric model must undergo the gauge radar adjustment, and the accuracy depends
on the accuracy of the involved matching pair and radiometric correction algorithm [80].
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Figure 8. Plot of R2 and G/R of radar rainfall estimates on a monthly basis for all rainfall intensity
for (a) LM, (b) MP, (c) ROS, and (d) ANN models.

The discrepancy between the estimated rainfall and observed rainfall on a monthly
basis has been illustrated in Figure 9. Based on the increase and the decrease in RMSE,
once can observe that the accuracy of radar rainfall through LM for non-classified rainfall
(Figure 9a) at 60 min temporal resolution was unable to reduce the error. This is because the
study area received more stratiform than convective rainfall. Reference [81] also reported
that stratiform rains mostly occurred in the east coastal region and convective rain often
in the western Peninsular Malaysia during NEM. However, since the computed RMSE
was more than 1.0 mm/h, the estimation without rain class consideration results in a
larger error. This error is because of the spatiotemporal variation in radar reflectivity and
rain rate.

The physical factors influencing the radar rainfall estimation observed in this study are
the variability of the rain DSD and its fall speed. Based on Figure 9a, with RMSE < 0.8 mm,
LM successfully reduced the RMSE almost every month. The modified Z-R can reduce
RMSE of light rainfall [82].

In moderate rain intensity, the LM was high (R > 0.7), which was similar to MP and
ROS (Figure 6b). MP underestimated in the medium rainfall intensity by 24.2%, while ROS
overestimated by 4.9% (Figure 7). Radar beam can detect low reflectivity values (<30 dBZ)
and that is why the prefactor α provided a low rain rate. ROS has good representation
of the medium rainfall during the monsoon. The LM, however, considerably reduced
the RMSE by 6.54% (MP) and 35.5% (ROS), respectively (Figure 6). However, all the
parametric model found insignificant to estimate this type of the rainfall because of the
DSD and microphysical properties of the drop changed abruptly. This can be seen by
NSE, where all acquired values were negative (Figure 7). In general, the medium intensity
rainfall originated from the stratiform cloud had mixes of liquid or solid water phase
which caused over-underestimated rainfall. The collision-coalescence process results in a
large DSD as recorded in the ground, but due to melting layer at certain altitude the radar
sampling volume captured a small DSD. Thus, there was a large inconsistency between
the measurements [83]. The moderate rainfall accuracy is in questionable because of an
ambiguous threshold between the low and high rain intensity. The higher DSD had the
potential to split into small droplets [52].
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Figure 9. Plot of RMSE for monthly radar rainfall at (a) all, (b) low, (c) medium, and (d) high rain intensities.

LM, MP, and ROS all underestimated the rainfall by 40.6%, 67.9%, and 40%, respec-
tively, during heavy rain (Figure 7). The underestimation of heavy rainfall is attributed to
weak return signal from heavy rainfall cell and less sample of matching pairs [19,84]. Radar
tends to underestimate hourly heavy rainfall between 44% and 67%, according to their
reports. According to [85], the quantitative precipitation estimation (QPE) underestimated
by a factor of 3, especially in heavy rainfall because of the path-integrated rainfall-induced
attenuation along radar beam and this has caused further correction difficult. It was found
that the high rainfall intensity derived from the radar reflectivity has a high correlation
with the ground data, in which all models had R > 0.5 (Figure 6c). However, in term error
in measurement, all the parametric models had >8 mm/h RMSE (Figure 9c) and large
standard deviations, indicating the estimated rain is far from the real. This is due to the
low reflectivity value extracted from the rain gauge and the change in the terminal velocity.
Another possible factor is the prevailing wind that affects the raindrop’s falling speed;
the larger drop size has higher falling speed [86]. The LM with adjustment reduced the
difference between the radar derived rainfall and the rain gauge (bias = 0.0), but the NSE
was −4.2 (Figure 7). All parametric models (Figure 7) underestimated the rainfall where
NSE showed negative values even though the radar model had moderate R > 0.5.

Although the weather radar could acquire spatial variability of the rainfall, the para-
metric Z-R model as was depending on the coefficients α and β, the spatial adjustment
was necessary to improve the correlation between the radar and the gauge observations.
Bias adjustment through artificial neural network (ANN), independent of coefficient pro-
posed in this study is a robust alternative approach and proved efficient in solving the
non-linearity relationship.

3.4. ANN Training Network Evaluation

Monsoon rainfall is characterized by heterogenous raindrop size, and it is influenced
by the climatic factors. During NEM, Peninsular Malaysia receives light intensity rainfall,
which is a high variation and frequency rainfall in SEA, reaches the highest in November
and December due to Madden–Julian oscillation [87]. The rainfall pattern is also impacted
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by the diurnal cycle, which has different characteristics in different regions and temporal
variations. Thus, there is a large variation of α. It is essential to estimate the rainfall
in an effective and straightforward framework for the users with limited knowledge of
radar processing and technical abilities to handle radar data. The LM improved the radar
rainfall, but it less efficient to estimate the rainfall based on the intensity since real time
observations are needed. Therefore, to provide a universal Z-R model for monsoon rainfall,
a non-parametric approach by means of ANN is suggested. Ref. [88] had performed ANN
instead of a parametric Z-R model due to inconsistent coefficients, α and β. The ANN
training was designed to train and validate the matching pair, as well as compared its
estimate to the rain gauge. The ANN structure consists of one input (60–40%) represents
the reflectivity from low elevation scanning angle and two hidden neurons performed in
BPANN. To design the training network, the 1952 and 1305 matching pairs were used and
the result is illustrated in Figure 10.

Figure 10. Scatter plots of radar rainfall estimates based on ANN versus rainfall measurements from
the gauges. (a) training, (b) testing and (c) all regressions of the reflectivity for all rainfall intensity.
The color lines are fitted line and the dashed lines are 95% confidence bounds of the fitted line.

In order to have good relationship between two instruments, the mean square error
reaches the threshold of less than 0.2 considered to accept the model. The relationship
between radar rainfall and gauged rainfall is highly correlated, with R > 0.7 for both
training and validation data in all intensity classes. The iteration of the training network
was stopped when the MSE achieved 4.66 mm/h convergence state. Thus, the model is
valid for the training of another set of reflectivity data to estimate the radar rainfall at
2.03 mm/h due to the lower RMSE value. Result for all rainfall intensity shows that the
gauge measurement is between 10 and 15 mm/h. This is because the sample fell within
that range was minimum (7%) and has insufficient pair within the dynamic range. Most of
the pair (74%) were recorded from 0.3 to 3.2 mm/h. The correlation coefficient between the
radar and rain gauge at different rain intensities is shown in Figure 11.
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Figure 11. Scatter plots of radar rainfall estimates based on ANN versus rainfall measurements from the gauges at (a) low,
(b) medium, and (c) high intensity rainfall. The straight line is the regression line.

All the samples at different low, moderate, and high intensities had MSE of 0.07, 1.51,
and 6.32 mm/h, respectively. Overall, the hourly radar rainfall estimation using ANN
produced satisfactory results with correlation values of 0.79, 0.64, and 0.75 for low, medium,
and high-intensity rainfall, respectively. The training model obtained acceptable RMSE of
0.26, 1.22, and 2.52 mm/h for low, moderate, and high rainfall intensity, respectively. How-
ever, the number of samples for medium and high intensity slightly decreased, resulted
in lower (R = 0.38) and moderate (R = 0.52) correlation coefficient, respectively. This is
because the study area only considered matching pair within 50 km from 29 gauges. Based
on Figures 10 and 11, it can be concluded that ANN provided an alternative approach by
reducing complex data processes, independent of intensity and coefficients, by learning
the input (reflectivity) data structure. It is also found that the pixel matching through 3D
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NN interpolation can capture the variability of rainfall by providing good matching pair of
reflectivity and rain rate. This finding is in agreement with [46], where they found that the
lowest elevation angle has a good correlation with the rain gauge. The training networks
accuracy obtained in this study are consistent with the findings of [29] and [34]. Both
studies showed an increase in correlation when the number of training epochs increased.

3.5. Validation of ANN Model

As shows in TD (Figure 6d), the ANN is also good in representing the rainfall intensity
with R > 0.6, slightly lower than LM (R = 0.72). The RMSE improved from 6.1 to 3.54 mm/h,
but this model underestimated the rainfall by 4.4%. The low RMSE obtained from the ANN
model agreed with a study by [30,89]. It is obvious that training a good sample is crucial to
fit the reflectivity and rain rate model as the ANN considerably has NSE = 0.36, but able to
represent the spatial rainfall than negative NSE obtained by LM (Figure 7). Applying the
ANN improves the hourly rainfall through the bias and weigh adjustment between the
neuron. As shown in Figure 7, ANN had a smaller bias (0.05) and lower RMSE in 10 out of
16 months (Figure 9) compare to LM. Figure 8d shows that the ANN had good regression
coefficient R2 > 0.5 for 10 months, but it has overestimated the rainfall (G/R < 1). Like
LM (Figure 8a), the ANN underestimated the rainfall in October 2014 and the R2 = 0.3.
This is because on that month the transition monsoon occurred where the rainfall had high
variation of DSD.

The ANN has shown high correlation coefficient, R = 0.81 (Figure 6a), but the RMSE
is larger than LM (0.39 mm/h) during light rainfall. This model has positive NSE of 0.67,
relatively small bias (<0.1) in estimating the mean total rainfall (Figure 7) and underesti-
mated the light rainfall by 0.4% of total mean rainfall. It can be concluded that LM and
ANN are comparable in estimating light rainfall, but LM needs spatial bias adjustment
to minimize the difference between radar reflectivity and rain gauge, which is in agreement
with [78]. The slight but consistent of lower RMSE indicates that the ANN is independent of
adjustment and Z-R coefficients. In moderate rainfall intensity, ANN has moderate R = 0.5,
RMSE of 2.5 mm/h, and overestimated the mean total rainfall by 13%. This probably
occurred due to the sensitivity of the ANN model for the moderate rainfall, consisting of
the mixture of both stratiform and convective rainfall. Ref. [90] stated that at 2 km vertical
height, there is a mixture of liquid and solid phase, as well as the transitions between the
two phases. Even though the RMSE is quite higher than the LM, the ANN is considered to
represent this rainfall class as the NSE is 0.22.

In heavy rainfall condition, the ANN produced high R value of 0.8, which is better
representation of heavy rainfall than the LM. The model has overestimated the rainfall by
6.2% and had reduced the RMSE up to 70% compared to the LM. This model has result
in smaller RMSE of 3.2 mm/h and positive NSE of 0.55, which is practical to estimate
the heavy rainfall. As expected, we obtained similar result in this rainfall class where the
lower RMSE value in each month (16 months) and recorded the lowest value (2.85 mm/h).
Based on the estimation within 50 km, it can be concluded that ANN model results in an
underestimation of all intensities—low and high rainfall intensities and overestimation
of the moderate rainfall. The result is also consistent with other studies by [11], which
had overestimated the heavy rainfall while contrast with [84], which had underestimated
the total rainfall by using weather radar. The result indicates that 6% of the sample high
rainfall sample has shown good correlation between radar and the gauge, but in future
more sample is needed to have better accuracy. Such results depend on the calibration
algorithm, radar hardware, rain gauge quality, and the evaluation method. Estimating the
rainfall using the Z-R models based on the intensity only is not preferred as the results
yield no significant difference with non-classified rain condition. Overall, it shows that
parametric and non-parametric model are significant for estimating the monsoon rainfall.

The result of mean hourly rainfall estimation derived from LM and ANN models is
shown in Figure 12. The time stamp is selected on December 2014 during continues rainfall
event from 16 to 19 December (96 h) and 20 to 24 December (102 h). Both LM and ANN
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models overestimated the rainfall (Figure 12a) at each time step except on 65 to 66 h. The
large difference between the rain gauge and radar probably due to change in the terminal
velocity of raindrop. Conversely, models showed underestimation of the rainfall from 1 to
32 h (Figure 12b), maybe due to the stratiform rainfall at that times. The spatial pattern
was then was plotted to evaluate the rainfall distribution form LM and ANN.

Figure 12. Plot of the rain gauge measurement and estimated rainfall from the radar rainfall on hourly basis for (a) 16 to 19
December 2014 (96 h) and (b) 20 to 24 December 2014 (102 h).

3.6. Case Study Analysis of Radar Rainfall Spatial Pattern

The evaluation of the radar rainfall estimates has been conducted qualitatively by
comparing the spatial pattern of CAPPI map between ANN and LM for the four rainfall
events during the NEM in December 2014. Both models show similar spatial rainfall
pattern within 100 km radius consisted of continuous rainfall, but the average of rainfall
varied. The LM (Figure 13) shows a maximum of 3 mm for the four events, indicating the
study sites received stratiform rainfall type. The ANN (Figure 14) also showed similar
widespread rainfall pattern but in conjunction with the convective rainfall type as the



Atmosphere 2021, 12, 634 21 of 26

maximum rainfall recorded up to 14 mm. The highest rainfall pixels recorded at 16th
and 17th are due to monsoon surges, as reported in [91]. Both models show that higher
reflectivity pixels on the land than of the ocean. The reflectivity may increase towards the
ocean surface due to the growth of raindrops from low level clouds.

Figure 13. CAPPI map on daily basis generated from the LM model for (a) 16 December 2014, (b) 17 December 2014, (c) 18
December 2014, and (d) 19 December 2014 for KB weather radar station.

Figure 14. CAPPI map on daily basis generated from the ANN model from the KB weather radar for similar date as
Figure 13. (a) 16 December 2014, (b) 17 December 2014, (c) 18 December 2014, and (d) 19 December 2014.

4. Conclusions

This study presents a framework for estimating monsoon rainfall using parametric
Z-R models and the ANN regression for single polarization radar. The framework is
designed to evaluate the accuracy of each models for hourly rainfall estimates during NEM
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in Kelantan. Rain gauges data have been used as a ground truth in this study. The weather
radar data were corrected in terms of three-dimensional pixel matching for its geometric
from polar to Cartesian plane and radiometric error. In order to depict the effects of DSD
on reflectivity, four rainfall intensities (all intensity, low to high rainfall intensity) within
a 50 km radius were selected. This study provides a systematic framework for inverting
the radar reflectivity to the rainfall rate by evaluating accuracy of each processing step.
The 3D NN aided in pixel matching for assigning proper reflectivity to the gauge location.
The matching sample between the reflectivity pixel and the gauge vector was used as an
input to the non-linear least square regression and ANN models to estimate the rainfall
at the gauge location. The non-parametric model can estimate hourly rainfall without the
coefficients α and β then provided higher accuracy in the correlation between the radar and
gauge measurement. Overall, ANN was able to significantly reduce the error difference in
the radar rainfall estimate and provide efficient way to estimate the hourly rainfall without
gauge adjustment. Note that, the result presented in this study for pixel matching cannot
be used at the high scanning elevation angle. However, the ANN can be applied at other
locations where the rain gauge network is dense as conducted in this study. Even though
the sample size associated with different intensity condition within near range observation,
this study lacks a comprehensive representation rainfall for full radar coverage and large
matching sample is required for more effective ANN results through further study. The
accuracy on non-parametric model can be improved through integrating multi-parameters
on the input vector of the ANN modeling, such as humidity, temperature, and wind speed.
Besides, verification by the disdrometer is suggested in the LM and ANN method, in
which the DSD is quantified on the ground; therefore, a comprehensive correlation can be
established. This study can be referred when considering the use of Doppler data from
the reflectivity measurement and, thus, the Z-R model may have less sensitive to Doppler
variation. Besides, polarimetric radar system would be benefitted by the Z-R model
in the initialization process or selection of transmitted power for better signal-to-noise
ratio (SNR).
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