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Abstract: Accurately forecasting wind speed on a short-term scale has become essential in the field
of wind power energy. In this paper, a multi-variable long short-term memory network model
(MV-LSTM) based on Pearson correlation coefficient feature selection is proposed to predict the
short-term wind speed. The proposed method utilizes multiple historical meteorological variables,
such as wind speed, temperature, humidity, and air pressure, to predict the wind speed in the next
hour. Hourly data collected from two ground observation stations in Yanqing and Zhaitang in Beijing
were divided into training and test sets. The training sets were used to train the model, and the test
sets were used to evaluate the model with the root-mean-square error (RMSE), mean absolute error
(MAE), mean bias error (MBE), and mean absolute percentage error (MAPE) metrics. The proposed
method is compared with two other forecasting methods (the autoregressive moving average model
(ARMA) method and the single-variable long short-term memory network (LSTM) method, which
inputs only historical wind speed data) based on the same dataset. The experimental results prove
the feasibility of the MV-LSTM method for short-term wind speed forecasting and its superiority to
the ARMA method and the single-variable LSTM method.

Keywords: wind speed prediction; multi-variable; LSTM; neural networks

1. Introduction

Due to the shortage of conventional energy such as fossil fuels and increasingly se-
vere environmental pollution, wind energy, as the most economical and environmentally
friendly renewable energy, has attracted wide attention [1]. To improve the efficiency of
wind energy utilization, it is important to achieve reliable and timely wind speed forecast-
ing. However, it is a challenging task to establish a satisfactory wind speed prediction
model because of the characteristics of wind speed, such as its intermittency, volatility,
randomness, instability, and nonlinearity [2].

Wind speed forecasting can be classified according to the time scale, including very-
short-term forecasting (minutes to one hour), short-term forecasting (on a time scale of
hours to a day) [3], and long-term forecasting (on a time scale of months or years) [4].
Historically, short-term prediction was a concern only for the few grid utilities with high
levels of wind power. More recently, however, due to the increase in the use of wind power
in a greater number of countries, short-term wind forecasting has become a central tool
for many transmission system operators (TSOs) or power traders in or near areas with
considerable levels of wind power penetration [5]. To forecast short-term wind speed,
researchers have developed several important prediction methods, which fall into four
categories: (a) physical methods, (b) statistical methods, (c) machine learning methods, and
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(d) hybrid methods [6]. Hybrid approaches combine the first three learning methods to
achieve better performance than that of a single method.

Physical methods often require comprehensive consideration of physical information,
such as temperature, humidity, atmospheric pressure, topographic features of wind farms,
and surface roughness, in order to establish an accurate geophysical model. The numerical
forecast model, for example, must solve the equations of flow and thermodynamics that
describe the evolution of the weather by using a high-performance computer. To predict the
atmospheric motion state and weather conditions for a specific future period, it sets initial
and boundary value conditions that reflect the actual conditions in the atmosphere [7].
The method is highly sensitive to initial error; thus, inaccurate initial values lead to a poor
forecast performance. In addition, problems exist in the coordination of atmospheric nu-
merical models, including the coordination between the vertical and horizontal resolutions
of the models, and in the coordination between physical processes [8]. Due to the time
scale, physical resolution, initialization times of the data, and the wind evolution, physical
methods perform poorly in short-term wind speed prediction.

Statistical methods are also used for short-term wind speed forecasting; they include
the autoregressive (AR) model, autoregressive moving average (ARMA) model, autoregres-
sive integrated moving average (ARIMA) model, and filtering model [9]. These methods
have been widely used in wind speed time-series prediction based on a large amount of
historical data. Poggi et al. [10] employed the AR model for the prediction of wind speed at
three Mediterranean sites in Corsica and demonstrated that the AR model can reproduce
the mean statistical characteristics of the observed wind speed data. Kavasseri et al. [11]
adopted the fractional ARIMA model to predict wind speed in North Dakota on the
day-ahead and two-day-ahead horizons and highlighted that the developed model out-
performed the persistence model. Lydia et al. [12] developed a linear model based on the
Gauss–Newton algorithm and a non-linear AR model based on a data-mining algorithm to
forecast ten-minute- and one-hour-ahead wind speed. However, as noted in [13], because
the time-series model assumes that the wind speed time series is linear, whereas the actual
wind speed is usually nonlinear, most statistical methods cannot effectively represent the
wind speed time series with nonlinear characteristics. During wind power ramp events, in
particular, statistical methods perform poorly.

Some recent studies have shown that the use of wind lidar measurements outperforms
statistical models for very short-term wind speed forecasting. Long-range wind lidar is
used to measure wind speed at multiple range gates along a laser beam, thus achieving very
high temporal and spatial resolution, and achieving more accurate predictions of wind-
ramping events by capturing small fluctuations in wind speed [14]. Valldecabres et al. used
lidar measurements to predict near-coastal wind speed with lead times of five minutes [15].
Using Taylor’s frozen turbulence hypothesis with local terrain corrections, they demon-
strated that wind speeds at downstream locations could be predicted using scanning lidar
measurements taken upstream in very short periods of time [15]. This method has a higher
prediction accuracy than those of the persistence method and the ARIMA model [15].

In recent years, with the development and evolution of computers, various machine
learning methods have gradually been applied to time-series prediction, which include
back-propagation (BP) neural networks [16], Bayesian networks (BNs) [17], wavelet neural
networks [18], extreme learning machines (ELMs) [19], and recurrent neural networks
(RNNs) [20]. Chen et al. [21] used multiple linear regression analysis, gray prediction,
BP neural network prediction, a combined gray BP neural network prediction method,
and long-term and short-term memory network model prediction methods to predict the
energy consumption situation in Beijing, which provided a reference for the application
of machine learning methods in time-series prediction. Zhou et al. [22] used a back-
propagation (BP) neural network with ship navigation behavior data as the training data
to predict a ship’s future navigation trajectory. Based on information from the Automatic
Identification System (AIS) on the waters near the Nanpu Bridge in Pudong New Area,
Shanghai, the experimental results showed that, compared with the traditional method
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of kinematic trajectories, the model can be more effective for predicting ship navigation.
Guo et al. [23] developed four wavelet neural network models using the Morlet function
as the wavelet basis function to forecast short-term wind speed in the Dabancheng area
in January, April, July, and October. It was shown that the prediction accuracy of the
model, which has more neurons in the hidden layer than other models, satisfied industrial
wind power forecasting requirements. ELMs have received extensive attention in recent
years due to their characteristics such as fast predictive speed, simple structure, and good
generalization [24]. Zhang et al. [19] developed a combination model based on ELMs
for wind speed prediction in Inner Mongolia, and its main technologies included feature
selection and hybrid backtracking search optimization tools. The RNN method has the
characteristics of sharing memory and parameters, so it has certain advantages in learning
the nonlinear characteristics of sequences. Therefore, in recent years, there have been
many studies of the application of RNNs for time-series prediction. Fang et al. [25] used
long short-term memory network (LSTM) and deep convolution generative adversarial
networks (DCGANs) to construct a prediction model for sequential radar image data,
and compared it with 3DCNN and CONVLSTM; the proposed method was more robust
and effective, and is theoretically applicable to all sequence images. Yan et al. [26] used
a long short-term memory network (LSTM) to predict the increase in the number of new
coronavirus disease infections. The experimental results showed that the LSTM had higher
prediction accuracy than the traditional mathematical differential equation and population
prediction model. Liu et al. [27] designed two types of LSMT-based architectures for
prediction of one-step and multi-step wind speed to alleviate the influence of its nonlinear
and non-stationary nature. Chen et al. [28] used LSTM as a predictor to develop the
EnsemLSTM method using an ensemble of six single, diverse methods for ten-minute- and
one-hour-ahead wind speed forecasting. Hu et al. [2] introduced a differential evolution
(DE) algorithm to optimize the number of hidden layers in each LSTM and the neuron
count in each hidden layer of the LSTM for the trade-off between learning performance and
model complexity. These examples show that the LSTM has more advantages in short-term
wind speed prediction than traditional machine learning algorithms. The LSTM performs
well in time-series prediction, so LSTM networks can be regarded as powerful tools for
wind speed prediction.

Based on the above analysis, considering that changes in wind speed will be greatly
affected by other weather factors, a multi-variable LSTM network based on Pearson correla-
tion coefficient feature selection is proposed in this paper (MV-LSTM). The proposed model
is trained on historical data for wind speed, temperature, humidity, air pressure, and other
meteorological elements to predict the short-term wind speed at Yanqing and Zhaitang
sites in Beijing, China. Section 2 of this paper describes the experimental data, the theo-
retical background of the proposed method, and how it is implemented. Section 3 shows
the results of the experiments and analyzes them with the evaluation metrics. Section 4
summarizes the performance of the proposed method on the dataset and proposes possible
measures for improving the model.

2. Data and Methods
2.1. Site Description

In this study, the data used in the experiments were taken from two sites—Yanqing and
Zhaitang in Beijing, Northeast China—which experience a temperate continental monsoon
climate. Yanqing station is located in Yanqing County, Beijing. The Yanqing Badaling Great
Wall Basin is surrounded by mountains on three sides in the north and southeast, and by
the Guanting Reservoir to the west—namely, the Yanhuai Basin. Yanqing is located in
the east of the basin, with an average elevation of about 500 m. The area is dominated
by southwestern winds in winter and southeastern winds in summer, with an average
annual wind speed of 3.4 m/s at a height of 10 m above the ground, and the wind resources
account for 70% of Beijing’s wind resources. Zhaitang station is located in Zhaitang Town,
Beijing. Zhaitang Town is located in the middle of the Mentougou mountainous area and
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belongs to a warm temperate zone with a semi-humid and semi-arid monsoon climate.
The area is dry and windy in spring, which has the highest wind speed throughout the
year, followed by that of the winter. The locations of the stations shown in Figure 1. Table 1
presents the geographical coordinates of the two stations.
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Figure 1. Geographical location of the stations in Beijing, Northeast China.

Table 1. Geographical coordinates of the stations.

Station Station ID Longitude (◦E) Latitude (◦N) Altitude(m)

Yanqing 54406 115.97 40.45 487.9
Zhaitang 54501 115.68 39.97 440.3

2.2. Data Description

The experimental data were hourly observation data from ground observation stations
(Yanqing and Zhaitang stations) provided by the China Meteorological Administration
from 1 August 2020, to 31 August 2020. Figures 2 and 3 show time-series diagrams of
observations from the two stations. As the figures show, the data for each site included
744 samples (31 days × 24 h). In addition to the wind speed (m/s), which was measured
at a height of 10 m above the ground, the meteorological elements at each point in time
included surface temperature (◦C), surface pressure (hPa), relative humidity (%), one-hour
precipitation (Rain1h) (mm), one-hour maximum temperature (MaxT) (◦C), and one-hour
minimum temperature (MinT) (◦C).

In this study, the time-series data for all meteorological elements were used to predict
short-term wind speed one hour in advance. For each station, hourly observations between
1 August 2020 and 25 August 2020 (the top 80% of the total data; 25 days × 24 h = 600 samples
of data) were used to train the model, and hourly observations between 26 August 2020
and 31 August 2020 (the bottom 20% of the total data; 6 days × 24 h = 144 samples of data)
were used to test the model. To address the issue of missing values, we used the mean
value of the two data points before and after the missing data point as a proxy.

2.3. Prediction Methods

To scientifically evaluate the performance of the proposed model, we selected a
classical time-series model, the ARMA model (a random series model that is trained with
past data to predict future data), for a control experiment. (Readers can obtain more
information about ARMA by referring to [29].)

The following is an introduction to the LSTM model.
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2.3.1. Long Short-Term Memory (LSTM) Networks

An LSTM network is a special recurrent neural network (RNN). Therefore, before
introducing LSTM, we provide a brief introduction to RNNs. We introduce the advantages
of RNNs compared to traditional neural networks in processing time-series data, and their
shortcomings in respect of long-term memory (an LSTM network was proposed to solve
this problem).

Recurrent Neural Networks (RNNs)

A traditional neural network is fully connected from the input layer to the hidden
layers and then to the output layer; however, the neurons between each layer are not
connected, which leads to large deviations in the results of traditional neural networks
when processing sequence data [30]. Unlike traditional neural networks, recurrent neural
networks (RNNs) can remember the previous information and apply it to the current
output calculation; that is, the neurons between the hidden layers are connected, and the
input of the hidden layer is composed of the output of the input layer and the output of
the hidden layer at the previous moment.

Based on the characteristics of sequential data processing, a common RNN train-
ing method is the back-propagation through time (BPTT) algorithm. This algorithm is
characterized by finding better points along the negative gradient direction of parameter
optimization until convergence. However, in the optimization process, to solve the partial
derivative of parameters at a certain moment, the information for all moments before that
moment should be traced back, and the overall partial derivative function is the sum of all
moments. When activation functions are added, the partial multiplications will result in
multiplications of the derivatives of the activation functions, which will lead to “gradient
disappearance” or “gradient explosion” [31].

Long Short-Term Memory (LSTM) Networks

To solve the problem of gradient disappearance or gradient explosion in RNNs,
Horchreiter et al. [32] proposed LSTM in 1997, which combines short-term and long-term
memory through gate control, thus solving the above problems to a certain extent.

Figure 4 shows the basic structure of an LSTM cell. It has an input gate Γi an output
gate Γo, a forgetting gate Γf, and a memory cell c̃. ht is the hidden state at time point t, xt is
the input of the network at time point t, and σ is the activation function (sigmoid).V, W,
and U are the neurons’ shared weight coefficient matrix.
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1. The forgetting gate determines what information in ct−1 needs to be discarded or
retained. By obtaining ht−1 and xt, the output [0, 1] is assigned to ct−1, where 1 means
completely retained and 0 means completely discarded. The output of the forgetting
gate is as follows (where bs is the bias vector of the hidden layer element, b is the bias
vector, and the subscript is the corresponding element):

Γ f , t = σ
(

U f · ht−1 + W f · xt + b f

)
(1)

2. The input gate determines how much information to add to the cell and generates the
information of the sigmoid and tanh by combining with the forgetting gate to update
the state of the cell. The input gate steps are:

Γi,t = σ(Ui · ht−1 + Wi · xi + bi) (2)

c̃i = tan h(Uc · ht−1 + Wc · xt + bc) (3)

3. The output gate determines which part of the information of the current cell state is
used as the output, and is still completed by the sigmoid and tanh. The output gate
steps are:

Γo, t = σ(Uo · ht−1 + Wo · xt + bo) (4)

ht = Γo,t · tan h(ct) (5)

According to the above steps, the LSTM model can deal with long-term and short-term
time-dependent problems well.

The steps of the LSTM model method are as follows:

Step (1): Data normalization

As stated in Section 2.1, we used the first 80% of data in the time series of observation
data for the training model and the last 20% of the data for the testing model. Table 2 shows
the statistics for the training set and the test set.

Table 2. The statistical wind speed information for the dataset from Yanqing station and Zhaitang station.

Station Dataset Max Median Min Mean Standard Deviation

Yanqing Entire dataset 8.30 1.35 0.00 1.75 1.24
Training dataset 7.00 1.30 0.00 1.72 1.20

Test dataset 8.30 1.40 0.20 1.92 1.36
Zhaitang Entire dataset 8.70 1.50 0.00 1.87 1.42

Training dataset 8.20 1.50 0.00 1.83 1.33
Test dataset 8.70 1.30 0.00 2.02 1.71

To ensure the input wind observations shared the same structures and time scales [33],
we used the maximum and minimum values in the training set to normalize the input of
the model (scaling the data to 0–1), and we reverse normalized the output data (scaled the
data from 0–1 back to normal data). The normalized data were computed with:

xni =
xi − xmin

xmax − xmin
(6)

where xni is the normalized feature value for time i. xmax is the maximum value of the
training dataset for one feature. xi is the real value at time i. xmin is the minimum value
of the training data for one feature. The wind speed, temperature, pressure, humidity,
minimum temperature, and maximum temperature were all normalized to 0–1 with the
above equation.
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Step (2): Data formatting

We used Keras, a third-party Python library, to set up the LSTM network. LSTM is a
supervised learning model (supervised learning means that the training data used to train
the model needed to contain two parts: the sample data and the corresponding labels). The
LSTM model in Keras assumes that the data are divided into two parts: input X and output
Y, where input X represents the sample data and Y represents the label corresponding to
the sample data. For the time-series problem, the input X represents the observed data for
the last several time points, and the output Y represents the predicted value of the next
time point (this can be understood as follows: we input the wind speed observation values
from the last several hours into the model, and the model outputs the wind speed for the
next hour). Therefore, both the training and test sets need to be formatted in two parts:
X and Y. Equations (7) and (8) represent the data format:

X =


x1
x2
...

xn

 =


s1 s2 . . . st
s2 s3 . . . st+1
...

...
...

...
sn sn+1 . . . st+n−1

 (7)

Y =


y1
y2
...

yn

 =


st+1
st+2

...
st+n

 (8)

where t is the time step. We set this to 8, which means that the last 8 h of wind speed
observations are used to predict the next hour’s wind speed. xi indicates sample i, yi
indicates the label corresponding to sample i, and si is the wind speed at time i.

For the training set, according to Equation (7), 592 (n = total data size − time steps
= 600 − 8 = 592) samples were input into the LSTM network, and each sample contained
wind speed observation values for 8 h. According to Equation (8), the labels corresponding
to the samples contain the wind speed observation values from the 9th hour to the 600th
hour. For example, the first sample x1 contains the wind speed observation values for
8 h from the first hour to the eighth hour, and its corresponding label is the wind speed
observation value of the ninth hour. The sample data and corresponding labels were used
together to train the model.

The test set was also labeled in the same way.

Step (3): Model training

We used the formatted training set data to train the LSTM network model. By itera-
tively learning the training data, the weight parameters of the network were optimized so
that the model could learn the time-series characteristics of the wind speed. Table 3 shows
the hyper-parameters of the LSTM network model. (We recommend that the reader obtains
the specific meaning of each hyper-parameter from [34].)

Table 3. The hyper-parameters of the LSTM network model (with one hidden layer).

Parameter Value

epoch size 30
batch size 4

neuron size 6
loss function mean squared error (MSE)

optimizer adaptive moment estimation (ADAM)

According to Table 3, we divided the samples of the training set into 148 (=592/4)
batches. All the batches were transmitted forward and back in the neural network for
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30 epochs to train the model. In each epoch, we used MSE (the calculation is shown in
Equation (9); y′i is the prediction of wind speed at time i, and yi is the observation of the
wind speed at time i) to calculate the difference between the forward calculation result of
each iteration of the neural network and the true value, and used ADAM to change each
weight of parameters in the network so that the loss function was constantly reduced and
the accuracy of the neural network was increased.

MSE
(
y′, y

)
=

1
n

n

∑
i=1

(
y′i − yi

)2 (9)

Step (4): Predicting the wind speed with the trained LSTM network model

The input of the model was X of the test set, which was obtained in step (2). The
output Yn

′ of the model is shown in Equation (10):

Y′n =


yn
′
1

yn
′
2

...
yn
′
n

 =


sn
′
t+1

sn
′
t+2
...

sn
′
t+n

 (10)

where yn
′
i (or sn

′
i) is the prediction of the wind speed at time i.

It should be noted that the prediction Yn
′ is scaled in the range of 0–1, so it must be in-

versely normalized to obtain the wind speed prediction within the real range. Equation (11)
describes how to inversely normalize the model output:

y′i = yn
′
i × (ymax − ymin) + ymin (11)

where y′i is the wind speed prediction (within the real range) at time i, ymax is the maxi-
mum wind speed observation in the training set, and ymin is the minimum wind speed
observation in the training set. The reason for using the maximum and minimum values of
the training set instead of the test set for inverse normalization is that in actual situations,
we can only know the observed values of the wind speed in the past, so we can only use
the past maximum and minimum wind speeds to predict the maximum and minimum
wind speeds in the future.

2.3.2. Multi-Variable Long Short-Term Memory (MV-LSTM) Network

In this paper, we propose a multi-variable LSTM network model based on Pearson
correlation coefficient feature selection for short-term wind speed prediction, which takes
the historical data for multiple meteorological elements into account. The framework is
shown in Figure 5.

The steps of the MV-LSTM network method are as follows:

Step (1): Feature selection

There is a certain correlation between different meteorological variables [35]. There-
fore, we calculated the Pearson correlation coefficient between each meteorological element
and the wind speed, identified several meteorological elements (features) that are signifi-
cantly related to the wind speed, and used them in conjunction with the wind speed time
series as the input of the model. Equation (12) describes how to calculate the Pearson
correlation coefficient [36]:

r(X, Y) =
cov(X, Y)

σXσY
(12)

where r(X, Y) is the Pearson correlation coefficient between x and y, cov(X, Y) is the
covariance between X and Y, σX is the standard deviation of X, and σY is the standard
deviation of Y.
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The Pearson correlation coefficient ranges from –1 to 1. When the correlation coefficient
approaches 1, the two variables are positively correlated. When the correlation coefficient
tends to –1, the two variables are negatively correlated [37]. The bigger the absolute value
of the correlation coefficient, the stronger the correlation between the variables. However,
it is not sufficient to discuss only the absolute value of the coefficient. Therefore, hypothesis
testing was used in this study to discuss the correlation between each meteorological
element and the wind speed:

(1) We first propose the null hypothesis and the alternative hypothesis: The null hy-
pothesis: r(X, Y) = 0, which means that the two variables (X and Y) are linearly
independent; The alternative hypothesis: r(X, Y) 6= 0, which means that the two
variables are linearly dependent.

(2) We calculate the probability value (p-value) of the null hypothesis being true (when
the two variables are linearly independent).

(3) We set the significance level: α = 0.05.
(4) We compare the p-value to α. If the p-value is less than α, the null hypothesis is

considered as the extreme case, thus rejecting the null hypothesis and accepting the
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alternative hypothesis, which means that the linear correlation between X and Y is
statistically significant.

Table 4 lists the correlation between each meteorological element and the wind speed
from the datasets for Yanqing Station and Zhaitang Station.

As can be seen in Table 4, when the significance level is set to 0.05, for the different
stations, the meteorological elements related to wind speed were also different. Therefore,
we built MV-LSTM models for Yanqing Station and Zhaitang Station separately. Both
models used the same hyper-parameters (see Step (4) for details). The models for each
station were trained and tested using observations from that station. In Yanqing Station, the
meteorological elements, including the temperature, pressure, humidity, minimum temper-
ature in 1 h, and maximum temperature in 1 h, were related to wind speed. Therefore, these
meteorological variables and wind speed data were selected as the inputs of the MV-LSTM
model for Yanqing Station. In Zhaitang Station, the meteorological elements, including the
temperature, pressure, minimum temperature in 1 h, and maximum temperature in 1 h,
were related to wind speed. Therefore, these meteorological variables and wind speed data
were selected as the inputs of the MV-LSTM model for Zhaitang.

Table 4. Correlation of variables with wind speed (* indicates that the meteorological element is
related to wind speed with a p-value of less than 5%).

Yanqing Station Zhaitang Station

Correlation p-Value Correlation p-Value

Temperature 0.37 * 0.00 0.50 * 0.00
Pressure −0.08 * 0.03 −0.14 * 0.00

Humidity −0.09 * 0.02 0.01 0.78
Min T 0.37 * 0.00 0.51 * 0.00
Max T 0.39 * 0.00 0.52 * 0.00

Precipitation in One Hour 0.01 0.70 −0.00 0.99

Step (2): Data normalization

Similarly to the single-variable LSTM method, to ensure the input meteorological
variables share the same structures and time scales, the selected meteorological elements
and wind speed sequences must be normalized. Step (1) in Section 2.3.2 describes how the
wind speed sequence was normalized. For the MV-LSTM model, not only the wind speed,
but also the meteorological elements selected by features, should be normalized. As an
example, Equation (13) shows normalization of temperature:

tni =
ti − tmin

tmax − tmin
(13)

where tni is the normalized temerature at time i, ti is the temperature observation at time i,
tmin is the minimum temperature of the training set, and tmax is the maximum temperature
of the training set. The segmentation method for the training set and test set was the same
as that of the single-variable LSTM method (the first 80% of the data of each site were used
as the training set, and the last 20% were used as the test set.).

Step (3): Data formatting

Similarly to the single-variable LSTM method, the datasets need to be transformed
into a format for supervised learning. However, there is a difference between the single-
variable LSTM method and MV-LSTM method for X. Unlike xi in the single-variable LSTM
method, which contains 8 h of wind speed observations (from the time i to the time i+7), xi
in MV-LSTM contains 8 h of observations of several meteorological elements (including



Atmosphere 2021, 12, 651 12 of 17

the wind speed and other meteorological elements selected as features). Equation (14)
describes the data format of X in MV-LSTM:

X =


x1
x2
...

xn

 =


v1 v2 . . . vt
v2 v3 . . . vt+1
...

...
...

...
vn vn+1 . . . vt+n−1

 (14)

where xi is sample i, and vi is the observations of the meteorological elements at time
i. For Yanqing Station, vi = (ti, pi, hi, minTi, maxTi), where ti, pi, hi, minTi, and maxTi
are the temperature observation, the pressure observation, the humidity observation, the
minimum temperature in the last hour at time i, and the maximum temperature in the last
hour at time i, respectively. For Zhaitang Station, vi = (ti, pi, minTi, maxTi).

Step (4): Model training

From step (3), for the training set and test set of each station, we obtained the corre-
sponding X and Y. We used X and Y of each station’s training set to train the model for
that station.

The hyper-parameters of the MV-LSTM network model are the same as that of the
LSTM network.

X in the training set enters the hidden layer through the input layer of the model,
which has several cells. The meteorological element data for each moment (xi) propagate
among the cells, and the data for the past moment affect the output of the cell at the next
moment through the gate control mechanism. When all samples in X have propagated
an epoch in the hidden layer, the model will output the predicted value Y′ of this epoch
through the output layer. The difference between the predicted value Y′ and the observed
value Y is calculated with the loss function. Then, the optimizer is used to make the model
update the connection weight of each neuron in the hidden layer in the direction of the
decreasing value of the loss function.

After 30 epochs, the trained MV-LSTM network model was obtained.

Step (5): Predicting the wind speed with the trained MV-LSTM network model

X in the test set (obtained with step (3)) was used as the input of the model, and the
trained model would output the predicted value Yn′ (see Equation (10) in Section 2.3.2 for
details). Similarly to the single-variable LSTM method, we need the value of Yn

′ predicted
with inverse normalization to obtain the predicted wind speed value Y’ within the real
range (see Equation (11) in Section 2.3.2 for details on inverse normalization).

Finally, we evaluated the difference between the predicted value Y’ of the test set and
the observed value Y of the test set so as to evaluate the performance of the model (see
Section 2.4 for the evaluation metrics).

2.4. Evaluation Metrics

To evaluate the performance of the prediction methods, we employed four commonly
used quantitative metrics, namely the root-mean-square error (RMSE), mean absolute
error (MAE), mean bias error (MBE), and mean absolute percentage error (MAPE). More
specifically, the RMSE, MAE, MBE, and MAPE are defined as follows [38,39]:

RMSE =

√
1
n

n

∑
i=1

(
yi − y′i

)2 (15)

MAE =
1
n

n

∑
i=1

∣∣yi − y′i
∣∣ (16)
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MBE =
1
n

n

∑
i=1

(
yi
′ − yi

)
(17)

MAPE =
1
n

n

∑
i=1

∣∣yi − y′i
∣∣

yi
(18)

where yi is the wind speed observation at time i and y′i is the wind speed prediction at time i.

3. Results and Discussion

The prediction results of the ARMA, LSTM, and MV-LSTM methods are shown as the
values of evaluation metrics in Tables 5 and 6, where the best performance is highlighted in
bold. The values of RMSE show that the MV-LSTM model performs better than the ARMA
model and the LSTM model for both stations. In particular, compared with the ARMA
method, the accuracy of the MV-LSTM method is significantly improved. The values of
evaluation metrics also show that the performance of the MV-LSTM method is different for
two stations. For Yanqing Station, the values of four evaluation metrics (RMSE, MAE, MBE,
and MAPE) show that the MV-LSTM model outperforms the other two models. However,
for Zhaitang station, compared with the LSTM model, the MV-LSTM has lower values
of RMSE and MBE, but higher values of MAE and MAPE, which means that the LSTM
method has a larger residual error at some data points, and the MV-LSTM method can
handle these data points well. In addition, the values of MBE show that the results of the
MV-LSTM method for both stations are generally overpredicted.

Table 5. The evaluation metric values for three models on the test set of Yanqing Station.

Method RMSE (m/s) MAE (m/s) MBE (m/s) MAPE (%)

ARMA 1.2287 0.8853 −0.1548 0.6615
LSTM 1.1477 0.9132 0.3170 0.7910

MV-LSTM 1.1460 0.8468 0.0276 0.6412

Table 6. The evaluation metric values for three models on the test set of Zhaitang Station.

Method RMSE (m/s) MAE (m/s) MBE (m/s) MAPE (%)

ARMA 1.4638 1.0277 −0.0764 0.73611
LSTM 1.3622 0.9343 −0.1040 0.65081

MV-LSTM 1.3270 0.9375 0.0602 0.68880

Figures 6 and 7 show the wind speed observations from the test sets of the two stations
and the prediction results of the three models. As can be seen in Figure 6, for the data of
Yanqing Station, the MV-LSTM model could better predict the minimum value of the wind
speed than the LSTM, and could fit the general variation trend of the wind speed better.
In Figures 6 and 7, when a wind ramp occurs (which is shown in the figures, the wind
speed rises sharply within a short period of time), the prediction residual of the model also
increases, which means that the MV-LSTM does not perform well on the maximum point
of the wind speed series. In addition, Figures 6 and 7 show that the prediction curves of
ARMA, LSTM, and MV-LSTM all have certain hysteresis when compared with the observed
data curves. Among these, the sequence of the LSTM method shows obvious hysteresis.
The MV-LSTM model could obtain the historical parameters of multiple meteorological
elements to represent the wind speed series data in a more complex manner. Therefore, the
MV-LSTM model represents an improvement for this problem, but still shows some lag
when the wind speed changes sharply.
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Figures 8 and 9 show residual errors’ distribution of each method in different wind
speed observation ranges. The x-axis represents the range of the wind speed observa-
tions, and each sub-graph displays the residual error distribution of one method. For
each method, the residual error increases as the wind speed increases, which means the
prediction performance of each method decreased with the increase in the wind speed. For
each station, compared with the other two methods, the predicted residual increase range
of the MV-LSTM model is the smallest. For Yanqing Station, when the wind speed is in the
range 0–5 m/s, the residual errors of the MV-LSTM method are mostly kept below 2 m/s,
which could not be achieved by the other two methods.
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4. Conclusions

In this paper, we proposed a multi-variable long short-term memory (MV-LSTM) net-
work model for predicting short-term wind speed. The model can combine the historical
data of several meteorological elements to forecast the short-term wind speed. The feasibil-
ity of this method was verified on an hourly observation dataset taken from observation
stations in Yanqing and Zhaitang from 1 August 2020 to 31 August 2020. The experimental
results proved that the prediction performance of the MV-LSTM model is superior to that
of the traditional ARMA method and the single-variable LSTM network method based on
only historical wind speed data. The experimental results also shows that the performance
of the proposed model is different for different datasets and the predicted data curve lags
behind the observed data curve at the maximum values of wind speed. Based on this, we
will consider optimizing the learning ability of the model by in-creasing its complexity,
such as by adding network layers and combining other neural networks, thus improving
the model’s prediction accuracy for wind speeds with larger instability and volatility.
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